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Electronic nematic behavior has been identified and studied in iron-based superconductors for some time,
particularly in the well-known BaFe2As2 system, where it is well known to compete with superconductivity.
On the other hand, it has been shown recently that FeSe displays a negligible effect of nematicity on su-
perconductivity near the superconducting transition, and actual cooperation between the two orders when the
system is doped with S. Recently it has also been proposed that LiFeAs undergoes a nematic transition in the
superconducting state itself. Generally, we expect superconductivity to be anisotropic when it coexists with
nematic order, but it is not clear under what circumstances the two orders compete or cooperate, nor how the
anisotropy of the superconducting state correlates with that in the nematic state. To address this, we study a
simple mean-field model of a d-wave Pomeranchuk instability together with a mixed s, d pairing interaction,
and identify when nematicity is enhanced or suppressed by superconductivity. We show that the competition
or cooperation depends significantly on the distortion of the Fermi surface due to nematicity relative to the
anisotropy of the superconducting gap function. Further, we discuss the implications of our results for FeSe and
LiFeAs.
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I. INTRODUCTION

Electronic nematic order in iron-based superconducting
(FeSC) materials has been the subject of considerable interest
for several years now, after being established by several key
scanning tunneling microscope (STM) [1], thermodynamic
[2], and transport experiments [3]. In general, nematic insta-
bilities in FeSC materials have been discussed in terms of
a competition between fluctuations of structural, orbital, and
spin degrees of freedom [4,5]. Particularly in the Fe pnictides,
however, the proximity of the structural and magnetic tran-
sitions, as well as the observed scaling of the magnetic and
lattice fluctuations in these systems [6], led to the general idea
that the nematic phase preceding magnetic ordering is driven
by spin fluctuations.

On the other hand, the origin of the nematic order in iron
chalcogenides like FeSe is still controversial. At first glance,
the absence of long-range magnetic order in the ambient pres-
sure phase diagram of FeSe suggests that the spin nematic
paradigm [7] might not be appropriate, and that orbital fluc-
tuations might play a more leading role [8–10]. On the other
hand, the confirmation of a long-range magnetic state under
a modest pressure [11,12] has lent support to other proposals
that suggest that the ambient pressure phase may be a quan-
tum paramagnet [13,14] or possibly a state with long-range
order of “hidden” magnetic quadrupolar type [15,16]. The tiny
Fermi surfaces in this system may also be important to prevent
long-range magnetic ordering [14,17,18].

Beyond addressing the origin of the nematic state, it is
interesting to ask what the influence of nematicity is on
the superconductivity that evolves out of it. Fernandes and

Millis [19] studied the problem of the coupling of the ne-
matic, s- and d-wave order parameters, and found several
phase diagrams illustrating the transition from s-wave to d-
wave pairing with varying coupling to nematicity, according
to whether the nematic order was condensed or fluctuating.
The phenomenological study addressed the scenario when the
nematic and superconducting transition temperatures (Tn, Tc)
are close to each other. Here we discuss results based on a
simple microscopic model that describes the basic physics
over the entire range of the bare ratio Tn/Tc.

The question of whether the two orders compete or coop-
erate has been raised with new urgency recently by several
key experimental results on the Fe-based systems FeSe and
LiFeAs. The first is an electron irradiation experiment by the
Prozorov group [20] that showed that disorder, surprisingly,
enhances Tc slightly, in contrast to similar experiments in
Fe pnictides. These authors discussed various possible ex-
planations for their observation, including the possibility of
a competition of nematic and superconducting order, that
might allow a Tc enhancement if the nematic order were to be
suppressed more rapidly by disorder, by analogy to supercon-
ductivity competing with density wave order. This scenario
was explored by Mishra and Hirschfeld [21], who found that
it could occur in a simple model where nematic order is driven
by a d-wave Pomeranchuk instability if there were strong
competition between nematic and superconducting order. The
degree of competition was found to depend strongly on the
orientation of the nematic director relative to the supercon-
ducting anisotropy.

