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Spiral magnetic field and bound states of vortices in noncentrosymmetric superconductors
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We discuss the unconventional magnetic response and vortex states arising in noncentrosymmetric supercon-
ductors with chiral octahedral and tetrahedral (O or T ) symmetry. We microscopically derive Ginzburg-Landau
free energy. It is shown that due to spin-orbit and Zeeman coupling magnetic response of the system can
change very significantly with temperature. For sufficiently strong coupling this leads to a crossover from type-1
superconductivity at elevated temperature to vortex states at lower temperature. The external magnetic field
decay in such superconductors does not have the simple exponential law. We show that in the London limit,
magnetic field can be solved in terms of complex force-free fields �W , which are defined by ∇ × �W = const �W .
Using that we demonstrate that the magnetic field of a vortex decays in spirals. Because of such behavior of the
magnetic field, the intervortex and vortex-boundary interaction becomes nonmonotonic with multiple minima.
This implies that vortices form bound states with other vortices, antivortices, and boundaries.
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I. INTRODUCTION

Macroscopic magnetic and transport properties of super-
conductors have a significant degree of universality. For
ordinary superconductors, the magnetic field behavior in the
simplest case is described by the London equation [1–3]

∇2 �B = 1

λ2
�B. (1)

This dictates that an externally applied magnetic field �B de-
cays exponentially in the superconductor at the characteristic
length scale called magnetic field penetration length λ. The
equation relating the supercurrent to magnetic field ∇ × �B =
�J dictates that the supercurrent should decay with the same
exponent. Within the standard picture, this type of behavior
describes the magnetic field near superconducting boundaries
and in vortices, with microscopic detail, only affecting the
coefficient λ. The single length scale associated with magnetic
field behavior enables the Ginzburg-Landau classification of
superconductors [4] by a single parameter: the ratio of λ to
the coherence length (the characteristic length scale of density
variation ξ ). Within this classification, there are two types of
superconductors, the type II that exists for λ/ξ > 1 allows
stable vortices that interact repulsively, and in the type I,
λ/ξ < 1 the vortices interact attractively and are not stable.
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However, a simple two-length-scales-based classification of
superconducting states cannot be complete. One counterex-
ample is multicomponent materials, where there are several
coherence lengths [5–9]. Moreover, there can be several mag-
netic field penetration lengths [10]. This multiscale physics
gives nontrivial intervortex interaction and results in distinct
magnetic properties.

How universal is the magnetic response in single-
component systems? Here, we focus on magnetic and vortex
properties of single-component systems in a crystal that lacks
inversion symmetry. There are many discovered materials
where superconductivity occurs in such crystals [11–16].
Then, (1) does not necessarily apply since symmetry now
allows for noncentrosymmetric terms.

Indeed, Ginzburg-Landau (GL) free-energy functionals
describing these, so-called noncentrosymmetric, supercon-
ducting systems were demonstrated to feature various new
terms [11]. These include contributions that are linear in
the gradients of the superconducting order parameter and
the magnetic field �B. It principally revises the simplest Lon-
don model (1) where such terms are forbidden on symmetry
grounds. Depending on the symmetry of the material, the free
energy can feature scalar and vector products of these fields
of the form ∝Ki jBiJj , where i = x, y, z, �J ∝ Re[ψ∗Dψ], D
is the covariant derivative and ψ is the order parameter, and
Ki j are coefficients, which form depends on crystal symmetry
[11]. Correspondingly, while in ordinary superconductors the
externally applied field decays monotonically, in a Meissner
state in a noncentrosymmetric superconductor it can have a
spiral decay [11,17–21]. This raises the question of the nature
of topological excitations in such materials [11,18–23]. The
main goal of this paper is to investigate vortex solutions, their
interaction, and the magnetic response of a superconductor
where there is no inversion symmetry in an underlying crystal
lattice.
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Structure of the paper

In Sec. II we discuss the microscopic derivation of the
Ginzburg-Landau (GL) model. A reader who is not interested
in technical details can proceed directly to Sec. III. In Sec. III,
by rescaling we cast the GL model in a representation that
is more convenient for calculations and analysis. In Sec. IV
we describe a method that solves the hydromagnetostatics of
a noncentrosymmetric superconductor in the London limit in
terms of complex force-free fields. A reader not interested in
the analytical detail can proceed directly to the next section.
In Sec. V we obtain analytic and numerical vortex configu-
rations with a spiral magnetic field. In Sec. VI we calculate
the temperature dependence of the single vortex energy to
show how a crossover to type-1 superconductivity appears at
elevated temperatures in a class of noncentrosymmetric su-
perconductors. In Sec. VII we consider intervortex forces and
show that system forms vortex-vortex and vortex-antivortex
bound states. In Sec. VIII we consider the problem of a vortex
near a boundary of noncentrosymmetric superconductor and
show that vortex forms bound states with it.

II. MICROSCOPIC DERIVATION OF THE
GINZBURG-LANDAU MODEL

Here, we present a microscopic derivation of the GL model
in the case of chiral octahedral O or equivalently tetrahedral
T symmetry from the microscopic model. A reader, not in-
terested in the technical derivation of the model, can skip this
section and directly proceed to the next sections that analyze
the physical properties of the model.

A. Unbounded free energy in the minimal extension
of the GL model

Typically, quoted phenomenological GL models have un-
physical unboundedness of the energy from below [24]. For
example, the model presented in Chap. 5 of [11] is given by
energy density equal to usual GL model plus Ki jBiJj term.
To see that energy is unbounded, it is sufficient to consider
constant and real order parameter ψ . Then, energy density is
given by �B2

2 + ψ2 �A2 − ψ2Ki jBiA j + V (ψ ), where V is poten-
tial. Consider the case of O or T symmetry given by Ki j =
δi jK . Then, inserting Chandrasekhar-Kendall function [25] as
�B = Kψ2 �A we obtain the energy density

F =
[

1 − K2ψ2

2

]
ψ2 �A2 + V (ψ ) (2)

which is unbounded from below. That can be seen as fol-
lows: by increasing ψ >

√
2

K and setting �A2 → ∞ one obtains
infinitely negative energy density. Similarly, consider, for
example, the case of C4v symmetry, which corresponds to
Rashba spin-orbit coupling Ki jBiJj = K ( �B × �J )z. Then, we
can set �A = e−Kψ2z(constx, consty, 0). This leads to the same
unbounded energy density equation (2).

