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Anisotropic time-dependent London approach: Application to the ac response in the Meissner state
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The anisotropic London equations taking into account the normal currents are derived and applied to the
problem of the surface impedance in the Meissner state of anisotropic materials. It is shown that the complex
susceptibility of the anisotropic slab depends on the orientation of the applied microwave field relative to the
crystal axes. In particular, the anisotropic sample in the microwave field is subject to a torque, unless the field is
directed along one of the crystal principle axes.
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I. INTRODUCTION

Its shortcomings notwithstanding, the approach based on
London equations played—and still plays—a major role in
describing magnetic properties of superconductors away from
the critical temperature Tc, where it is, in fact, the only
available and sufficiently simple technique for many practical
applications. The physical reason for this success is in its
ability to describe the Meissner effect, the major feature of
superconductors at all temperatures. The anisotropic version
of this approach [1,2] proved useful when strongly anisotropic
high-Tc materials came to the fore. It was also realized that
in time-dependent phenomena the normal dissipative currents
due to normal excitations should be taken into account along
with persistent currents [3,4]. In particular, normal currents
influence superconductor behavior in microwaves absorption
[3] and perturb the field distribution of moving vortices [5,6].
In this work, the anisotropic version of the time-dependent
London equation is derived and applied to problems of surface
impedance and magnetic susceptibility in a simple geometry.

Within the London approach, the current density consists,
in general, of normal and superconducting parts:

J = σE − c

4πλ2

(
A + φ0

2π
∇θ

)
, (1)

where E is the electric field, λ is the penetration depth, A is
the vector potential, θ is the phase, and φ0 is the flux quantum.
The conductivity σ of the quasiparticle flow is, in general,
frequency dependent. If, however, the frequencies ω are bound
by the inequality ωτn � 1, with τn being the scattering time
for the normal excitations, one can consider σ to be a real ω-
independent quantity. As always within the London approach,
the order parameter is assumed to be constant in space.

*kogan@ameslab.gov
†prozorov@ameslab.gov

In the absence of vortices, we have, by applying curl,

curl curlH + 1

λ2
H = −4πσ

c2

∂H
∂t

. (2)

These are, in fact, London equations corrected by the time-
dependent right-hand side [5].

A. Surface impedance of the half-space isotropic sample

The surface impedance in isotropic superconductors was
considered, e.g., by Clem and Coffey [3]. Equation (2) pro-
vides a simple and direct approach to this problem. Let a
weak magnetic field H = H0x̂e−iωt be at the surface z = 0 of a
superconducting half-space z > 0. Since the field is assumed
to be weak, the order parameter is unperturbed, and we can
use the London equation (2). The field is uniform in the plane
(x, y) and depends only on z. We look for solutions of

−∂2Hx

∂z2
+ 1

λ2
Hx = −4πσ

c2

∂Hx

∂t
(3)

in the form Hx(z) e−iωt and obtain

Hx = H0 e−kz−iωt , k2 = 1

λ2
− 2i

δ2
, (4)

where δ = c/
√

2πσω is the quasiparticle-related skin depth.
The electric field is found from the Maxwell equation

curlE = −∂t H/c: Ey = (iω/ck)H0 e−kz−iωt , so that the sur-
face impedance (see, e.g., [7])

ζ = − Ey

Hx

∣∣∣
z=0

= − iω

ck
. (5)

If δ � λ,

k ≈ 1

λ

(
1 − i

λ2

δ2

)
, (6)
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and

ζ ≈ ωλ3

cδ2
− i

ωλ

c
. (7)

Thus, the dissipative part of the impedance is given by

Re ζ ≈ 2π

c3
ω2σλ3. (8)

The imaginary part of the impedance is not affected by the
quasiparticle part of the current, (see, e.g., Ref. [7]); that is, it
depends only on λ. It is worth noting that Eqs. (6) and (7) do
not hold in the immediate vicinity of Tc, where λ diverges.