The second set of experimental results comes from the
Karlsruhe group, who reported a surprising lack of coupling
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between the orthorhombic a, b axis lattice constant splitting
(indicative of nematicity) and superconductivity in FeSe, in
contrast to Ba-122, where the splitting was suppressed below
Tc, indicating competition [22]. In FeSe, there was only a
minor effect on δ = a − b at Tc [8]. Even more surprising
was a recent result on FeSe doped with sulfur reported by
the same group [23]. Although with increased S doping, Tc is
known to increase while Tn decreases, suggesting competition,
δ was found to increase as T was lowered below Tc, indicating
a cooperative effect of superconductivity and nematicity in
these samples. Phase cooperation is not particularly common
when superconductivity is involved, but it occurs in some
other contexts [24].

Finally, an angle-resolved photoemission spectroscopy
(ARPES) experiment on the tetragonal compound LiFeAs
indicated recently that nematicity could occur below Tc, with
the measurement of a strongly C2-symmetric gap function
[25]. While data at only one temperature below Tc were re-
ported, these authors speculated that the nematicity might
appear spontaneously at Tc, and gave a Ginzburg-Landau (GL)
argument how this could occur. The theoretical proposal of
such nematic order induced by superconductivity was also
discussed by Livanas et al. [26], and the role of orbital nematic
fluctuations on superconductivity was explored by Yamase
and Zeyher [27]. The influence of a leading Pomeranchuk
instability on the superconducting Tc in the Hubbard model
was discussed in terms of possible cooperation or competition
by Kitatani et al. [28].

Evidently a wide range of behavior is possible, and we pro-
pose to investigate the phase diagram of a simple model that
allows for both competition and cooperation. Such a model,
while simple, can form the foundation for more challenging
studies which could address the role of disorder, orbitals,
and other electronic correlations, and incorporate the induced
nematic distortion of the Fermi surface (FS) into the pair-
ing interaction itself. The basic question we address here in
the simpler situation is, “What aspects of nematic order and
superconductivity influence whether these two phenomena
cooperate or compete with one another?”

To minimize the number of parameters, we work primarily
with a single-band system. The minimal ingredients needed
to study the above question are tendencies towards nematic,
s- and d-wave superconducting orders. We emphasize that we
do not address the mechanism that can lead to these tendencies
but simply assume an effective theory where the electronic
correlations have already resulted in the above-mentioned
channels being attractive. A more complete treatment would
enable one to model the system with respect to microscopic
variables, e.g., the carrier concentration (see, e.g., Ref. [29]),
but our current choice expressing results in terms of effective
s- and d-wave interactions is more transparent and simpler.
The evolution of s and d spin fluctuations with doping has
been discussed in Ref. [30].

Our results for the one-band model, in the absence of
disorder, can be summarized as follows:

(i) It is possible to have a superconducting order emerge
out of the nematic order; however, the two orders co-
operate only if the anisotropy of the superconducting
order parameter is such that the direction of the gap
maximum aligns with the elongation of the Fermi sur-

FIG. 1. A sketch of a FS (black curve) and the superconducting
gap around it (width of the red region), with the FS elongation due to
nematicity and the gap maximum in the same direction.

face distortion arising from the nematic order, as shown
in Fig. 1.

(ii) The degree of cooperation is generally quite small, and
is controlled by the high-energy sector of the electronic spec-
trum. While this is true for the one-band model, the question
remains open for multicomponent systems in general.

(iii) The cooperative effect can exist even when the
nematic order emerges out of the superconducting order.
However, we need strong competition of s- and d-wave orders
to see this effect.

We also analyze a multiband scenario with one hole and
two electron pockets, demonstrating a cooperative effect for
a similar condition of alignment of the gap maximum and FS
distortion, as in the one-band case.

The rest of the text is organized as follows. In Sec. II we
review the Ginzburg-Landau approach to emphasize how a
cooperative behavior may emerge. In Sec. III we describe our
band model with the appropriate correlations. In Sec. IV we
characterize the nematic state, and then address the onset of
superconductivity in the nematic state (Tn > Tc). We solve the
self-consistent equations involving both order parameters and
check the free energy to ensure the stability of the solution. In
Sec. V we discuss the case with Tn < Tc. In Sec. VI we put our
results in the context of current experiments and other works.
In Sec. VII we present our summary and an outlook for future
works.