The unboundedness of the model is associated with diver-
gence of |ψ | and | �B|. However, some of the previous works
that derived the GL model assuming a finite uniform magnetic
field �B [11,20,26] obtained the term |ψ |2 �B2. This term in
principle can make GL free energy bounded from below if

the assumption of constant | �B| is lifted. Motivated by this
problem, we proceed to derive the GL model with nonuniform
�B aiming to obtain a microscopically justified effective model
with a bounded energy.

B. Microscopic model

We will focus on the simplest case with the BCS-type local
attractive interaction given by strength V > 0 but will include
a general space-dependent magnetic field �B. Interaction is
regularized by Debye frequency ωD such that only electrons
with Matsubara frequency <ωD are interacting. We start from
the continuous-space fermionic model in path-integral formu-
lation, given by the action S and partition function Z:

S =
∫ 1

T

0
dτ

∫ +∞

−∞
d�x

∑
α,β=↓,↑

a†
α (h · σαβ )aβ − Va†

↑a†
↓a↓a↑,

Z =
∫

D[a†, a]e−S, (3)

where T is temperature and aα (τ, �x), a†
α (τ, �x) are Grassman

fields, which depend on imaginary time τ , three-dimensional
space coordinates �x, and spin α. They correspond to fermionic
creation and annihilation operators and

h ≡ (∂τ + E − μ, �h), σαβ ≡ (δαβ, �σαβ ),

�h ≡ �γ − μB �B(�x), (4)

where �σαβ ≡ ((σ1)αβ, (σ2)αβ, (σ3)αβ ) are Pauli matrices, e
is electron charge, μ is chemical potential, and μB is Bohr
magneton. Single-electron energy is E [−i∇ − e �A(�x)] with
E (0) = 0, which is E (k) = k2

2m for quasifree electrons. How-
ever, in our derivation, we keep E (k) in general form, also
suitable for band electrons. The only term responsible for non-
centrosymmetric nature of the system is spin-orbit coupling
�γ (−i∇ − e �A(�x)).

Let us now consider the case of cubic O or T symmetry
with simplest coupling �γ (�a) = γ0�a. We will focus on the
standard situation where the macroscopic length scale λ, over
which the quantities �A, �B change, is much larger than Fermi
length scale ∝1/kF , where kF is Fermi momenta. We assume
that the following inequalities hold:

μ � ωD � Tc, γ0kF � ωD � μBB, (5)

where Tc is the critical temperature of a superconductor to a
normal phase transition. We perform Hubbard-Stratonovich
transformation by introducing auxiliary bosonic field (τ, �x).
Hence, up to a constant, the interaction term becomes

eV
∫

dτ d�x a†
↑a†

↓a↓a↑ =
∫

D[†,]e− ∫
dτ d�x( †

V +†a↓a↑+a†
↑a†

↓ ).

(6)

Next, by introducing b ≡ (a↑, a↓, a†
↑, a†

↓)T the partition
function (3) can be written as

Z =
∫

D[†,]D[b]e− ∫
dτ d�x( 1

2 bT Hb+ †
V ), (7)
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where we have the matrix H = H0 + � with

H0 =
(

0 −ĥ
T

ĥ 0

)
, � =

(
δ̂† 0
0 δ̂

)
. (8)

The symbol with a hat denotes 2 × 2 matrices defined by
ĥ = σ · h and δ̂ = σ · (0, 0, i, 0). Note that for any func-
tion of operators f , transposition is defined as f T (∂τ ,∇) =
f (−∂τ ,−∇). Integrating out fermionic degrees of freedom b,
by performing Berezin integration in (7), we obtain

Z =
∫

D[†,]e
1
2 ln det H−∫

dτ d�x †
V . (9)

In the mean-field approximation, one assumes that  does
not depend on τ (i.e., it is classical) and does not fluctuate
thermally. Hence, free energy is given by

F = T S =
∫

d�x ||2
V

− T

2
Tr ln H. (10)

By Tr here and below we mean matrix trace tr and integration∫
d�x dτ . To obtain the GL model we need to expand the

second term in (10) in powers and derivatives of the field :

Tr ln H = Tr ln
(
1 + H−1

0 �
) =

∞∑
ν=1

(−1)ν+1

ν
Tr[(ĝδ̂ĝT δ̂†)ν],

(11)

where the first equality is defined, up to constant in  and ĝ,
through

H−1
0 (τ, τ ′, �x, �x′) =

(
0 ĝ

−ĝT 0

)
⇒ ĥĝ = δ(�x − �x′)δ(τ − τ ′).

(12)

Note that in Eq. (11) matrices are multiplied and
integrated inside the trace, for example, ĝδ̂ĝT δ̂† ≡∫

d�x′dτ ′ĝ(τ, τ ′, �x, �x′)δ̂(�x′)ĝT (τ ′, τ ′′, �x′, �x′′)δ̂†(�x′′). Next,
we define

ĝ = eφ(�x,�x′ )f̂ (13)

so that for slowly changing �A, �B we get ĥ(−i∇ − e �A(�x))ĝ �
eφ ĥ(−i∇)f̂ with φ(�x, �x′) � ie �A(�x)(�x − �x′). The Fourier trans-
form for g, ĝ = σ · g, is given by

g(τ − τ ′, �x − �x′) = eie �A(�x)(�x−�x′ )T
|wn|<ωD∑

wn

1

(2π )3

×
∫

d�k e−iwn (τ−τ ′ )ei�k·(�x−�x′ ) f (wn, �k),

(14)

where wn = 2πT (n + 1
2 ) is Matsubara frequency. Here, we

used the fact that only electrons with frequency wn smaller
than Debye frequency ωD are interacting, and that f̂ is a solu-
tion of the equation ĥ f̂ = 1. By using the Fourier transformed
h(wn, �k) = [−iwn + E (k) − μ, γ0�k − μB �B] we obtain

f = h
h · h

, (15)

where h ≡ (h0,−�h) if h = (h0, �h). We can rewrite f as

f = 1

2
( f + + f −), f ± = G±s,

G± = 1

h0 ± h
, s = (1, �eh), (16)

where we use the notations h ≡ |�h| and �eh ≡ �h
h .

