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Phases and collective modes of bosons in a triangular lattice at finite temperature:
A cluster mean field study
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Motivated by the realization of Bose-Einstein condensates in noncubic lattices [J. Struck et al., Science
333, 996 (2011)], in this work we study the phases and collective excitation of bosons with nearest-neighbor
interaction in a triangular lattice at finite temperature, using mean field (MF) and cluster mean field (CMF)
theory. We compute the finite-temperature phase diagram both for hardcore and softcore bosons, as well analyze
the effect of correlation arising due to geometric frustration of a triangular lattice and interaction systematically
using the CMF method. A semianalytic estimate of the transition temperatures between different phases is
derived within the framework of MF Landau theory, particularly for hardcore bosons. Apart from the usual
phases such as density waves and superfluid, we also characterize different supersolids. These phases and their
transitions at finite temperature are identified from the collective modes. The low-lying excitations, particularly
Goldstone and Higgs modes of the supersolid, can be detected in the ongoing cold atom experiments.
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I. INTRODUCTION

Frustrated lattice systems are one of the most active re-
search areas of condensed matter physics, which has led to
the observation of various exotic phases of matter [1] such
as spin liquids [2], the spin ice state in pyrochlore material
[3,4], as well magnetic phases and phase transition [5,6]. In
recent experiments, antiferromagnetic spin models in a trian-
gular lattice have been realized in complex compounds such
as Ba3CoSb2O9, and its magnetization process, specific heat,
as well as the collective excitation are also measured [7–9].
The realization of Bose-Einstein condensates (BECs) in non-
cubic lattice geometries, e.g., experimental demonstration of
the superfluid-Mott insulator (SF-MI) transition in triangular
and hexagonal optical lattices [10], has further opened up the
possibility to explore the competition between interaction and
geometric frustration. Ultracold bosonic atoms trapped in a
triangular optical lattice have further paved the way to study
different magnetic phases of frustrated classical spin models
[11] and in the presence of a synthetic gauge field [12]. The
existence of different types of supersolid phases, and their
melting driven by either quantum or thermal fluctuation in tri-
angular lattices, have been theoretically investigated [13–17].

Supersolid is a state of matter where particles are orga-
nized in a crystalline order, and they show a dissipation-less
superflow [18–20]. Such a phase of matter has been pre-
dicted in a number of theoretical studies over the years,
particularly in bosonic systems with long range interaction
in optical lattices [21–26], Josephson junction arrays [27,28],
in a Bose-Fermi mixture [29–31], and so on. As a result
of experimental progress in ultracold atomic systems, quan-
tum gases with dipolar interaction [32,33], spin-orbit coupled

condensate [34], and Rydberg gases [35–37] have become
promising candidates to search for the supersolid phase. In
recent cold-atom experiments, supersolid has been observed
in spin-orbit coupled Bose-Einstein condensates (BECs) [38],
BECs in an optical lattice [39] and coupled to an optical
cavity [40], and trapped dipolar BECs of erbium (Er) and
dysprosium (Dy) atoms [41–43]. Apart from the density mod-
ulation revealing the crystalline order, the signature of U (1)
symmetry breaking has also been confirmed experimentally
from low-energy collective excitation such as Goldstone and
Higgs modes [40–43].

On the other hand, a stable supersolid formation due to the
competition between particle interaction and frustration in a
triangular lattice has been predicted in a number of theoretical
studies [13–17,44–48]. A supersolid phase of Rydberg excited
atoms in a triangular lattice has also been predicted [49]. At
finite temperature, the equilibrium phases of hardcore bosons
in a triangular lattice have been studied [17]. The superfluid
to Mott insulator transition at finite temperatures in a cu-
bic lattice has also been investigated theoretically [50–54].
However, a systematic analysis to understand the interplay
between the geometric frustration of a lattice and interaction,
leading to different density ordering at finite temperature and
characterization of such phases from collective excitations,
is beyond the scope of these studies. Motivated by recent
experiments, in this work we primarily chart out the phases
of bosons in a triangular lattice at finite temperature using
the cluster mean field (CMF) technique, and we compute the
collective excitation for both of the following cases: one with
on-site hardcore repulsion, i.e., U → ∞, and another with
finite U , which is a more realistic scenario. We supplement
semianalytical results obtained from the Landau-Ginzburg
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theory, which qualitatively captures the numerically observed
phases of hardcore bosons at finite temperature. The transition
between these phases is captured from the collective modes
that can be detected in cold atom experiments.

The paper is organized as follows. In Sec. II we describe
the Bose-Hubbard model on a triangular lattice, and we
demonstrate the cluster mean field method extended to finite
temperature. In Sec. III A we provide the mean field phase
diagram of hardcore bosons followed by the semianalytic
estimate of the transition temperature from Landau-Ginzburg
theory. The linear stability of these phases is analyzed, and
their collective excitation is computed in Sec. III B. The effect
of correlation is discussed using the cluster mean field in
Sec. III C, and the results are compared with the existing
quantum Monte Carlo (QMC) studies. In Sec. IV we discuss
the zero and finite temperature phases of bosons with finite
on-site repulsion, and we compute their collective modes.
Finally, we summarize our work and conclude in Sec. V.

II. MODEL AND STATE-OF-THE-ART METHOD

The Bose-Hubbard model with nearest neighbor interac-
tion in the grand canonical ensemble can be described in
general by the Hamiltonian

Ĥ = −t
∑
〈i, j〉

(â†
i â j + H.c.) − μ

∑
i

n̂i + V
∑
〈i, j〉

n̂in̂ j

+ U

2

∑
i

n̂i(n̂i − 1), (1)

where, â†
i (âi ) are the bosonic creation (annihilation) operator

at the ith site, n̂i represents the local number operator, t and
V are the hopping amplitude and interaction strength, respec-
tively, between the nearest-neighbor sites of the triangular
lattice denoted by 〈i, j〉, U is the on-site interaction, and μ is
the chemical potential. In what follows, we set h̄ = 1, Boltz-
mann constant kB = 1, and measure all the energies in the unit
of interaction strength V unless it is otherwise mentioned.