II. ORIGIN OF COOPERATIVE EFFECT

The fact that nematicity and superconductivity can coop-
erate can be seen at the level of a GL analysis. In the GL
regime, it has been known that nematicity induces new cou-
pling between various superconducting orders [19]. To see
which parameter in the GL theory controls competition vs
cooperation, let us look first at a specific model where the only
attractive superconducting channel is an isotropic s wave. The
free energy describing the coupling of an s-wave SC order
parameter �s to a nematic order parameter �n is

F = as

2
�2

s + an

2
�2

n + b

2
�2

s �
2
n + cs

4
�4

s + cn

4
�4

n. (1)

Note that Eq. (1) is valid regardless of whether one is in the
disordered, nematic, or superconducting phases, as long as
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FIG. 2. Enhancement or suppression of the nematic order param-
eter with T as superconductivity sets in. Here cs,n = 1/�3

0, |b| =
0.5/�2

0, as,n = a0
s,n(T/Ts,n − 1) and Tn = �0, Ts = 0.4�0, a0

s,n =
1/�0, and �0 = �n(T = 0).

the temperature is not too far from the (nearly degenerate)
transition temperatures. For stability of the individual and
coexistence phases, we impose cn,s > 0 and cncs > b2. If ne-
matic order sets in first, an < 0 and as > 0, leading to �s = 0
and �2

n = |an|/cn. The subsequent s-wave transition is shifted
from as → 0 to as = −b|an|/cn. The respective strengths of
the order parameter are given by

�2
s = 1

cscn − b2
(−b|an| − cnas), (2)

�2
n = 1

cscn − b2
(bas + cs|an|). (3)

Observe that when b > 0, the presence of one order sup-
presses the onset of the other order as it costs the system
energy to accommodate both. On the other hand, when b < 0
the system prefers to have both orders. Figure 2 shows these
two cases schematically (exaggerated to demonstrate the ef-
fect), where we see that the competitive case also leads to
suppression of Tc and the cooperative case enhances Tc. Thus,
within a GL description, the switch is the phenomenological
coefficient b which can change cooperation to competition
with a change of sign. In simple microscopic models, the
parameter b > 0 [31], however.

A possible mechanism that can reverse the sign of b is as
follows (see also Ref. [19]). Consider again the above system
with a competing d-wave state. We impose that without any
coupling between the orders, Tn > T (s)

c > T (d )
c . The free en-

ergy then acquires the form [19]

F = as

2
�2

s + ad

2
�2

d + an

2
�2

n + b

2
�2

s �
2
n + bd

2
�2

d�
2
n

+λ�s�d�n cos � + 1

2
(α + β cos 2�)�2

s �
2
d

+cs

4
�4

s + cd

4
�4

d + cn

4
�4

n. (4)

Here � is the relative phase between �s and �d . Without
�n, we expect � = 0 or π/2; furthermore, there are � = 0
solutions with mixed s and d symmetry [26,32]. Because Tn >

T (s)
c > T (d )

c , we can choose to focus around the regime where

T ∼ T (s)
c and 〈�d〉 = 0. In this regime, we can integrate out

the effect of d-wave fluctuations (by ignoring the quartic term
and integrating the resulting Gaussian action with respect to
real and imaginary parts of �d ). This results in a free energy
of the form in Eq. (1) but with a modified b coefficient:

F = as

2
�2

s + an

2
�2

n +
(

b

2
− λ2

2ãd

)
�2

s �
2
n + cs

4
�4

s + cn

4
�4

n.

(5)

Thus we see that beff = b − λ2/ãd , where ãd = ad + (α +
β )�2

s + bd�
2
n. If the d-wave component is not a competing

superconducting instability (T (d )
c � T (s)

c ), then 1/ãd is small
and beff ∼ b > 0. However, if the d-wave component is a
closely competing subleading instability (T (d )

c � T (s)
c ), then

ãd → 0+ and beff eventually becomes negative. Thus the
proximity of a competing fluctuating state that couples to
the nematic and superconducting order parameter effectively
turns the competition between nematicity and superconductiv-
ity into cooperation. Within the context of the GL theory, the
circumstances under which b changes sign were discussed in
more detail recently by Labat et al. [33].