C. Minimal set of terms in the GL expansion for the
noncentrosymmetric materials

1. Second-order terms

First, we examine the terms occurring in the second or-
der. To that end, by using the (14) and substituting ∗(�x′) =
e(�x′−�x)·∇∗(�x) we compute ν = 1 term in (11) which is second
order in :

Tr[ĝδ̂ĝT δ̂†] = 2 Tr[(g) · (gT ∗)]

= 2
∫

d�x dτ d�x′dτ ′(�x)g(τ ′, τ, �x′, �x)

·gT (τ, τ ′, �x, �x′)∗(�x′)

= 2
∫

d�x (�x)
∑
wn

∫
d�k

(2π )3
f (wn, �k)

· f (−wn,−�k + D)∗(�x), (17)

where the operator D = −i∇ − 2e �A(�x) is acting only on the
gap field ∗(�x). The goal here is to simplify f · f ′ term in

(17), where the prime means dependence on (−wn,−�k + D).
Hence, using that γ0kF � μBB we approximate

|�h| � γ0k − �ek · μB �B, |�h′| � γ0k + �ek · (μB �B − γ0D).

(18)

Then it is easy to show that up to the second order in D
kF

and μBB
γ0kF

, s · s′ � 0 and s · s′ � 2. Hence, using (16) we obtain

f · f ′ � 1
2 (G−G′

− + G+G′
+). (19)

When summing over wn, contribution to integration over mo-
menta in (17) mainly comes from a thin shell near Fermi
momenta kaF because the interaction is cut off by Debye
frequency. This shell has the width �ωD:

εa(kaF ) = 0, with εa ≡ E (k) + aγ0k − μ, (20)

where a = ±1 is the band index. Hence, we can approximate
E (−�k + D) � E (k) − E ′(kaF )�ek · D. By using μ � ωD and
γ0kaF � ωD, the integral in (17) can be estimated as∫

d�k
(2π )3

� Na

∫ +∞

−∞
dεa

∫
d�k

4π
, Na ≡ 1

2π2

k2
aF

vaF
,

vaF ≡ E ′(kaF ) + aγ0, (21)

where Na is density of states at Fermi level, vaF is Fermi
velocity, and d�k is solid angle. Then, we perform integration
and Matsubara sum in (17) by using Eqs. (19), (21), and
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ωD � T :

∑
wn

∫
d�k

(2π )3
f · f ′ �

∑
a=±1

Na

2T

∫
d�k

4π

[
ln

ωD

2πT

− Re′�
(

1

2
+ i�ek · vaF D − 2aμB �B

4πT

)]
,

(22)

where Re′X ≡ 1
2 (X + X †) and � is digamma function. Next,

we expand in D, �B and average over �ek in Eq. (22). Combining
the result with Eqs. (17), (11), and (10) and integrating by
parts with ∇ �A = 0, we obtain the part of the free energy which
is second order in :

F2 =
∫

d�x
[
α||2 +

∑
a=±1

Ka|(vaF D∗ − 2aμB �B)|2
]
,

α = N ln
T

Tc
, Tc = 2eγEuler

π
ωDe− 1

NV ,

Ka = 7ζ (3)

6(4πT )2
Na, N = N+ + N−

2
. (23)

Note that the kinetic term is split into two terms corre-
sponding to different bands with covariant derivatives that
apart from �A have �B. If one opens brackets, the only noncen-
trosymmetric term is proportional to difference of squares of
Fermi momenta of two bands:

∝ (
k2
−F − k2

+F

) �B · (D∗ + ∗D∗). (24)

2. Fourth-order term

As usual, at the fourth order, it is sufficient to retain only
term ∝||4. Hence, we neglect �A, �B and difference in ’s.
To that end, we consider ν = 2 term in Eq. (11). By using
Eq. (14) it can be written as

−1

2
Tr[(ĝδ̂ĝT δ̂†)2] � −1

2

∑
wn

∫
d�x d�k

(2π )2
tr[( f̂ δ̂ f̂ ′T δ̂†)2]

� −1

2

∫
d�x||4

∑
a

Na

∑
wn

×
∫ +∞

−∞

dεa

(w2
n + ε2

a )2
. (25)

Here, to go to the second equality we used (16). By using
Eqs. (25) and (10) we obtain the part of the free energy which
is quartic in order parameter:

F4 =
∫

d�x β||4, with β = 7ζ (3)

(4πT )2
N. (26)

The principal difference between the GL model of cen-
trosymmetric and noncentrosymmetric material here is in
the form of the gradient term in Eq. (23). Note that the
frequently used phenomenological noncentrosymmetric GL
models include only the cross term �B · �J , that makes these
models unbounded from below. The derived microscopic
model solves this issue because the gradient term in (23) is
a full square, i.e., is positively defined.

III. RESCALING AND PARAMETRIC DEPENDENCE OF
THE MICROSCOPIC GL MODEL

In this section, we rescale the GL model to a simpler form
that is analyzed below. The minimal, microscopically derived
GL model for noncentrosymmetric superconductor reads as a
sum of second-order F2 and fourth-order F4 terms, given by
(23) and (26):

F =
∫

d�x
[

( �B − �H)2

2
+ α||2 + β||4

+
∑

a=±1

Ka|(vaF D∗ − 2aμB �B)|2
]
. (27)

Importantly, the energy of the model, derived here, is bounded
from below, i.e., the functional does not allow infinitely nega-
tive energy states. This is in contrast to the phenomenological
model presented in Chap. 5 of [11], which has artificial un-
boundedness of the energy from below [24].