B. Susceptibility of a slab

It is instructive to consider Eq. (2) for a superconducting
slab of thickness d in the applied ac field Hx = H0e−iωt paral-
lel to the slab faces. The solution is

Hx = H0
cosh(kz)

cosh(kd/2)
e−iωt , (9)

with k from Eq. (4) and z counted from the slab middle. The
electric field is

Ey = i
ωH0

ck

sinh(kz)

cosh(kd/2)
e−iωt , (10)

and the surface impedance

ζ = − Ey

Hx

∣∣∣
z=d/2

= − iω

ck
tanh

kd

2
. (11)

A commonly measured quantity is the susceptibility, de-
fined as the ratio of the average magnetization μ of the slab to
the applied field:

χ = μx

H0
= 1

4πd

∫ d/2

−d/2

Hx(z) − H0

H0
dz

= − 1

4π
+ 1

2πdk
tanh

kd

2
. (12)

Hence, we have a simple relation between the surface
impedance and the slab susceptibility:

χ + 1

4π
= ic

2πdω
ζ ; (13)

that is, the surface impedance is proportional to the deviation
of the susceptibility from the Meissner value −1/4π .

Hence, for λ � δ one obtains, with the help of Eq. (6),

χ + 1

4π
= λ

2πd
+ i

λ3

2πdδ2
. (14)

In the limit λ → ∞, we obtain, for the normal metal slab,

χ + 1

4π
= δ

4πd
(1 + i) tanh

d (1 − i)

2δ
. (15)

II. ANISOTROPIC MATERIALS

In the absence of vortices, the order parameter can be taken
to be real, so that the current equation becomes

Jk = σklEl − c

4π
(λ−2)kl Al , (16)

where σkl and (λ−2)kl are tensors of the conductivity due to
normal excitations and of the inverse square of the penetration
depth. As usual, summation is implied over double indices.
Being interested in problems with no conversion of normal
currents to supercurrents, we impose the conditions

divJn = σkl
∂El

∂xk
= 0, divJs = λ−2

kl

∂Al

∂xk
= 0; (17)

that is, the densities of normal excitations and of Cooper pairs
are separately conserved. In particular, this implies a certain
gauge for the vector potential.

In order to obtain an equation for the magnetic field exclu-
sively, one has to isolate E and apply the Maxwell equation
curlE = −∂t H/c. To this end, we multiply Eq. (16) by σ−1

sk =
ρsk , with ρsk being the resistivity tensor, and sum over k:

ρskJk = Es − c

4π
ρskλ

−2
kl Al . (18)

In the following it is convenient to use the notation
curluE = εuvs∂Es/∂xv , where εuvs is the Levi-Chivita unit an-
tisymmetric tensor: all components with an even number of
transpositions from (xyz) are +1 or −1 for the odd ones and
zero otherwise. Hence, applying εuvs∂/∂xv to Eq. (18), one
obtains anisotropic London equations for the magnetic field,
the main result of this paper:

c

4π
ρskεuvsεkmn

∂2Hn

∂xv∂xm
+ ∂Hu

c ∂t

= − c

4π
ρskλ

−2
kl εuvs

∂Al

∂xv

. (19)

One can check that in the isotropic case this equation
reduces to the time-dependent London equation (2). Another
limit to check is the static anisotropic London equations [1].
In this case we have

ρskεuvs

(
εkmn

∂2Hn

∂xv∂xm
+ λ−2

kl

∂Al

∂xv

)
= 0. (20)

Clearly, this equation is satisfied if

εkmn
∂Hn

∂xm
+ λ−2

kl Al = 0. (21)

We now introduce a tensor (λ2)kl inverse to (λ−2)kl , multiply
the last equation by (λ2)kμ, and sum up over k:

λ2
kμεkmn

∂Hn

∂xm
+ Aμ = 0. (22)

Finally, we apply to this εuvμ∂/∂xv to replace curlA with H
and obtain static anisotropic London equations [1].