We focus on the equilibrium phases of the above model
at a finite temperature T using the cluster mean field (CMF)
method. Such a method has been used previously to study zero
temperature phases and nonequilibrium dynamics of bosons
in an optical lattice [47,55–57]. We extend this to finite tem-
perature and study the effect of correlation by considering a
cluster C of different sizes in a triangular lattice as illustrated
in Fig. 1. While all the correlations are considered exactly
within the cluster C of a given size using exact diagonaliza-
tion, the interaction and hopping between edge sites of C and
its neighboring sites outside C are treated at the mean field
level. More generically, the composite Hamiltonian can be
written as

Ĥ = ĤC + ĤMF, (2)

where ĤC describes the bosons within the cluster, and the
mean field term corresponding to the edge sites can be written
as

ĤMF =
∑

i∈edge sites

Ĥ i
MF,

Ĥ i
MF =

∑
〈i, j〉, j �∈C

[−t (α j â
†
i + α∗

j âi ) + V njn̂i]. (3)

FIG. 1. Schematic representation of the triangular lattice and its
three-sublattice structure. The reduced hexagonal Brillouin zone is
shown on the left. The arrows indicate the lines along which collec-
tive modes of the phases are calculated in the subsequent sections.
The different sized clusters used in the cluster mean field are shown
by the enclosing triangles on the right.

Exploiting the sublattice symmetry throughout the lattice, the
mean field values α j and n j can be obtained from 〈âA,B,C〉
and 〈n̂A,B,C〉, respectively, where the sublattices A, B, and C
belong to the cluster C. Note that in the case of zero tempera-
ture, the average of observable is denoted by 〈·〉 ≡ 〈ψ | · |ψ〉,
|ψ〉 being the ground state of Ĥ . At a finite temperature,
this amounts to a thermal average, 〈·〉 ≡ Tr(ρ̂T ·), where the
thermal density matrix is given by

ρ̂T = e−βĤ

Z
, Z = Tr(e−βĤ ), β = 1/T . (4)

Solving the mean field self-consistency, we finally obtain
the equilibrium density matrix ρ̂T at a finite temperature T
with converged free energy F = E − T S, where E = 〈Ĥ〉 and
von Neumann entropy S = −Tr(ρ̂T ln ρ̂T ). Different physical
quantities at finite temperature can be obtained by averaging
over the cluster using the density matrix ρ̂T .

III. PHASES AND COLLECTIVE EXCITATION
OF HARDCORE BOSON

In this section, we discuss the phases and collective modes
of bosons in a triangular lattice with hardcore repulsion, i.e.,
U → ∞ allowing not more than one boson per site. First we
present the phase diagram using standard mean field calcula-
tion and subsequently show how the results get improved by
introducing clusters and thereby incorporating correlations in
the system.

A. Mean field phase diagram

We consider one unit cell consisting of three sublattices
A, B, and C, which are decoupled at the mean field level.
Therefore, the total density matrix of a unit cell in a triangular
lattice can be written as

ρ̂T =
∏

i

ρ̂i, ρ̂i =
[

1
2 (1 − mi ) α∗

i

αi
1
2 (1 + mi )

]
, (5)

where ρ̂i, i ∈ {A, B, C} represents a thermal density matrix
satisfying Tr[ρ̂i] = 1. It can be noted that by definition, the
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FIG. 2. Finite temperature mean field phase diagram of hardcore
bosons in a triangular lattice: (a) in μ vs T plane for t = 0.2, and
(b) in μ vs t plane for different temperatures T = 0.005 (black solid
lines with circles) and T = 0.2 (red solid lines with squares). The
region of supersolid SSC appearing only at higher temperature T =
0.2 is separated by dashed lines. (c) Average density ρavg = ∑

i ni/3,
and (d) sublattice densities nA,B,C are plotted as a function of μ for
temperatures specified in the inset. Collective excitation at the points
marked by bullets in (a) is shown in Fig. 3. Vanishing of respective
order parameters and the excitation energy gap at the SS-solid and
solid-NF boundary (marked by ↑) are depicted in Fig. 4. Throughout
the manuscript, we use dimensionless energy e.g. hopping t ≡ t/V ,
temperature T ≡ T/V (Boltzmann constant kB = 1) unless the scal-
ing is explicitly mentioned.

local SF order parameter is 〈âi〉 = αi, and mi is related to the
local density as 〈n̂i〉 = (1 + mi )/2. Thus the corresponding
mean field free energy at temperature T for a given site can
be written as

F i
MF = −3t

2

⎛
⎝α∗

i

∑
ī �=i

αī + αi

∑
ī �=i

α∗̄
i

⎞
⎠ − μ

2
(1 + mi )

+ 3V

8
(1 + mi )

∑
ī �=i

(1 + mī ) − T Si, (6)

where i and ī denote nearest neighbor sites ∈ {A, B, C}, and
the von Neumann entropy Si is given by

Si = −
∑

σ=+,−
λi

σ ln λi
σ , λi

± =
1 ±

√
m2

i + 4|αi|2
2

. (7)