The microscopically derived model can be cast in a more
compact form by introducing the new variables �r, ψ, F ′, �A′
and performing the following transformation:

�x = 1√−α

(
β

2e2

) 1
4

�r,  =
√−α

2β
ψ, F =

√−α

2(2e2)
3
4 β

1
4

F ′,

�A = 1

2e

r

x
�A′. (28)

After dropping the prime, the rescaled GL free energy can be
written as

F =
∫

d�r
[

( �B − �H )2

2
+

∑
a=±1

|Daψ |2
2κc

− |ψ |2 + |ψ |4
2

]
,

Da ≡ i∇ − �A − (γ + aν) �B, (29)

where we define new parameters

κc =
√

β

2e2

1∑
a=±1 Kav

2
aF

, �H =
√

2β

−α
�H,

γ = √−α

( ∑
a=±1

aKavaF

)
2μBκc

(
2e2

β

) 3
4

,

ν = √−αK+K−

( ∑
a=±1

vaF

)
2μBκc

(
2e2

β

) 3
4

. (30)

Two conclusions can be drawn here:
(i) The noncentrosymmetric term (24) has the prefactor γ

that modifies the gradient term. It means that the sign of γ

determines whether left- or right-handed states are preferable.
The term is proportional to microscopic spin-orbit coupling
γ ∝ γ0 if γ0kF � μ. On the other hand, the parameter ν

appears due to the coupling to the Zeeman magnetic field.
(ii) The parameters γ , ν are proportional to

√−α and
hence for T → Tc we get γ , ν → 0. Here, Tc is the critical
temperature, defined in (23) so that α ∝ ln T

Tc
. Note that the

characteristic parameter κc does not have the same mean-
ing as the standard Ginzburg-Landau parameter. However,
asymptotically, in the limit T → Tc the noncentrosymmetric
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superconductor will behave as a usual superconductor with
GL parameter κc.

Varying (29) with respect to ψ∗, ψ and �A we obtain the
following Ginzburg-Landau (GL) equations:

∑
a

D2
aψ

2κc
− ψ + |ψ |2ψ = 0,

∑
a

(D2
aψ )∗

2κc
− ψ∗ + |ψ |2ψ∗ = 0,

∇ ×
[

�B − �H −
∑

a

(γ + aν) �Ja

]
=

∑
a

�Ja (31)

with �Ja = Re(ψ∗Daψ )
κc

and boundary conditions for unitary vec-
tor �n orthogonal to the boundary:

�n ·
∑

a

Daψ = 0,

�n ·
∑

a

(Daψ )∗ = 0, �n ×
[

�B − �H −
∑

a

(γ + aν) �Ja

]

= 0. (32)

IV. AN ANALYTICAL APPROACH FOR SOLUTIONS IN
THE LONDON LIMIT: MAGNETIC FIELD

CONFIGURATION AS THE SOLUTION TO THE COMPLEX
FORCE-FREE EQUATION

In this section, we develop an analytical method for treat-
ing Eq. (31). That will allow us to determine the magnetic
field and current configurations in the London limit.

A. Decoupling of fields at linear level

First, we focus on asymptotic of Eq. (31) over uni-
form background ψ = 1. Namely, we set ψ = (1 + ε)eiφ and
assume that ε, �B, and �j ≡ ∇φ + �A + γ �B are small. By lin-
earizing the GL equations (31) in terms of them we obtain

ε − 2κcε = 0, χ2∇ × �B + γ∇ × �j + �j = 0, (33)

where χ =
√

κc
2 + ν2. This is accompanied by the boundary

conditions (32):

�n · ∇ε = 0, �n · �j = 0, �n ×
[
χ2 �B + γ �j − κc

2
�H
]

= 0.

(34)

Note that the equation for the matter field ε has the same
form as for usual superconductors. That allows us to define
the coherence length as ξ = 1√

2κc
so that it parametrizes the

exponential law ψ ∝ e−x/ξ how the matter field recovers from
a local perturbation. Importantly, the equation for �B and �j is
decoupled from the equation for ε at the level of linearized
theory. That means that the London limit is a fully controllable
approximation for a noncentrosymmetric superconductor with
short coherence length. Namely, when the length scale of
density variation ξ is much smaller than the characteristic
length scale of the magnetic field decay and we are sufficiently
far away from the upper critical magnetic field, so that vortex

cores do not overlap, the London model is a good approxima-
tion.

B. Analytical approach for solutions in the London limit in the
presence of vortices

In the London approximation the order parameter is set to
ψ = 0 at r < ξ to model a core of a vortex positioned at r =
0. Away from the core it recovers to bulk value ψ = eiφ .

Taking the curl of the second equation in (33) we obtain an
equation that determines configuration of the magnetic field:

[χ2 + γ 2]∇ × (∇ × �B) + 2γ∇ × �B + �B
= −∇ × ∇φ − γ∇ × (∇ × ∇φ). (35)

Far away from the vortex core, the right-hand side of (35)
should be zero. By introducing a differential operator

L = −η + ∇ × with η ≡ η1 + iη2 = −γ + iχ

γ 2 + χ2
. (36)

Equation (35) with zero on the right-hand side can be written
as

LL∗ �B = 0. (37)

To simplify this equation, we introduce complex force-free
field �W defined by ∇ × �W = η �W or, equivalently, by L �W =
0. Using this and Eq. (37) we obtain that

L∗ �B = c �W , (38)

where c is an arbitrary complex-valued constant. Subtracting
the complex conjugate from (38) we obtain the solution for
the magnetic field �B in terms of complex force-free field �W :

�B = Re �W . (39)

Note that we absorbed multiplicative complex constant into
the definition of �W in the last step.

To obtain a solution for �W , one can solve the equation
L �W = 0. However, it is more elegant to employ the trick used
by Chandrasekhar and Kendall [25]. Namely, the solution for
�W is made of auxiliary functions:

�W = �T + 1

η
∇ × �T , �T = ∇ × (�v f (�r)), ∇2 f + η2 f = 0.

(40)
There is freedom in choosing �v: it can be set to, for example,
�v = const or �v ∝ �r. We note that to make resulting equations
simpler, if possible, it is convenient to satisfy �v = const ∈ Re,
|�v| = 1, and �v · ∇ f = 0. In this work we fix it to �v = �ez and
hence set �W to

�W = η f �ez − �ez × ∇ f . (41)

In a London model a solution for a vortex is obtained by
including a source term. Now, if we take into account the
right-hand side of (35) the second equation in (40) should
be modified to include source term δ, which we define by
∇2 f + η2 f = ηδ. For multiple vortices with windings ni,
placed at different positions �ri, we have

∇ × ∇φ = 2π �ez

∑
i

niδ(x − xi, y − yi ). (42)
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Equation (35) with nonzero right-hand side can be written as

Re[L∗(L �W − η∇ × ∇φ)] = 0. (43)

From Eq. (41) we obtain that L �W = −�ezηδ. Inserting it in
Eq. (43) results in

δ = −2π
∑

i

niδ(x − xi, y − yi ). (44)

This section can be summarized as follows: We justified
taking the London limit by decoupling linearized matter field
equation from magnetic field equation. We demonstrated that
Eq. (35), that determines magnetic field of superconductor in
the London limit, can be simplified to

�B = Re �W , �W = η f �ez − �ez × ∇ f ,

∇2 f + η2 f = −2πη
∑

i

niδ(x − xi, y − yi ). (45)

Note that this representation of �B in terms of complex
force-free fields is general: i.e., it holds also for the usual cen-
trosymmetric superconductor. But, as will be clear from the
discussion below, it is particularly useful for noncentrosym-
metric materials.