A. Orthorhombic slab with plane faces ab

The cumbersome Eq. (19) is applicable in a coordinate
system (x, y, z) oriented arbitrarily relative to the anisotropic
sample. One, of course, can choose (x, y, z) to be the crystal
frame (a, b, c) where ρsk and λ−2

kl are diagonal. Consider a
slab of thickness d of orthorhombic material with a, b (or
x, y) plane faces; z is counted from the slab middle. Let the
ac applied field H0 be parallel to x; the field inside the slab
depends only on z.
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Consider the first term in Eq. (19). Since v and m take only
z values and n = x, it is readily seen that this term reduces to

− c

4π
ρyy

∂2Hx

∂z2
. (23)

The term on the right of Eq. (19) can be treated similarly to
obtain cρyyλ

−2
yy ∂zAy. Hence,

−∂2Hx

∂z2
+ λ−2

yy Hx + 4π

c2ρyy

∂Hx

∂t
= 0. (24)

This equation is equivalent to the isotropic Eq. (3) with the
same solution (9) for the slab, but now

k2
x = λ−2

yy − 2i

δ2
yy

, δ2
yy = c2

2πσyyω
. (25)

As expected, the decaying behavior of Hx is determined by
characteristics of persistent and normal currents in the y di-
rection.

Thus, the isotropic result for the susceptibility is directly
translated to this situation. In particular, if λyy � δyy, one
obtains for component χxx of the susceptibility tensor

χxx + 1

4π
= λyy

2πd
+ i

λ3
yy

2πdδ2
yy

. (26)

If the applied field is directed along y, the same argument
leads to

χyy + 1

4π
= λxx

2πd
+ i

λ3
xx

2πdδ2
xx

. (27)

These formulas cannot be used too close to Tc, where in-
equalities λ � δ and λ � d are violated. The time-dependent
London equation (24) can be solved without these precondi-
tions (see the Appendix).

It is worth noting that the anisotropy of the penetration
depth is related to the anisotropy of susceptibility:

γλ = λxx

λyy
≈ Re χyy + 1/4π

Re χxx + 1/4π
. (28)

Taking the ratio of imaginary parts, we obtain

Im χyy

Im χxx
≈ δ2

yy

δ2
xx

λ3
xx

λ3
yy

= γσ γ 3
λ , (29)

where γσ = σxx/σyy.

1. Angular dependence of susceptibility

Let the applied field at the sample surface be at an an-
gle ϕ with the a axis, H = H0(x̂ cos ϕ + ŷ sin ϕ)e−iωt . Since
London and Maxwell equations are linear, the solution is
the superposition of two solutions for applied fields oriented
along the principle directions:

H = H0

[
x̂

cos ϕ cosh(kxz)

cosh(kxd/2)
+ ŷ

sin ϕ cosh(kyz)

cosh(kyd/2)

]
, (30)

where the factor e−iωt is omitted for brevity. It is worth noting
that since the decay lengths for the magnetic field along x̂ (on
the order of 1/kx) differ from 1/ky, the field in the (ab) plane
rotates with increasing depth z. In this situation, the magnetic

moment μ will have not only the component parallel to the
applied field, μ‖, but a perpendicular component as well.

One has for the electric field

E = iωH0

c

[
x̂ sin ϕ sinh(kyz)

ky cosh(kyd/2)
− ŷ cosϕ sinh(kxz)

kx cosh(kxd/2)

]
. (31)

The commonly measured susceptibility is defined as

χ‖ = μ‖
H0

= μx cos ϕ + μy sin ϕ

H0

= χxx cos2 ϕ + χyy sin2 ϕ, (32)

where χxx and χyy are given in Eqs. (26) and (27). This gives

Reχ‖ = − 1

4π
+ 1

2πd

(
λyy cos2 ϕ + λxx sin2 ϕ

)
,

Imχ‖ = 1

2πd

(
λ3

yy

δ2
yy

cos2 ϕ + λ3
xx

δ2
xx

sin2 ϕ

)
. (33)

2. Dissipation and torque

Given the fields at the surface z = ±d/2, one evaluates the
Pointing vector S, i.e., the energy flux into the sample and
the dissipation power [7]. One obtains, after straightforward
algebra,

Sz = − c

8π
Re(E × H∗

0 )z=d/2

= ωH2
0

8π

λ3
xx

δ2
xx

[
sin2 ϕ +

(
λyy

λxx

)3(
δxx

δyy

)2

cos ϕ2

]
. (34)

Here, Sz denotes the time average over the period 2π/ω. If the
parameter

p =
(

λyy

λxx

)3(
δxx

δyy

)2

> 1, (35)

cos2 ϕ dominates, and the dissipation has a minimum at ϕ =
π/2, i.e., for H0 directed along y. If p < 1, the dissipation is
minimal for the field H0 directed along x. Since the system
prefers the state with minimum dissipation, one expects a
torque for 0 < ϕ < π/2 that acts to rotate the sample to this
state.