The limitation of the above analysis is that it requires all
the transition temperatures to be close to each other and does
not provide details about the band topology and/or the gap
structure necessary to see this effect in a real system. The
experimental support for the cooperation phenomenon comes
from Ref. [23], but the situation there was far from the GL
regime. It is thus desirable to go beyond GL analysis and ask
if the effect still exists and if it is due to the same reason
(competition of s- and d-wave orders).

III. MODEL DESCRIPTION

Consider a single band with dispersion ξ�k , chemical poten-
tial μ, and interaction terms that can lead to superconductivity
and nematicity. The nematic state here is modeled as a d-wave
Pomeranchuk state (this is the simplest model that can capture
the effect of rotational symmetry breaking on the supercon-
ducting state). For the superconducting part, other than the
usual s-wave interaction, we include a d-wave component.
Thus, a toy model to study the interplay between nematicity
and superconductivity can be written down as the following
effective Hamiltonian:

H =
∑
�ks

(ξ�k − μ)c†
�ks

c�ks + HSC
int + Hnem

int ,

Hnem
int = −1

4

∑
�k�k′ss′

V nem
�k�k′ c†

�ks
c�ksc

†
�k′s′c�k′s′ ,

HSC
int = 1

4

∑
�k�k′ss′tt ′

V sc
�k�k′c

†
�ks

c†
−�ks′c−�k′t c�k′t ′σ

y
ss′σ

y
tt ′ , (6)

where

V nem
�k�k′ = V nem f�k f�k′ ,

V sc
�k�k′ = V s + V d f�k f�k′ . (7)

Here f�k = √
2 cos 2θ�k and superconductivity is assumed to

exist only in the spin-singlet channel. In this model, the
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renormalized interaction V nem > 0 leads to attraction in the
nematic channel and V s,d < 0 leads to attraction in the super-
conducting channel.

We now divide our analysis into two scenarios: (a) super-
conductivity condenses inside the nematic state, Tn > Tc, and
(b) nematicity kicks in inside the superconducting state, Tn <

Tc. When we study scenario (a), where the nematic order sets
in first, we note that we can no longer use the C4-symmetric
form V sc

�k�k′ = V s + V d f�k f�k′ . We expect the superconducting
channel to experience a feedback from the symmetry-broken
nematic state. A full self-consistent treatment of this effect is
outside the scope of this work, but to zero order, we can expect
the feedback to be modeled by

V sc
�k�k′ = V scY�kY�k′ , (8)

where Y�k = (1 + r cos 2θ�k )/
√

1 + r2/2, normalized over the
Fermi surface. In this form, we capture the mixing of the
d-wave component with the s-wave one induced due to ne-
maticity. Thus the pairing anisotropy coefficient r ∝ �0 ∼
V nem must be zero if the strength of the nematic order pa-
rameter �0 is zero, and the pairing interaction reduces to
a pure s wave; but in the nematic phase it is generally
nonzero and can be of either sign. In principle, r is controlled
by temperature, V nem, and other details of the electronic
structure.

For scenario (b), however, the C4-symmetric form is valid
prior to the onset of nematicity. When nematicity sets in,
we assume that it is weak enough to not alter the pairing
interaction significantly so that Eq. (7) can still be used.

IV. SCENARIO 1: Tn > Tc

We first start by looking at the nematic state that sets in
before the superconducting state.

A. The nematic state

The mean-field assumption leads to a term in the
Hamiltonian,

Hnem
MF =

∑
�ks

�0 f�kc†
�ks

c�ks, (9)

�0 = −V nem
∑

�k
〈 f�kc†

�kc�k〉

= V nem
∑

�k

f�k
2

[
tanh

(
ε̃�k
2T

)
− 1

]
, (10)

where ε�k = ξ�k − μ, ε̃�k = ε�k + �0 f�k . Near Tn, �0 → 0 and
we get

�0 = V nem�0

2

∑
�k

f 2
�k

2Tn
sech2

( ε�k
2Tn

)
. (11)