C. Calculation of the free energy of nontrivial configurations

An example where the London model yields important
physical information is vortex energy calculations. That al-
lows determining, for instance, lower critical magnetic fields
and magnetization curves. Free-energy equation (29), up to a
constant, can be written as

F =
∫

d�r
[
χ2

κc
B2 − �B · �H + j2

κc

]
, (46)

where �j is found from the second equation in (33) and curl of
its definition ∇ × �j = ∇ × ∇φ + �B + γ∇ × �B. The formal-
ism presented in this section allows a simple solution:

�j = χ Im �W . (47)

Hence, energy of any configuration can be written as

F =
∫

d�r
[
χ2

κc
| �W |2 − Re �W · �H

]
. (48)

Furthermore, by using Eq. (41), the energy (48) can be further
simplified to

F =
∫

d�r
[
χ2

κc
(|∇ f |2 + |η f |2) − Re �W · �H

]
. (49)

We will use the formalism of this section below to analyze the
physical properties of noncentrosymmetric systems.

V. STRUCTURE OF A SINGLE VORTEX

A. Analytical treatment in the London limit

Earlier, vortex solutions were obtained only as a series
expansion [11,18], which did not exhibit any spiral structure
of the magnetic field. In this section, we show how the method
that we developed in (45) allows us to obtain an exact solution
that turns out to be structurally different.

Consider a single vortex translationally invariant along the
z direction and positioned at x, y = 0. Then, in order to obtain
magnetic field we need to solve the second equation in (45):

∇2 f + η2 f = −2πηnδ(x, y). (50)

First, let us solve it with zero right-hand side. Then, (50) is just
Helmholtz equation with complex parameter η. In polar co-
ordinates ρ and θ its solution is f = ∑+∞

j=−∞ c jei jθ H (1)
j (ηρ),

where we chose H (1)
j , Hankel function of the first kind to

obtain appropriate asymptotic f → 0 for ρ → ∞.
Next, let us take into account the right-hand side of (50).

Since 2πδ(x, y) = ∇2 ln ρ and H (1)
0 (ηρ) → 2i

π
ln ρ for ρ →

0 we obtain that ∇2H (1)
0 = 4iδ(x, y) − η2H (1)

0 . Hence, only
zero-order Hankel function contributes to solution of (50),

FIG. 1. Magnetic field �B of a right-handed vortex obtained in the
London approximation, which is given by (52) with κc = 20, γ =
20, ν = 1. (b) Shows �B on a line going radially along ρ away from
the vortex core.
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FIG. 2. Vortex obtained numerically in the three-dimensional
model (29) with κc = 0.3, γ = 2, ν = 0.1. (a) White streamlines
show the force lines of the magnetic field starting from the middle
cross section. The color shows | �B|, which is cut off at B = 0.1
for visualization purposes. Note periodical structure in the radial
direction, which corresponds to spirals as in the analytic solution,
Fig. 1. (b) Streamline plot for current �J ≡ ∇ × �B. Observe that the
current configuration is very similar to that of the magnetic field.
While there is, as usual, current going around the vortex core, there is
a part of current going along the vortex core, alternating the direction.

which is given by

f = iπ

2
ηnH (1)

0 (ηρ). (51)

Hence, using (51) and the first line in (45), we obtain the
magnetic field of a vortex (see Fig. 1):

�B = Re
[ iπ

2
nη(η�ez − �ez × ∇)H (1)

0 (ηρ)
]
. (52)

For ν, γ → 0 this expression, as expected, gives the usual
result �B = −�ez

nK0(x/λ)
λ2 . In polar coordinates, Eq. (52) can be

written as

�B = Re
[ iπ

2
nη2

(
0, H (1)

1 (ηρ), H (1)
0 (ηρ)

)]
. (53)

Then, for ρ → ∞ since H (1)
1 → −iH (1)

0 ∝ eiηρ√
ρ

the magnetic
field forms the right-handed spirals as in the case of the
Meissner state [see below (57)], but instead in a radial

Bθ numerical GL

Bz numerical GL
Bz London limit

Bθ London limit

FIG. 3. Comparison of magnetic field of a vortex obtained as full
numerical solution of (29) and the London limit analytical solution
(52) for κc = 0.3, γ = 2, ν = 0.1.

direction:

B̃ = Bz + iBθ ∝ eiηρ

√
ρ

. (54)

Note, that this is a general observation that decaying magnetic
field forms a spiral with handedness determined by the sign
of γ .

B. Vortex solution in the Ginzburg-Landau model

To obtain the vortex solution in the full nonlinear
Ginzburg-Landau model, we developed a numerical approach
that minimizes the free energy (29). For that, we wrote code
that uses a nonlinear conjugate gradient algorithm parallelized
on CUDA enabled graphics processing unit (for detail of nu-
merical approach, see [27]). The algorithm works as follows:
first, the fields ψ and �A are discretized using a finite-difference
scheme on a Cartesian grid. Then, energy is minimized by
sequentially updating ψ and �A in steps. In each step, we
calculate gradients of the free energy with respect to the given
field. Then, we adjust the resulting vector with a nonlinear
conjugate gradient algorithm, which gives the direction of the
step in the field. Next, we expand energy in the Taylor series in
terms of step amplitude for the obtained step direction. This
amplitude is then calculated as a minimizer of the obtained
polynomial and the step is made. The discretized grid had
512 × 512 × 32 points. To verify results we used grids of
different sizes like 1283. The obtained numerical solutions of
the full GL model (29) are shown on Fig. 2.

In Fig. 3 we plot a comparison of the analytical solution
obtained in the London model and the numerical solution in
full nonlinear GL theory.