Minimizing the average free energy F = ∑
i F i

MF/3 with re-
spect to the order parameters αi’s and mi’s, we obtain the
phase diagram in the μ versus T plane for a fixed tunneling
amplitude t as shown in Fig. 2(a). At low temperature, apart
from homogeneous superfluid, two types of density waves
exist, which at T = 0 have a sublattice density structure
(1,0,0) and (1,1,0) for μ < 3 and μ > 3, respectively; as t
is increased, they melt to form hole and particle dominated
supersolids, namely SSA and SSB for μ ≶ 3 [13,14]. At finite
T , these two solid lobes and the supersolid are shown in
Fig. 2(b). It can be noted from Fig. 2(c) that, as T → 0, the

transition between SSA and SSB phases at μ = 3 is associated
with a jump in average density (also in average SF order
parameter) as shown by the vertical dashed and solid lines in
Figs. 2(a) and 2(b), respectively. However, within MF we find
that such an abrupt jump is smeared out at finite temperature
by the appearance of another supersolid phase, which we call
SSC [see Fig. 2(c)]. The sublattice density structure of SSC is
nA �= nB �= nC , which is shown in Fig. 2(d). Such a supersolid
phase appears between SSA and SSB at higher T as marked
by the dashed lines in Figs. 2(a) and 2(b). Moreover, we
observe a kink in the SS-solid boundary for μ ∼ 2.8–3.2 in
Fig. 2(a), and these kinks correspond to the end of the second-
order line between SSA/SSB and SSC. As temperature is
lowered and in the limit T → 0, the phase boundaries agree
with the zero temperature mean field phase diagram [13].

Next we focus on the transitions between different phases
with increasing temperature. We observe the transition from
(i) superfluid (SF) to normal fluid (NF), (ii) density wave
(DW)/solid to NF, and (iii) melting of supersolid (SS) to NF
in two steps via a DW/solid phase. The nature of the transition
and an estimate of the corresponding critical temperature can
be obtained by expanding the free energy F with respect to the
appropriate order parameter φ and rewriting it in the so called
Landau-Ginzburg (LG) form

F (φ) = a + bφ + cφ2 + dφ3 + eφ4 + · · ·, (8)

where the coefficients a, b, c, . . . depend on the values of the
parameters t , μ, and T . In the homogeneous phase, the SF
to NF transition can be captured from the vanishing of SF
order parameter φ ≡ |α|. Near the transition, the free energy
F can be expanded in even powers of |α| and the order
parameter vanishes continuously at the critical temperature.
The continuous transition from SF-NF and estimation of the
critical temperature from the LG free energy are discussed
in Appendix A. In the DW/solid phase, the SF order pa-
rameter vanishes and density ordering takes the form nA =
nB �= nC. At finite temperature, there is another type of solid
that also appears near the SSC-solid boundary around μ = 3,
which has a similar sublattice density structure to that in
SSC. For the solid to NF transition, the sublattice density
difference nA,B − nC = δ plays the role of an order parameter,
and the free energy contains both even and odd powers of
δ. Such MF free energy yields a first-order transition similar
to the three-state Pott’s model [17,58] exhibiting a jump in
density difference δ except at μ = 3, as also discussed in
Appendix A.

Next we focus on the melting of supersolid with increasing
temperature. First, the SS phase melts to a solid where the
SF order parameter (α) vanishes continuously at the SS-solid
phase boundary [see Fig. 4(a)]. Further increase of tempera-
ture leads to the melting of the solid, and the sublattice density
imbalance (δ) jumps to zero at the solid-NF boundary, as
depicted in Fig. 4(b). This is atypical of a first-order transition.
As can be noted from Fig. 2(a), with increasing temperature
the supersolid region shrinks, and instead of a first-order line,
the transition from SSA to SSB phase occurs continuously via
SSC phase. Also, the two DW/solid lobes gradually merge
with each other with increasing T . Such a behavior of the su-
persolid phase is summarized in the μ versus t phase diagram
at different temperatures depicted in Fig. 2(b).
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Although a first-order transition from solid to NF phase
with finite Tc is observed at the MF level, the density
ordering even at zero temperature cannot survive at μ = 3
due to the effect of frustration. In the absence of hopping,
t = 0, this system becomes equivalent to an antiferromagnetic
Ising model with vanishing critical temperature in the absence
of an external magnetic field, which corresponds to μ = 3
in the present case [59–61]. Such a reduction of the critical
temperature at μ = 3 due to frustration cannot be captured
by a simple MF method and requires more sophisticated
techniques. This further motivates us to investigate the phase
boundary particularly near μ = 3 by incorporating correlation
via the cluster mean field, which we discuss in Sec. III C.
However, before going into that, we complete the mean field
analysis by analyzing the collective modes of these phases at
finite temperature, and we determine the MF phase boundary
from the energy gap vanishing phenomena in the next section.

B. Collective modes of hardcore bosons

At the MF level, the collective excitation at zero tempera-
ture can be obtained by performing a linear stability analysis
of the Gutzwiller wave function [24,36,62]. Such a method
has also been extended for dissipative systems involving the
fluctuations of the density matrix [63]. Here we borrow the
same methodology for density matrices [63] to obtain the fi-
nite temperature excitation spectrum of lattice bosons. Within
the MF approximation, the time evolution of the density ma-
trix ρ̂i at the ith site is governed by the following equation:

˙̂ρi = −i
[
ĤMF

i , ρ̂i
]
, (9)

where the mean field Hamiltonian corresponding to the ith site
is given by

ĤMF
i = −t (â†

i ᾱi + âiᾱ
∗
i ) − μn̂i + V n̂iQ̄i, (10)

where ᾱi = ∑
〈i, j〉〈â j〉 and Q̄i = ∑

〈i, j〉〈n̂ j〉. Linear stability
analysis can be performed by introducing small amplitude
fluctuations around the steady state of the density matrix,