Notice that unlike typical weak-coupling instabilities, the
right-hand side of Eq. (11) does not have any essential sin-
gularity. This means that V nem needs to exceed a threshold
for the nematic instability to occur. This is an artifact of
our model (as opposed to a model where an renormalization
group (RG) like enhancement can lead to a similar insta-
bility [18]). A more systematic treatment would be where

such an instability can be driven by growth of V nem under
an RG flow or random phase approximation (RPA) renormal-
ization. Such a treatment is not the subject of our study. If
we treat our band as parabolic (ε�k = k2/2m − μ), then Tn =
−μ/[ln (λnem − 1)], where λnem = ν0V nem and ν0 = m/2π is
the density of states at the Fermi surface. It is clear from
Eq. (11) that to obtain a finite Tn we need λnem > 1. In the
interval 1 < λnem < 2, we have 0 < Tn < ∞. Thus within our
model 1 < λnem < 2.

The free energy of the nematic state relative to the normal
state is given by (see derivation in Appendix B)

�F = Fnem − Fnormal

=
∑

�k

{
−T ln

[
cosh2(ε̃�k/2T )

cosh2(ε�k/2T )

]
+ �0 f�k

}

+
∑

�k

�0 f�k
2

[
tanh

ε̃�k
2T

− 1

]

=
∑

�k

{
−T ln

[
cosh2(ε̃�k/2T )

cosh2(ε�k/2T )

]
+ �0 f�k

}

+ �2
0

V nem
. (12)

To arrive at the last line we have used Eq. (10).

B. Coexistence of nematicity and superconductivity

We now include the effect of the term HSC
int . Upon a mean-

field approximation, we arrive at the following equations:

HSC
MF = 1

2

∑
�ks

�0Y�k sc†
�ks

c†
−�ks̄

+ H.c., (13)

�0 = −V sc
∑

�k
Y�k〈c−�k↑c�k↓〉

= −V sc�0

∑
�k

Y2
�k

2E�k
tanh

E�k
2T

, (14)

where E�k =
√

ε̄2
�k + �2

0Y2
�k . The information about the nematic

order is in ε̄�k = ε�k + �̄0 f�k . To have a superconducting so-
lution, we need V sc < 0. The presence of �0 also changes
Eq. (10) to

�̄0 = −V nem
∑

�k
〈 f�kc†

�kc�k〉

= V nem
∑

�k

f�k
4

[{
1 + ε̄�k

E�k

}
tanh

(
E�k
2T

)

+
{

1 − ε̄�k
E�k

}
tanh

(−E�k
2T

)
− 2

]
,

= V nem
∑

�k

f�k
2

[
ε̄�k
E�k

tanh
E�k
2T

− 1

]
. (15)

Without loss of generality we assume that �̄0 > 0. The free
energy of the coexistence state relative to the normal state is
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FIG. 3. Diagrams for �̄0, to be expanded to order �2
0. The dashed

line is the nematic interaction V nem. The O(�2
0) contributions come

from two sources: one is directly induced by the self-consistency
equation (the leading order in the second diagram), and the other
from the change in the nematic order parameter due to the onset of
�0 (from ḠK in the first diagram). There is no O(�0 ) contribution.

given by

�F = Fnem+SC − Fnormal

=
∑

�k

{
−T ln

[
cosh2(E�k/2T )

cosh2(ε�k/2T )

]
+ �̄0 f�k

}

+
∑

�k

{
�2

0Y2
�k + �̄0 f�k ε̄�k

2E�k
tanh

E�k
2T

− �̄0 f�k
2

}

=
∑

�k

{
−T ln

[
cosh2(E�k/2T )

cosh2(ε�k/2T )

]
+ �̄0 f�k

}

+ �̄2
0

V nem
− �2

0

V sc
. (16)

The free energy of the coexistence state relative to the
would-be nematic state is given by

�F = Fnem+SC − Fnem

=
∑

�k

{
−T ln

[
cosh2(E�k/2T )

cosh2(ε̃�k/2T )

]
+ (�̄0 − �0) f�k

}

+ �̄2
0 − �2

0

V nem
− �2

0

V sc
. (17)

Recall that ε̄�k = ε�k + �̄0 f�k is in the presence of �0 and ε̃�k =
ε�k + �0 f�k is in the absence of �0 at the same T . For the
coexistence phase to exist, we need Eq. (17) to be negative.