VI. CROSSOVER TO TYPE-1 SUPERCONDUCTIVITY AT
ELEVATED TEMPERATURES

In this section, we show how noncentrosymmetric su-
perconductors can cross over from vortex states at low
temperature to type-1 superconductivity at T → Tc. To that
end, let us consider the energy of a single vortex with a core
parallel to the z direction. Recall that first critical magnetic
field Hc1 is defined such that vortex energy becomes negative
for Hz ≡ H > Hc1. Namely, vortex energy (per unit length in
the z direction) is given by Fv = 2π (Hc1 − H ), where H is
external magnetic field parallel to the z direction. Next, ther-
modynamic critical magnetic field Hc is defined as H when
energy of the uniform superconducting state ψ = 1 and �A = 0
is zero. In our rescaled units, Hc = 1. In the usual type-II
superconductors, vortices form when Hc1 < Hc. However, as
we will see below, the interaction of vortices in this system is
nonmonotonic and hence a lattice of vortices will become en-
ergetically beneficial for H ′

c1 < Hc1. Hence, in order to show
that superconductor has vortex states it is sufficient to find
Hc1 < Hc.

To observe a crossover, consider a noncentrosymmetric su-
perconductor that has κc < 1. Then, at T → Tc, as we showed
above, γ , ν → 0 and hence it becomes a usual type-1 su-
perconductor described by the GL parameter κc. In this case,
Hc < Hc1 and hence vortices are not present. However, when
the temperature is decreased, γ and ν increase. By solving
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Hc1 in London limit corrected

Hc

Hc1 numerical in GL

FIG. 4. Crossover between vortex state and type-1 supercon-
ductivity in noncentrosymmetric superconductor as a function of
temperature. Note that for low temperature, the first critical magnetic
field Hc1 (green dots) is lower than the thermodynamic Hc (orange
line) and hence superconductor forms vortices in an external field.
For higher temperature Hc1 > Hc, a single vortex cannot be induced
by an external magnetic field. For T → Tc system becomes usual
type-1 superconductor. The calculation in the London limit (55) with
a correction for vortex core energy gives quite good approxima-
tion Hc1 � HL

c1 + 0.385
κc

(green line). Parameters are chosen so that
for T/Tc = 0.9 they are κc = 0.8, γ = 2.5, and ν = 0.1. Note that
λ/ξ grows as the temperature is decreased. Namely, λ/ξ � 0.89 for
T/Tc = 1, whereas at Hc1 = Hc and T/Tc � 0.9 we get λ/ξ � 13.

the full GL model (29), we find that this leads to a change
in the value of Hc1. Eventually, it becomes smaller than Hc

at sufficiently low temperature (see Fig. 4). This means that
vortices will necessarily start to appear.

Next, we study analytically how vortex states become
energetically preferable. First, consider the London limit,
disregarding the vortex core energy. Using the previously
obtained vortex solution (51) and energy given by (49), we
obtain energy of a vortex Fv with winding n. We can express
it in terms of the London limit first critical magnetic field HL

c1:

Fv = 2πn
(
nHL

c1 + H
)
,

HL
c1 = χ

κc

[
η1 arctan

(
η1

η2

)
+ η2 ln

2e−γEuler

|η|ξ
]
, (55)

where γEuler � 0.577 . . . is Euler gamma. For a single vortex
we have n = −1. Let us estimate the core energy of a vortex.
Since the vortex core is of size ξ , then it is �πξ 2ψ2 � const

κc

since ξ = 1√
2κc

and ψ � 1. Hence, the actual first critical

magnetic field can be estimated by Hc1 � HL
c1 + const

κc
. When

κc � 1, γ , ν this core energy is indeed relatively small and
can be disregarded.

However, for studying a crossover to type-1 superconduc-
tivity (Fig. 4), this is not true since κc < 1. There, instead,
the vortex core energy gives a significant contribution to Hc1.
Numerically, we estimated Hc1 � HL

c1 + 0.385
κc

(see Fig. 4).
Moreover, from (55) it follows that for the increased value of
γ the vortex energy is dominated by core contribution. For the
crossover to type-1 superconductivity we need 0.385 � κc <

1 and large enough value of γ .

Finally, consider how parameters γ , ν influence length
scales over which order parameter and magnetic field change.
Namely, we are interested in the ratio of these scales since for
a usual superconductor it determines whether it is of type 1 or
type 2. As we showed before [Eq. (33)], coherence length has
the usual form in a noncentrosymmetric superconductor. To
obtain penetration depth, one needs to solve for Meissner state
in the London limit. The Meissner state in the noncentrosym-
metric superconductors was discussed before in [11,17,18]
for similar models. Here, we rederive it for our model (29)
using the method that we outlined in the previous section
[Eq. (45)].

Consider superconductor with no vortices occupying half-
space x > 0 and external magnetic field �H , parallel to the
boundary. As usual, we assume that fields depend only on x.
Then, the second equation in (45) is easily solved resulting
in f (x) = ceiηx since we demand f (x → ∞) → 0, where c
is a complex multiplicative constant. To determine c we use
boundary condition (34), which in terms of �W becomes

�n · Im �W = 0, �n × Re

[
i �W
η

− κc

2χ
�H
]

= 0 (56)

it gives c = − iκc
2χ

H̃ , where H̃ = Hz + iHy. From (45) we ob-
tain a magnetic field, which can be represented by a linear
combination of components of �B parallel to the boundary
B̃ = Bz + iBy:

B̃ = − iηκc

2χ
H̃eiηx ∝ e−η2x+iη1x. (57)

While the magnetic field has a spiral decay, its modulus
has an exponential decay (see Fig. 5). That allows to define
the penetration depth for magnetic field as the inverse of
imaginary part of η:

λ = 1

η2
. (58)

Importantly, inside a superconductor, the direction of the mag-
netic field rotates with the period 2π

η1
, forming a right-handed

spiral (helical) structure. This spiral is shown on Fig. 5. Note
that handedness of the state is set by the sign of η1. Also
observe that the operator LL∗ that determines the configura-
tion of �B is invariant under inversion (parity) transformation
P : �r → −�r and the model is centrosymmetric only if η1 = 0.
It is also apparent from the fact that η1 ∝ γ , where γ is, as
was shown above, the parameter that determines the degree of
noncentrosymmetry of the material.