ρa,b
i (t ) = ρa,b

i,0 + δρa,b
i (t ), (11)

where ρa,b
i,0 is the steady-state value of the density ma-

trix, which satisfies [ĤMF
i , ρ̂i,0] = 0 and corresponds to the

equilibrium distribution at temperature T , and δρa,b
i is the

fluctuation around it at the ith site. Now, plugging Eq. (11)
into Eq. (9), we obtain

δ ˙̂ρi = −i
[
ĤMF

i , δρ̂i
] − i

[
δĤMF

i , ρ̂i,0
]
, (12)

where δĤMF
i contains the fluctuation in mean-field terms of

ĤMF
i . This is followed by substituting δρa,b

i (t ) = exp[i(kri +
ωt )]δρa,b

k , where k ≡ (kx, ky) denotes the lattice momenta
and ri is the position of the ith lattice site. Retaining the
linear terms in δρa,b

k , we obtain the sets of linear equations
describing the fluctuations in momentum space, and thereby
construct the corresponding fluctuation matrix. For hardcore
bosons, the dimension of the matrix is limited since the cor-
responding Fock states are restricted to 0 and 1 occupancies
at each of the sublattices. It is important to mention that the

FIG. 3. (a) Collective excitation of SF phase (�) at temperature
T = 0.1 and μ = 5.7. (b)–(d) Excitation spectrum of SS (•), solid
(�), and NF (�) phase at temperature T/V = 0.1, 0.5, and 0.9,
respectively, and μ = 3.5. We choose t/V = 0.2, and the markers
indicate the location of the points in the phase diagram in Fig. 2(a).
The x-values are |k| =

√
k2

x + k2
y in each segment along the �M,

MK , and K� lines.

fluctuations in the order parameters are induced by δρi(t ), and
they are included in the linearized equations. The eigenvalues
ω(k) of the fluctuations yield the dispersion of the collec-
tive excitations at finite temperatures. Also, the stability of
the equilibrium density matrix is ensured by the condition
Im[ω] = 0.

At a given temperature, the steady state (equilibrium) or-
der parameters αi’s and mi’s are obtained by minimizing F ,
and by substituting them in Eq. (12) we obtain six nonzero
eigenvalues for each k of the form ±ω(k). From the positive
eigenvalues, we obtain three branches of excitation spectra for
various phases, which are depicted in Fig. 3. Note that in the
case of a homogeneous phase with translation symmetry (such
as SF), these three branches correspond to a single excitation
mode in an extended Brillouin zone. In what follows, we plot
these collective modes ω(k) within one sublattice reduced
Brillouin zone of a triangular lattice (see the schematic in
Fig. 1), where �, M, and K represent the points k ≡ (kx, ky )
as follows [64,65]:

� ≡ (0, 0), M ≡
(

2π

3
, 0

)
, K ≡

(
2π

3
,

2π

3
√

3

)
. (13)

From the characteristic features of the excitation modes, we
identify different symmetry broken and unbroken phases and
the transition between them. Both SF and SS phases are char-
acterized by the gapless sound modes ω ∼ cs|k| for |k| � 1
due to the presence of the SF order parameter [see Figs. 3(a)
and 3(b)]. This is the well known Goldstone mode corre-
sponding to broken U (1) symmetry, and it can be observed in
experiment. For SS phase with broken translation symmetry,
the higher energy branches of gapped excitations correspond
to the optical modes in a triangular lattice [13]. On the other
hand, a gap opens up for both of the insulating phases, i.e.,
DW and NF as shown in Figs. 3(c) and 3(d). Therefore, both
the SF-NF and SS-solid transitions at finite temperature can be
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FIG. 4. (a) Energy gap opening at � and vanishing of average
SF order parameter αSF = ∑

i |αi|/3 at SS-solid phase boundary.
(b) Vanishing of sublattice density difference δ and energy gap �M

(at the M point) at the solid-NF transition. We set μ/V = 3.5 and
t/V = 0.2. The transition temperatures are marked on the T axis,
and its location in the phase diagram is marked by (↑) in Fig. 2(a).

identified from the energy gap opening at |k| = 0 (� point).
As shown in Fig. 4(a), the SF order parameter vanishes at
the critical temperature above which the energy gap increases
continuously. It can be noted that in the homogeneous phases
(SF and NF) there can be only one mode due to one sublattice
structure; however, within the reduced Brillouin zone (BZ)
we obtain three excitation branches out of which two modes
become gapless along the M-K-� line due to sublattice sym-
metry [13,65]. In translation symmetry broken phases (solid
and SS) such a degeneracy is lifted except at the K point, and
thus they can be identified from the energy gap, say �M at
the M point of the BZ for the branches that are degenerate
at the K point. For the solid to NF transition, the variation
of the energy gap of these two modes at the M point and the
density difference nA,B − nC with increasing temperature are
shown in Fig. 4(b). Both quantities undergo a sharp jump at
the critical temperature and vanish in the homogeneous NF
phase as a consequence of the first-order transition.

Although the collective excitation frequencies both at zero
and finite temperatures as well as in the presence of dissi-
pation can be obtained from the linear fluctuation method
[24,36,62,63], the effect of quantum and thermal fluctuations
on the quasiparticles is beyond the scope of the present study
since it requires detailed information on the spectral function
A(�k, ω) and the dynamic structure factor S(�k, ω) [66–69]. It is
expected that due to the finite temperature effect, an increase
in the width of the above quantities can occur, resulting in
a reduction of the excited quasiparticles’ lifetime [70–72],
which is relevant for its experimental detection. We have
also checked that close to zero temperature the excitation
spectrum obtained using this method is in agreement with
those obtained from spin wave analysis [13]. Although the
exact nature and critical behavior of the transition cannot be
captured within a simple MF analysis, different phases and the
transition between them at finite temperature can be identified
from the above-mentioned features of the collective modes
and can be relevant for experimental detection. In the next
subsection, we consider a cluster of unit cells in order to
incorporate the effect of correlation in a systematic way and
also discuss how it improves the phase diagram, particularly
near μ = 3, where the effect of the geometric frustration of
a triangular lattice is much more pronounced and cannot be
captured from simple MF theory.