C. Near Tc

Before discussing the numerical solutions to the free en-
ergy evolution with temperature and the order parameters,
it is instructive to analytically consider the behavior of the
self-consistent equations. This can be easily done close to
Tc where �0 → 0. Here we can set �̄0 � �0 + δ�0, where
δ�0 is solely induced by �0 and is O(�2

0). This can be seen
by expanding Eq. (15) in �0, with the leading power being
�2

0. We further distinguish between two contributions to δ�0,
and label them as δ�

f
0 and δ��

0 . The former is the effect of
feedback of �0 on �0 and the latter is the “direct” contribution
of superconductivity to the self-consistency equation for �.
This latter contribution is captured as the leading order in �2

0
in the second diagram of Fig. 3. Thus,

�0 + δ�0 = �0 + δ�
f
0 + δ��

0 � −V nem
∫

K
f�k

[
− iωn + ε̃�k + (δ� f

0 + δ��
0 ) f�k

ω2
n + [ε̃�k + (δ� f

0 + δ��
0 ) f�k]2 + �2

0Y2
�k

]

� −V nem
∫

K
f�k

[
ḠK − GK G−K GK�2

0Y2
�k
]
, (18)

where G±K = 1/(±iωn − ε̃±�k ), ḠK = 1/(iωn − ε̃�k − δ�0 f�k ),∫
K ≡ T

∑
n

∑
�k , and ḠK = GK + O(�2

0). The first term in the
third line of Eq. (1) is, up to O(�2

0),

−V nem
∑

K

f�k
1

(iωn − ε̃�k )2
[iωn − ε̃�k + (δ� f

0 + δ��
0 ) f�k]

= �0 + (δ� f
0 + δ��

0 )V nem

2

∑
�k

f 2
�k

sech2[ε̃�k/2T ]

2T
, (19)

whereas the second term, which is explicitly induced by the
superconducting order, can be written as

δ��
0 = V nem

∑
�k

�2
0Y2

�k f�kW�k, (20)

where

W�k = T
∑

n

GK G−K GK

= 1

16T 2

[
1

x

{
sech2x − tanh x

x

}]
, (21)

with x ≡ ε̃�k/2T . δ��
0 is completely determined by the system

parameters in the absence of �0 [i.e., �0 is set to zero in W�k
as shown in Eq. (20)]. Using Eqs. (18)–(20) one can eliminate
δ�

f
0 and directly arrive at the expression for δ�0 as

δ�0

⎡
⎣1 − V nem

2

∑
�k

f 2
�k

sech2[ε̃�k/2T ]

2T

⎤
⎦ = δ��

0 . (22)

If we define the ratio δ�0/�0 ≡ p, it is clear that, near the
onset of superconductivity, the sign of p determines whether
we have competition (p < 0) or cooperation (p > 0) of the
two orders. We prove in Appendix C the mathematical state-
ment that the term in [·] in Eq. (22) is positive definite. Thus
the term δ��

0 (the “explicit” contribution) decides whether we
have competition or cooperation in the one-band model.

D. Competition versus cooperation in the one-band model

From Eq. (20) we observe that since V nem > 0, the sign of
δ��

0 is dictated by the relative anisotropy of Y�k and f�k , i.e., the
interplay between the form factors of the SC gap anisotropy
and the FS distortion. This is controlled by the parameter r.
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FIG. 4. The function 16T 2W as a function of x = ε̃�k/2T . Be-
cause of the oddness of W , the integration in Eq. (23) is over
the interval [|μ − �0 f�k |/2T, +∞). As the angle is varied the start
value of the interval itself ranges from |μ − √

2�0|/2T to |μ +√
2�0|/2T . The largest interval is shown in magenta and the smallest

one is overlaid in green.

We remind the reader that r in Y�k should grow as �0 in-
creases. However, the strength of r must also be controlled
by electronic structure details undetermined in this theory.
We treat r as a phenomenological parameter and explore the
phase space of allowed superconducting solutions. Changing
r would amount to changing the details of the electronic
structure.