The ratio of the magnetic field penetration length and co-
herence length for the noncentrosymmetric superconductor
then reads as

λ

ξ
= κc

1 + 2
κc

(γ 2 + ν2)√
1 + 2

κc
ν2

. (59)

Note that γ , ν ∝
√

ln Tc
T strongly depend on T and go to

zero for T → Tc [see (30)]. Since γ /ν � const the ratio λ/ξ

increases when temperature is decreased (see Fig. 6). Hence,
it is typical that in noncentrosymmetric superconductors Hc =
Hc1 for λ/ξ �= 1. Namely, for the parameters in Fig. 4 we
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|B|
Bz

By

(a)

(b)

FIG. 5. Magnetic field �B decay in a superconductor in the
right-handed Meissner state. The result is obtained in the London ap-
proximation, which is given by (57) with κc = 20, γ = 20, ν = 1.
Superconductor is positioned at x > 0. The handedness of the state
is determined by the sign of γ .

obtained that Hc = Hc1 for λ/ξ ≈ 13, which is in strong con-
trast to centrosymmetric superconductors where Hc = Hc1 for
λ/ξ = 1 (or 1/

√
2 in different units). We show below that

interaction between vortices is nonmonotonic and the critical
field for vortex clusters is smaller than Hc1 for a single vortex,
and thus there is no Bogomolny point in the noncentrosym-
metric superconductors considered in this paper.

We obtained crossover Fig. 4 and Eq. (59) by considering
a noncentrosymmetric superconductor with O or T symmetry.
Noncentrosymmetric systems with different symmetry have
terms of different structure but with the same scaling, corre-
sponding to spin-orbit and Zeeman coupling terms. It means
that for any symmetry it is expected to have a strong de-
pendence of these noncentrosymmetric terms on temperature.
Consequently, if κc < 1 and γ , ν terms are large enough,
one can expect the crossover between different types in non-
centrosymmetric superconductors. This type of behavior was
reported for noncentrosymmetric superconductor AuBe [13].

noncentrosymmetric
supercondutor

usual type-1 superconductor

FIG. 6. Ratio of penetration depth and coherence length in non-
centrosymmetric superconductor (green) given by (59). In this case
the system exhibits type-1 superconductivity, but λ/ξ still changes
significantly and it is equal to κc for T/Tc = 1. For comparison,
λ/ξ ≡ κc of the usual superconductor (orange) weakly depends on
temperature. Parameters are chosen so that for T/Tc = 0.9 they are
κc = 0.1, γ = 2, and ν = 2.

VII. INTERVORTEX INTERACTION AND VORTEX
BOUND STATES

Here, we compute the interaction energy of vortices by
using (49). Consider a set of vortices with windings ni placed
at �ri with cores parallel to �ez. Then, according to (45) and
single vortex solution (51), f satisfies

∇2 f + η2 f = −2πη
∑

i

niδ(x − xi, y − yi ) ≡ ηδ,

f =
∑

i

iπ

2
niηH (1)

0 (η|�r − �ri|). (60)

Then by using Eq. (60) and its complex conjugate we obtain
the energy per unit length in the z direction:

F =
∫

dx dy

[
− χ

κc
Im( f ) − Hz

]
δ, (61)

where we also used that the flux of the vortices is fixed by
δ. The integral in (61) is easily performed for any vortex
combination since δ contains the Dirac deltas in it. Now let us
consider only two vortices i = 1, 2. By subtracting from (61)
energies of single vortices, Eq. (55), we obtain the interaction
energy U as a function of distance R between them:

U (R) = 2π2n1n2
χ

κc
Re

[
ηH (1)

0 (ηR)
]
. (62)

Importantly, the intervortex interaction energy U (see
Fig. 7) changes sign. Analytically, asymptotics for big R is
given by

U (R) ∝ n1n2
e−η2R

√
R

cos (η1R + φ0), (63)

where φ0 = arg[η]
2 − π

4 . Hence, the system forms vortex-vortex
and vortex-antivortex pairs. Those will form stable states at
distances R corresponding to local minima in U . Approxi-
mately (for big R), these minima appear with period 2π

η1
. Note
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FIG. 7. (a) Vortex-vortex interaction energy U [Eq. (62)] as func-
tion of distance between vortices R for several values of temperature
T . Parameters chosen so that at T/Tc = 0.9 other parameters are
κc = 20, γ = 20, ν = 1. The plot is cut off for small distances and
presented for R > ξ . Interaction clearly has minima which lead to
bound states of vortices. (b) Distance between vortex and vortex
(green) and vortex and antivortex (orange) in corresponding bound
pairs as a function of temperature. Dots: numerical solutions for
extrema of (62). Lines: simplest estimate by (64). For reference, at
T/Tc = 0.9 first critical magnetic field Hc1 � 0.02.

that for T → Tc period 2π
η1

→ 0. The simplest estimate as
minima and maxima of cos in (63) gives

RVV = π + 2πk − φ0

η1
, RVaV = 2πk − φ0

η1
, (64)

where RVV is the distance between vortices, RVaV is the dis-
tance between vortex and antivortex, and k is an integer.

This behavior is due to the fact that in noncentrosym-
metric superconductor vortices are represented by “circularly
polarized” cylindrical magnetic field (52) with period approx-
imately equal to 2π

η1
(see Figs. 2 and 8). Two or more of them

brought together will form an interference pattern of two-
point sources which, when moving them apart, will alternate
between in phase and out of phase with the same period.

In the London limit, interaction can be easily generalized to
an arbitrary number of vortices. Namely, using (61), pairwise
interaction will be given by the same U [Eq. (62)]. Hence, we
can suggest that vortices can form lattices with the distance
between neighboring vortices given by one of the minima of
U [Eq. (62)]. Similarly, lattices of vortices and antivortices
can be formed.

FIG. 8. (a) Vortex-vortex and (b) vortex-antivortex bound states
obtained numerically in the three-dimensional model (29) with κc =
0.3, γ = 2, ν = 0.1. White streamlines show the force lines of
the magnetic field starting from the middle cross section. The color
shows | �B|.

We obtained the bound states numerically in the full non-
linear GL model given by (29). Figure 8 shows two examples
of such bound states.