FIG. 5. Finite temperature phase diagram of hardcore bosons in
a triangular lattice using CMF: (a) in μ vs T plane for t = 0.1. (b),
(c) Vanishing of SF order parameter αSF and ρ( �Q) in SS to solid
and solid to NF transition, respectively, for different cluster sizes
mentioned therein. (d) Infinite cluster size extrapolation of the solid
to NF transition temperature (Tc) obtained from the vanishing of
ρ( �Q). The extrapolated values are used to obtain the phase diagram
in (a) and the phase boundary agrees well with the QMC results [17].

C. Cluster mean field theory

We use the CMF method discussed in Sec. II and in-
vestigate the transition temperature between the phases,
particularly near μ = 3. Different phases are characterized
as follows. The presence of superfluidity is determined by
the nonvanishing SF order parameter, αSF = ∑N

i=1〈âi〉/N , N
being the number of lattice sites within the cluster. The density
ordering with a two-sublattice structure in DW/solid and SS
phase is characterized by a nonvanishing Fourier mode,

ρ( �Q) = 1

N

N∑
i=1

〈n̂i〉 ei �Q·�ri , �Q = (4π/3, 0). (14)

As a result of two-step melting of the supersolid with increas-
ing temperature, first αSF vanishes, indicating the SS-solid
transition, followed by the vanishing of |ρ( �Q)| at higher
temperature, showing the solid-NF transition [see Fig. 5(a)].
We observe that the critical temperature, particularly for the
solid-NF transition, varies significantly with the cluster size
and becomes more and more accurate with increasing size,
as depicted in Figs. 5(b) and 5(c). Also, it can be noted
that for larger cluster size, the SS-solid transition occurs at
much lower temperature compared to that obtained from MF
analysis. At this lower temperature, we did not find any trace
of SSC phase in between SSA and SSB, resulting in a jump
in ρavg and in αSF across the SSA-SSB boundary. The solid
to SS transition caused by lowering the temperature has been
predicted to be Berezinskii-Kosterlitz-Thouless (BKT) type
[17] due to the absence of long-range order in two dimen-
sions at finite temperature [73]. The algebraic decay of the
correlation functions cannot be captured in the present method
due to the finite cluster size. However, with increasing cluster
size we observe a jump in the SF order parameter αSF at the
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SS-solid phase boundary [shown in Fig. 5(b)] resembling the
universal jump in the superfluid density at the BKT transition
[17]. Moreover, we checked that at the transition, the ratio
T/tρavg remains nearly the same for different values of μ at
a constant interaction strength V . Such a scaling behavior of
the transition temperature observed in our study is indicative
of the BKT-like transition from solid to SS [74,75].

Further, in order to improve the solid-NF phase boundary,
we have performed a finite cluster-size scaling [47] by ana-
lyzing the solid-NF transition temperature Tc as a function
of a scaling parameter λ = NB

Nz/2 , where NB is the number of
bonds in a cluster and z is the coordination number, which
is 6 for a triangular lattice. The values of Tc obtained from
different cluster sizes are plotted as a function of λ in Fig. 5(d).
The data are fitted by a straight line and extrapolated to the
thermodynamic limit (λ → 1) to extract Tc more accurately.
The transition temperature obtained from the quantum Monte
Carlo (QMC) study [17] is marked by horizontal cuts. As
an example, for μ = 2.74 we obtain that the extrapolated
value of Tc/V is 0.14, which is fairly close to the exact value
Tc/V = 0.1033. Note that such a scaling analysis is different
from finite size scaling, which is typically done in the numer-
ical analysis of finite size systems. Similarly, for the same
μ = 2.74 the SS-solid transition temperature obtained using
a larger cluster is 0.049, which agrees closely with the QMC
data Tc/V = 0.05 [17]. The resulting phase boundary in the
μ versus T plane obtained in this way is shown in Fig. 5(a),
which is in very close agreement with the QMC results [17].
Thus our analysis presents how the effect of correlation can be
incorporated with increasing order of cluster size, resulting in
a remarkable improvement of the phase boundary near μ = 3.
However, we do not focus on the type of SS phase formed at
μ = 3 [15,17,47], which is beyond the scope of the present
study.

IV. PHASES AND COLLECTIVE EXCITATION
OF A BOSON WITH FINITE U

In a more realistic scenario concerning the experiment, in
this section we discuss the phases and collective modes of
bosons with finite on-site interaction U . In addition to the
effect of geometric frustration in a triangular lattice, which
plays a crucial role in the density ordering of hardcore bosons
in terms of boson occupancies in the neighboring sites, in the
case of softcore bosons the finite on-site repulsion U competes
with NN interaction V as well, and it can affect the boson
occupancies in the sublattices. Therefore, our aim is to study
the new phases that appear as a result of the combined effect
of geometric frustration in a triangular lattice and the interplay
between on-site and NN interactions. We focus on the melting
of these phases with increasing temperature, and we charac-
terize them from the collective excitation at low temperatures.