This conclusion is confirmed by calculating the torque τ

averaged over the ac period:

τz = 1
2 Re(μ × H∗

0 ) = 1
2 Re(μxH∗

0y − μyH∗
0x ), (36)

where μx = χxxH0 cos ϕ and μy = χyyH0 sin ϕ. We obtain,
with the help of Eqs. (26) and (27),

τz = H2
0

8πd
(λyy − λxx ) sin 2ϕ. (37)

III. DISCUSSION

Anisotropic London equations taking into account normal
currents are derived and applied for the evaluation of the
surface impedance and susceptibility χ for a simple geometry
in which sample surfaces coincide with the ab planes of the
orthorhombic crystal. In principle, applying the ac field along
the a and b crystal axes, one can extract both χaa and χbb of
the susceptibility tensor.
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In the usual situation where the penetration depth is small
relative to the skin depth, the deviation of the real part of
the susceptibility from Meissner’s −1/4π depends only on
λ, so that the ratio of these deviations for the two princi-
ple directions gives the anisotropy parameter γλ = λaa/λbb,
Eq. (28). Hence, γλ can, in principle, be extracted from
microwave susceptibility data. The behavior of γλ with tem-
perature is of intense interest in studies of new materials,
and it remains to be seen whether or not experimental com-
plications related to the finite size of actual samples can be
overcome [8].

Given the slab geometry we consider in this paper, thick
anisotropic films seem to be the best to check our formulas.
The strongly anisotropic properties of cuprates make them
good candidates for such measurements. One can find plenty
of information on these possibilities in Ref. [9].

There are many ways to measure surface impedance. Com-
monly, the sample is placed inside a coil (for radio-frequency
measurements) or in a microwave cavity or on a stripline
resonator (for microwave frequencies of 1–100 GHz). The
input ac frequency is tuned close to a specific resonant mode
for which directions and amplitudes of electric and mag-
netic fields at the sample location are known. The sample
is positioned so that the fields and currents are along the
principal axes or at a known angle. The real and imagi-
nary parts of the measured signal allow the evaluation of
the complex impedance. Contemporary resonators approach
sensitivities of 0.1 part per billion, which translates to a better
than angstrom resolution of the London penetration depth for
millimieter-sized crystals.

While deep in the superconducting state the contribution
of normal quasiparticles to susceptibility is much smaller than
the Meissner contribution by a factor ∼λ2/δ2 [see Eq. (14)],
only the latter is frequency dependent via the skin depth δ(ω).
Therefore, one can measure the response as a function of
ω and extract the ω-dependent part. In fact, Eq. (14) can
be written as χ + 1/4π = A + iBω with ω-independent A, B.
Therefore, the derivative of the response with respect to fre-
quency will provide the imaginary part of χ .

Another quantity which can be extracted from the sus-
ceptibility data is the conductivity of normal excitations σ .
It coincides with the normal state conductivity near Tc (for
gapless superconductors for all temperatures). However, ex-
perimentally, little is known about this conductivity away
from Tc. Still, this quantity is of interest, in particular, given
recent theoretical work of Smith et al. stating that the conduc-
tivity can be strongly enhanced due to inelastic scattering [10].
The anisotropy of σ can, in principle, be extracted from the
ratio of imaginary parts of susceptibility and the anisotropy of
the penetration depth, Eq. (29).

It should be noted that we applied the general equation
(19) to an infinite slab. In experiments, one deals with finite
samples. In this case, magnetic susceptibility measured in the
applied field along, say, the b axis in addition to λxx will also
depend on λzz. What is worse, the sample shape will give an
extra angular modulation when the angle ϕ of the applied
field direction is swept. These and other difficulties which
may arise in measurements of the susceptibility of anisotropic
samples and possible ways to overcome them are discussed
elsewhere [8].