VIII. VORTEX-BOUNDARY INTERACTION

In this section, we show that in noncentrosymmetric su-
perconductors the physics of vortex-boundary interaction is
unconventional. Consider a half-infinite superconductor posi-
tioned at x > 0 and right-handed vortex with winding n placed
at x = R and y = 0. Here we study the problem in the London
limit and thus neglect the effects associated with the gap varia-
tions near the surface [28], and the nonlinear effects appearing
at the scale of the vortex core [29]. External magnetic field is
set to be �H = (0, 0, H ). Then, auxiliary field f should satisfy
the following equation inside the superconductor [Eq. (45)]:

∇2 f + η2 f = −2πηnδ(x − R, y) ≡ ηδ (65)

supplemented by the boundary condition that f is zero at x →
∞. From (34) or equivalently (56) we obtain the following
boundary conditions at x = 0:

Im[η∗∂x f ] = 0, Im[ f ] = − κc

2χ
H. (66)

Since (65) is linear in f , it is convenient to write the solution
as superposition of Meissner state, vortex and image of a
vortex as

f = fm + fv + fi, fm = − iκc

2χ
Heiηx,

fv = iπ

2
nηH (1)

0 (η
√

(x − R)2 + y2), (67)

where fm and fv were found in the previous sections. Note
that since the Meissner state fm satisfies boundary conditions
(66), the vortex and image fv + fi should satisfy (66) with
zero right-hand side.

Remember that with the London model, for usual super-
conductor image of the vortex is just its mirror reflection in the
boundary, which is modeled by antivortex positioned outside
the superconductor (see [30]). This configuration then satisfies
both (65) and boundary conditions (66). By contrast in our
case for noncentrosymmetric superconductor unfortunately it
is not possible to use this approach. Namely, mirror reflection
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FIG. 9. Energy of a vortex interacting with a boundary Ub

[Eq. (70)] for κc = 20, γ = 20, ν = 1 as function of distance from
vortex to boundary R for several values of external magnetic field
H . The plot is cut off for small distances and presented for R > ξ .
Note that compared to the usual superconductor, now the vortex has
multiple minima, which are distant from the boundary with period
2π

|η1| for any nonzero H .

of a right-handed vortex inside the superconductor is a left-
handed antivortex outside, which indeed satisfies boundary
conditions (66), but the equation for �B, Eq. (35) [more compli-
cated version of (65)], is not satisfied. This is simply because
the antivortex is left handed but the equation is right handed,
or vice versa for γ < 0. Inserted as an image the right-handed
antivortex satisfies (65), but not boundary conditions (66).

So to obtain an “image” configuration fi we have to solve
explicitly Eq. (65). We did that by performing Fourier trans-
form in the y direction and solving corresponding equations
(65) for fv + fi together subjected to boundary condition (66)
with zero right-hand side, which gives

fi(x, y) = 1

2π

∫ ∞

−∞
f̃i(x, k)eikydk,

f̃i(x, k) = −πnη

s
e−sx

[
e−s∗R − 2

Re(sη∗)

Im(sη∗)
Im(e−sR)

]
with

s =
√

k2 − η2. (68)

To obtain energy we integrate by parts (49) and use (65),
which gives

F =
∫ ∞

0
dx

∫ ∞

−∞
dy

[
− χ

κc
Im( f ) − H

]
δ

−
∫ ∞

−∞
dy

H

2

∂x f

η

∣∣∣∣
x=0

, (69)

where we obtain, compared to (61), the last term which is
boundary integral. Now, inserting solutions (67) and (68) up
to constant terms we obtain the energy of a vortex interacting
with a boundary (see Fig. 9):

Ub(R) = −2πnH Re[eiηR] + 2πn
χ

κc
Im[ fi(R, 0)] + Fv,

(70)

where Fv is energy of a single vortex in the bulk of su-
perconductor (55) and other terms represent the interaction
energy of vortex and boundary. For a large distance away

from the boundary R, the main contribution to the interaction
energy comes from first term in (70) and hence it has similar
asymptotics as for vortex-vortex interaction, namely, we ob-
tain Ub ∝ Re[eiηR], which has minima with period � 2π

|η1| (see
Fig. 9).

Physically, it means that the vortex-surface interaction in
a noncentrosymmetric superconductor is principally different
from that in an ordinary one. Namely, in the latter case the in-
teraction with a boundary is barrierlike for nonzero fields and
attractive for zero and inverted fields [29–33]. By contrast, we
found that in a noncentrosymmetric superconductor, vortices
should form a bound state with a boundary. Then, in increas-
ing magnetic field vortices will first tend to stick near the
boundary and only when there will be a considerable amount
of them occupying these minima vortices will be pushed into
the bulk of superconductor in the form of multivortex bound
state.

For γ → 0, fi in the second term in (70) corresponds to
an antivortex as in [30]. But, physical interpretation in [30] of
the first term in (70) as Meissner-vortex and the second term
as vortex-image interactions is not fully justified. First, when
integrating by parts energy [Eq. (49)] these terms are obtained
from combining energy and flux from the field configuration
of vortex and image. Second, half of the first term in (70)
comes from boundary integral in (69) due to vortex-image
interaction.

IX. CONCLUSIONS

We considered the physics of magnetic field behavior
and vortex states in noncentrosymmetric superconductors.
We microscopically derived a Ginzburg-Landau model for
noncentrosymmetric superconductors which does not suffer
from unphysical ground-state instability, which was present
in frequently used phenomenological models. The main con-
clusion of the microscopic part of the paper is that type of
magnetic response in a noncentrosymmetric superconductor
has significant temperature dependence and one can expect
materials that are type 1 close to critical temperature to ex-
hibit vortex states at lower temperatures. We find that the
first critical magnetic field for the single-vortex entry Hc1

becomes equal to the thermodynamical critical magnetic field
at very different ratios of magnetic field penetration length to
coherence lengths than in ordinary superconductors, and there
is no Bogomolny point at λ/ξ = 1.

The multivortex states in these systems are unconventional.
The demonstrated spiral-like decay of the magnetic field away
from a vortex leads to multiple minima in the intervortex
interaction potentials and thus the formation of bound states
of vortices and stable vortex-antivortex bound states.

We find that vortices have a similar oscillating sign of
interaction with Meissner current close to the boundaries, and
form bound states with boundaries. The properties may poten-
tially be utilized for new types of control of vortex matter for
fluxonics and vortex-based cryocomputing applications.

Note added. Similar results are obtained by Garaud, Chern-
odub, and Kharzeev in Ref. [34].
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