A. Zero and finite temperature phases

To this end, we consider the Gutzwiller variational wave
function for three sublattices i = A, B, and C, which consti-
tutes the unit cell of a triangular lattice. It is given by

|�〉 =
∏

i

|ψi〉, |ψi〉 =
∑

n

f n
i |n〉i, (15)

FIG. 6. Zero temperature phase diagram of softcore bosons in a
triangular lattice: (a), (b) in μ vs t plane for different values of U/V
mentioned therein, (e), (f) for varying on-site interaction U = 30t
obtained by using MF and CMF-2, respectively. The schematics
in (a) shows the sublattice density configuration in SS1 and SS2.
(c), (d) Average density ρavg (solid line) and sublattice densities
nA,B,C (dashed lines) are plotted as a function of μ for t = 0.15V ,
U = 3.5V and for t = 0.18V , U = 2.5V corresponding to (a) and
(b), respectively.

where |n〉i is the Fock state with occupation number n and
probability amplitude | f n

i |2 at the ith site. In numerical calcu-
lation, we do truncation in n suitably with the normalization
set to

∑
n | f n

i |2 = 1. We numerically minimize the energy
functional E = 〈�|ĤMF|�〉 and chart out the phases as a
function of μ and t for different values of on-site interaction
U in Fig. 6. Since the particle-hole symmetry between ρ =
1/3 (1, 0, 0) and DW-I (1,1,0) is destroyed, these insulating
lobes are no longer symmetric around μ = 3 [see Fig. 6(a)].
For U < 3V , DW phases of higher filling (n0, 0, 0), n0 =
2, 3, . . . , e.g., DW-II (2,0,0) and DW-III (3,0,0), appear with
increasing μ, as shown in Figs. 6(b) and 6(e). Also, the DW
lobe with ρ = 2/3 changes from DW-I to DW-II, and MI-1
(1,1,1) becomes DW-III with decreasing U . The continuous
deformation of the insulating lobes with decreasing U/V is
shown in Appendix B. At finite t , ρ = 1/3 and DW-I melts to
form two types of supersolids, SS1 and SS2, similar to SSA
and SSB phases of hardcore bosons, respectively, for U > 3V ,
whereas below U = 3V only SS1 phase is observed. Such a
change in density ordering (also discussed in Appendix B) oc-
curs as a consequence of the interplay between on-site and NN
interaction, which can also be viewed as a reduction of geo-
metric frustration due to lowering of U . The sublattice density
structures of these supersolids are illustrated in Figs. 6(c) and
6(d) by the dashed lines, as well being schematically depicted
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FIG. 7. Finite temperature phase diagram of bosons in a triangu-
lar lattice: (a), (b) in t vs T plane for U = 30t and μ = 3 (marked
by “→” on the secondary y-axis in Figs. 6(e) and 6(f), using MF
and CMF-2, respectively. (c), (d) Collective excitation of DW-II and
SS1 around it, for μ = 3.5 and 2.7, respectively, as marked by (•) in
Fig. 6(e), at very low temperature T = 0.01.

in Fig. 6(a). We see that the average density [solid line in
Fig. 6(c)] exhibits a jump at the SS1-SS2 boundary similar
to the hardcore bosons. In Fig. 6(e) we have presented a phase
diagram in the μ-t plane with varying U , which scales with
respect to t . It can be noted that this simple mean field theory
captures all the phases as observed in more exact QMC studies
[44], albeit with an expected difference in the phase boundary
and an extended SS region over the DW phases. To improve
the phase boundary, we incorporate correlation by considering
clusters using the zero temperature CMF method described in
Sec. II, and the resulting phase diagram is shown in Fig. 6(f).

Next we focus on the melting of the ρ = 2/3 lobe as
temperature is increased at a fixed chemical potential μ = 3
[marked by “→” in Figs. 6(e) and 6(f)]. The jump in aver-
age density across SS1-SS2 at T = 0 is smoothened out at
finite temperature, and another type of supersolid is formed
between SS1 and SS2, similar to the SSC phase of hardcore
bosons. Therefore, we refer the reader to Sec. III A for a
similar discussion, and we focus on the thermal melting of the
phases such as DW-II and the supersolid SS1 at μ = 3. With
increasing T , the supersolid goes through a two-step melting
to normal fluid via a solid phase, as depicted in Figs. 7(a)
and 7(b). As t/V is increased, the solid region shrinks and
thereby the gap between critical temperatures corresponding
to the SS-solid and solid-NF transition decreases, and it finally
vanishes at the SF-NF boundary. On the other hand, as t/V is
decreased, the effect of U starts playing an important role in
the melting of DW-II to NF, and the transition temperature
increases with increasing V/U as observed from both MF and
CMF analysis [see Figs. 7(a) and 7(b)]. However, as expected
with decreasing t/V , i.e., in a more correlated regime, the dif-
ference between the MF and CMF results of such a transition
is more pronounced. It is also important to mention that the
SS-SF boundary [the vertical line in Figs. 7(a) and 7(b)] is not
affected by the thermal fluctuation, because SF order always
vanishes earlier than the DW order with increasing T , thereby

eliminating the possibility of observing the SS-SF transition
due to temperature.

B. Collective excitations of softcore bosons

In this section we discuss collective excitation, particu-
larly of the new phases, and we investigate their transitions
at finite temperature. To understand the appearance of new
stable phases by varying the on-site interaction U , we first
consider the excitations of insulating phases at zero tem-
perature and for vanishing hopping strength. For sufficiently
large on-site repulsion U , similar density ordering to that of
hardcore bosons occurs, and DW phases can be classified
as (n0, n0 − 1, n0 − 1) and (n0, n0, n0 − 1) representing the
number of particles at sublattice (A, B, C), respectively. First
the (1,0,0) DW phase appears, which has two degenerate
particle excitations at A, B sites with energy EA,B

p = 3V − μ

and particle (hole) excitation energy EC
p = U − μ (EC

h = μ)
at site C. The hole excitation EC

h becomes unstable at μ = 0,
and for large U the instability of particle excitation EA