To summarize, the anisotropic London equations taking
into account the normal currents were derived and applied to
the problem of the surface impedance and magnetic suscep-
tibility in the Meissner state of anisotropic superconductors.
It was shown that the anisotropy of the London penetration
depth can be expressed in terms of the anisotropy of the
susceptibility. It was also shown that the anisotropic sample
in the ac field is subject to a torque, unless the field is directed
along one of the crystal principle axes.
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APPENDIX

The slab susceptibility can be obtained by solving the
time-dependent London equation, Eq. (3), for any material pa-
rameters not restricted by λ � δ. We show that in the isotropic
case, the generalization to orthorhombic slab is straightfor-
ward. From

k = 1

λ

√
1 − iη, η = 2λ2

δ2,
(A1)

one readily obtains

Re k = (1 +
√

1 + η2)1/2

√
2λ

= 1

λ
cosh

u

2
,

Im k = − η

λ
√

2(1 +
√

1 + η2)1/2
= 1

λ
sinh

u

2
, (A2)

where we introduced a new variable via η = sinh u. Using
Eq. (12), we obtain

4πχ + 1 = 2λ/d

cosh(u/2) − i sinh(u/2)

× tanh
cosh(u/2) − i sinh(u/2)

2λ/d
. (A3)

This result holds for any relations between λ, δ, and d . In
particular, for the standard situation λ � d and λ � δ we
have u ≈ 2λ2/δ2 � 1 and

4πχ + 1 ≈ 2λ

d

1

1 − iλ2/δ2
, (A4)

which coincides with Eqs. (26) and (27).
If λ → ∞ (normal metal), u = sinh−1(2λ2/δ2) ≈

ln(4λ2/δ2), which leads to

cosh
u

2
≈ sinh

u

2
≈ λ

δ
(A5)

and to

4πχ + 1 = δ

d
(1 + i). (A6)

This holds indeed for the susceptibility of an isotropic slab of
a normal metal, Eq. (15), provided d/δ � 1 and tanh is very
close to 1.

184514-4



ANISOTROPIC TIME-DEPENDENT LONDON APPROACH: … PHYSICAL REVIEW B 102, 184514 (2020)

FIG. 1. Temperature dependences of the real (blue) and imag-
inary (red) parts of 4πχ + 1 for η0 = 0.1 and r0 = 0.02 obtained
numerically from Eq. (A3) assuming λ = λ0/

√
1 − t2 for gapless

materials.

One can proceed analytically evaluating the real and imag-
inary parts of χ of Eq (A3). But, eventually, we will have
to resort to numerical evaluation anyway, so we can do this
already at this point.

Since gapless materials are likely to have large λ, we
use the temperature dependence λ2 = λ2

0/(1 − t2) with the

reduced temperature t = T/Tc [11,12]. Thus, the temperature
enters via

2λ

d
= r0√

1 − t2
, u = sinh−1 η0

1 − t2
. (A7)

Hence, there are two dimensionless parameters, r0 =
2λ0/d and η0 = 2λ2

0/δ
2, that define the susceptibility of

Eq. (A3). An example of numerical evaluation of real and
imaginary parts of χ (T ) is shown in Fig. 1. As is seen from
Eq. (A6) for d � δ, the curves must meet at t = 1 where the
slab becomes normal and the real and imaginary parts are
equal. The ratio d/δ does not enter Eq. (A3) explicitly but can
be expressed in terms of η0 = 2λ2

0/δ
2 and r0 = 2λ0/d . Hence,

for η0 = 0.1 and r0 = 0.02 chosen for this graph we have

δ

d
= r0√

2η0
= 0.0447. (A8)

That is, in fact, the value of 4πχ + 1 at t = 1 shown in
Fig. 1. It can be checked that the maximum position in Reχ (t )
corresponds to the temperature at which λ(t ) ≈ δ, i.e., to
t = √

1 − η0/2.
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