p at
μ = 3V leads to the formation of DW-I with filling 2/3.
However, this scenario changes for U < 3V when the particle
excitation EC

p at C becomes unstable first at μ = U < 3V and
a new DW-II phase appears. In Fig. 6(b) note that these are
boundary points of ρ = 1/3 phase in the atomic limit (t = 0).
In DW-I the low-lying modes are degenerate hole excitations
EA,B

h = μ − 3V and particle excitation EC
p = 6V − μ, which

become unstable at μ = 3V and 6V , respectively. For large U
these low-lying modes are similar to those of hardcore bosons,
and we skip that discussion. Instead we focus on the U < 3V
regime and the DW-II phase, which has degenerate particle ex-
citation EA,B

p = 6V − μ and two lower energy particle (hole)
excitation EC

p = 2U − μ (EC
h = μ − U ). These determine the

stability of this phase within the region U < μ < 2U [note
that these are the boundaries of DW-II for t = 0 in Fig. 6(b)].
For finite t , its low-lying excitations are shown in Fig. 7(c).
Unlike the hardcore bosons, at finite U the dimension of the
Fock space at each site is infinite in principle; however, for
numerical calculation we truncate at a finite maximum boson
occupancy as required, and we plot a few low-lying energy
modes, but we exclude the higher excitation branches, which
are not relevant in our study. As t is increased, DW-II melts
to SS1 phase along with the vanishing of the Mott energy gap
at the � point. The low-lying excitation of SS1 surrounding
DW-II is shown in Fig. 7(d). The lowest energy branch repre-
sents the gapless sound mode, which can be identified as the
Goldstone mode. The energy gap of the next excitation branch
at |k| ∼ 0 gradually decreases with decreasing t and exhibits
a dip near the transition from SS1 to DW-II phase, resembling
the behavior of the Higgs-like massive mode [76–78]. The gap
between the lowest two branches of excitation at the K point
vanishes for U > 3V , reminiscent of the lowest degenerate
hole excitation of DW (1,1,0) [see Fig. 3(b)]. This completes
our analysis on the characteristic features of the excitation of
new phases at finite U and low temperature.

V. SUMMARY

To summarize, we studied various phases of bosons and
their collective excitations in a triangular lattice at finite
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temperature both for on-site hardcore repulsion (U → ∞)
and for finite U . The effect of lattice geometric frustration and
strong correlation between the atoms plays a crucial role in the
formation of different phases and transition between them. We
obtained a finite temperature phase diagram using a single-site
mean field method approximating the density matrix as a
product of single-site density matrices and thereby ignoring
the intersite correlation. The main advantage of doing MF
is to obtain a semianalytic estimate of the phase boundaries
within the framework of Landau theory, particularly for hard-
core bosons. We also performed more accurate cluster mean
field theory and compare the results of both in order to gain
information about the effect of correlation. Moreover, the
collective excitation frequencies of the various phases at finite
temperature are calculated from the time dependent fluctua-
tions of the density matrix. Different characteristics of such
low-lying excitations carry the signature of various phases and
signals the transition between them, which can be used for
their experimental detection.

As a result of the interplay between geometric frustration
in a triangular lattice and nearest neighbor as well as on-site
boson repulsion, a stable supersolid phase is formed around
the DW phases with different filling (depending on μ and
U ). With increasing temperature, two-step melting of the SS
phase is observed; first, the SF order parameter vanishes at
much lower temperature, which scales with hopping strength,
and then the solid phase melts to homogeneous NF at higher
temperature comparable with nearest neighbor interaction. As
t/V increases, the gap between these two transition temper-
atures eventually vanishes and merges to the SF-NF phase
boundary. Within MF theory we observe a continuous tran-
sition between SS-DW/solid and SF-NF phases. The gapless
sound mode at k = 0 present in SF and SS phases becomes
gapped at their respective phase boundaries, whereas the solid
phase undergoes a first-order transition to NF with increasing
T , characterized by a jump in DW order parameters such
as sublattice density imbalance δ and Fourier mode ρ( �Q) at
�Q = (4π/3, 0). The degenerate excitation modes of the DW
phase at the K point also become gapless at the M point of
the Brillouin zone during the transition to homogeneous NF.
The behavior of the collective excitation of different phases at
finite T is important in the context of recent cold atom exper-
iments where the low energy Goldstone and Higgs modes in a
supersolid are detected using spectroscopic measurement [40]
or using the time-of-flight experiments [41–43].

Although simple MF theory provides a qualitative under-
standing of the finite temperature phases, as expected it fails
to capture the exact nature of the transition as well as the
quantitative estimate of the transition temperature, particu-
larly the melting of SS and solid phases due to the effect
of frustration. For hardcore bosons at and around μ = 3, the
enhanced effect of frustration significantly reduces the melt-
ing temperature of the DW phase. For t = 0 the system of
hardcore bosons becomes equivalent to a disordered antiferro-
magnet with vanishing critical temperature. By incorporating
finite cluster-size scaling, CMFT can successfully capture
such a reduction of the melting temperature around μ = 3,
which is also in agreement with the QMC results [17,44]. This
indicates that the effects of both correlation and frustration
can be captured by CMFT, which is thus a useful tool to

study the finite temperature phases of interacting bosons in
an optical lattice and phase transitions between them. Such
a method can be extended further to study the nonequilib-
rium dynamics of strongly correlated lattice bosons at finite
temperature.

In conclusion, we have investigated the effect of correlation
arising from geometric frustration in a triangular lattice and
interaction systematically using mean field as well as clus-
ter mean field theory, and we identified the different phases
from their characteristic low-lying excitation. These collec-
tive modes and their behavior at finite temperature that we
discussed can be probed experimentally using a similar line
of thought to that in recent cold atom setups [40–43].
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APPENDIX A: LANDAU-GINZBURG THEORY OF
PHASE TRANSITION

In the following subsections, we will discuss in detail the
estimation of the transition temperature, and the nature of the
transition between different phases from the LG theory.

1. Superfluid to normal fluid transition

In the homogeneous SF phase, the average free energy of
the system given in Eq. (6) can be written as

F =−6tα2 − μ

2
(1 + m)+ 3V

4
(1+m)2+T

∑
σ=+,−

λσ ln λσ ,

(A1)
where λ± = (1 ± √

m2 + 4α2)/2. We have assumed α to be a
real parameter without any loss of generality, and because of
homogeneity of the superfluid we have set αi = α and mi =
m. Now the free energy can be expanded in a power series of
SF order parameter α as follows:

F =a(μ, t, m, T )+b(μ, t, m, T )α2+c(μ, t, m, T )α4 + · · · .

(A2)
This is the Landau-Ginzburg form of the second-order phase
transition. Thus the critical temperature can be estimated by
numerically finding the values of m and then evaluating the
coefficients a, b, c of Eq. (A2). In Fig. 8(a) we have plotted F
at T < Tc, T = Tc, and T > Tc.

As mentioned in the main text, we observe that with
increasing temperature the SF order parameter vanishes con-
tinuously at the SF-NF phase boundary. In Fig. 8(b) we have
shown the variation of the SF order parameter as a function
of temperature. It can be noted that the numerically obtained
value of the critical temperature [as marked by ↑ in Fig. 8(b)]
agrees with that estimated from the LG theory.

2. Solid to normal fluid transition

The density wave phase is characterized by vanishing
of SF order parameters (α = 0) and a nonzero value of
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FIG. 8. (a) Landau free energy F as a function of the average
SF order parameter αSF = α for different T , each of them scaled
by subtracting F (α = 0). Parameters are t/V = 0.2 and μ/V = 0.5.
(b) αSF with increasing temperature at t/V = 0.2 for different μ/V
as mentioned in the inset. The numerically obtained SF-NF transition
temperature Tc agrees with that from the LG theory as marked by (↑)
on the T/V axis.

density order (mi �= mī ). Let us consider nA = nB = (n − δ)
and nC = (n + 2δ), where δ is the DW order parameter. Fol-
lowing this parametrization, the free energy in terms of m and
δ is given by

F = 3V

4
(m2 + 2m − 4δ2 + 1) − μ

2
(1 + m)

+ T

3

∑
i = A, B,C
j = 1, 2

λ
j
i ln λ

j
i , (A3)

where λ1,2
A = λ1,2

B = [1 ± (m − 2δ)]/2 and λ1,2
C = [1 ± (m +

4δ)]/2. For a given value of m, we can write the free energy
in a power series of δ, which is given by

F = a(μ, t, m, T ) + b(μ, t, m, T )δ + c(μ, t, m, T )δ2

+ d (μ, t, m, T )δ3 + · · · . (A4)

Nonzero values of the coefficients of odd powers in δ, e.g., d ,
imply that this is the Landau-Ginzburg form of the first-order
phase transition. The critical temperature can be obtained by
evaluating the coefficients a, b, c, d by numerically finding the
value of m.

In Fig. 9(a) we have shown the typical variation of LG free
energy as a function of δ. At the critical Tc, δ corresponding
to the minima of F exhibits a jump from a finite value to zero
as depicted in Fig. 9(c). Such a jump is a characteristic feature
of the first-order transition from solid to NF phase. However,
the magnitude of the jump reduces as μ/V becomes closer to
3 and vanishes at μ = 3 as shown in Fig. 9(d). We would like
to point out that a similar phenomenon was observed in the
case of the SS to SF phase transition at zero temperature [47].
The average density ρavg, the sublattice density imbalance
δ, and its jump � at the solid-NF phase boundary behave
symmetrically away from μ/V = 3, as can be noted from
Figs. 9(b), 9(c), and 9(d), respectively.

APPENDIX B: ZERO TEMPERATURE PHASE DIAGRAM
OF SOFTCORE BOSONS

Here we show how the breaking of particle hole symme-
try due to finite U deforms the insulating lobes, and new

FIG. 9. (a) Landau free energy F is plotted as a function of
δ, scaled by subtracting F (δ = 0) for μ/V = 5 and for different
temperatures mentioned therein. (b), (c) Average density ρavg and
sublattice density imbalance δ with increasing T for different μ/V .
(d) Magnitude of the jump � in δ at Tc for solid-NF transition vs
μ/V . We set t/V = 0.

density wave phases with higher filling appear. In Fig. 10 we
have demonstrated this issue, where U is gradually decreased
from a large value for which we recover the hardcore boson
phase diagram. For U > 3V , we observe density waves ρ =
1/3 (1, 0, 0), DW-I (1,1,0), Mott insulators MI-1 (1,1,1), and
so on with increasing μ. Melting of ρ = 1/3 and DW-I (1,1,0)
gives rise to the formation of SS1 and SS2 supersolids, similar
to SSA and SSB phases for hardcore bosons (as discussed in
Sec. IV A). With decreasing U these insulating lobes deform,
and below U = 3V , the ρ = 2/3 phase changes from (1,1,0)
to (2,0,0) along with the appearance of other DW phases with
higher filling, such as DW-III (3,0,0), DW-IV (4,0,0), and so
on, as μ is increased. Also, an extended supersolid of type SS1
forms above these insulating phases. The sublattice density
structures of these supersolids are shown in Fig. 6(a).

FIG. 10. Zero temperature mean field phase diagram of bosons
with finite U in the μ-t plane. Different values of U are mentioned
in the inset.
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