Returning to Eq. (20), we get

δ��
0 = λnem�2

0

∫
dθ

2π

∫ ∞

−μ

dε�kY
2
�k f�kW�k

= 2T λnem�2
0

∫
dθ

2π
Y2

θ fθ

∫ ∞

(−μ+�0 fθ )/2T
W (x)dx. (23)

The 1/x2 behavior of W (x) ensures that the contribution
comes from around the Fermi surface, allowing us to factor
the integration into radial and angular parts. While this is
presented for an electron band, it can be easily extended to a
hole band. Since W (x) is odd, the lower limit can be changed
to |μ − �0 fθ |/2T . As shown in Fig. 4, the only surviving con-
tribution is the tail from |μ − �0 fθ |/2T to +∞. In this region,
assuming (μ − �0 fθ ) � 2T , W (x) ≈ −1/16T 2x2 and

δ��
0 = −λnem�2

0

4

∫
dθ

2π
Y2

θ fθ
1

μ − �0 fθ

= −
√

2λnem�2
0

2π

∫ π/2

0
dθ

√
2�0(1 + r2 cos2 θ ) + 2rμ

μ2 − 2�2
0 cos2 θ

× cos2 θ

1 + r2/2
. (24)

It is clear from Eq. (24) that if r → 0, then δ��
0 < 0 and

hence p < 0: this is the usual competition that is expected.
If r �= 0, consider first a case with a large Fermi surface
(μ � �0), then δ��

0 /�0 ∝ −r. This already indicates that
we need r < 0 for a cooperative effect, meaning that the
Fermi-surface elongation and the gap maxima must be aligned
to see cooperation (see Fig. 5). However, when μ ∼ �0 there

FIG. 5. The phase diagram calculated from Eq. (24) for the coop-
erative effect relating �0, μ, and r. The larger �0, the more negative
is rc, i.e., the larger is the anisotropy needed to turn the competition
into cooperation.

is a threshold for r beyond which cooperation is possible.
In this case, this threshold value rc is negative. It must be
noted that in the former case the effect is extremely small
[δ�0/�0 = O(�2

0/�0μ)] due to the largeness of the Fermi
surface; thus the best case scenario to observe the cooper-
ation effect seems to be when the Fermi surface is not too
large. This indeed forms a good basis to apply such a model
to FeSe.

This is the most important result for the one-band model:
the correlation of the superconducting gap anisotropy with
the FS elongation (due to nematic order) seems to affect the
competition vs cooperation outcome. More specifically, it
demonstrates that if r > 0 (“antialigned” gap and FS elon-
gation), we always have competition. If r < 0, there is a
critical negative rc beyond which p reverses sign, changing the
more common competition to cooperation. This result applies
beyond the GL regime.

Let us now consider the temperature-dependent numerical
solutions to the self-consistent equations [Eqs. (14) and (15)],
which are solved together with the self-consistent determi-
nation of μ from a fixed total number of particles. We also
demonstrate the stability of these solutions by analyzing the
free energy. Figure 6 demonstrates the usual competition for
values of r that are above the threshold anisotropy. Note
that negative r corresponds to the more stable solution. In
Figs. 7(a) and 7(b), we demonstrate the cooperative effect
for r = −0.95 (below the threshold anisotropy). Note that
changing the sign of r removes the cooperative effect, and that
the cooperative solution is the more stable one. In Fig. 7(c), we
demonstrate an enhanced cooperative effect for slightly dif-
ferent parameters that enhance the superconducting transition
temperature.

Although the discussion above involved an electron band,
the results for a hole band are the same. The equations can be
obtained by m → −m, μ → −μ, �0 → −�0, and r → −r.
In particular, the conclusion that the Fermi-surface elonga-
tion and the gap maxima must be in the same direction for
cooperation to take place is also valid in the case of a hole
band.
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FIG. 6. (a) The temperature evolution of �0 and �0 and (b) corresponding free energy (F ) for r = ±0.2, λsc ≡ ν0Vsc = −0.4, λnem = 1.05,
ωc = 2.5μnem(T = 0) where ωc is the BCS cut-off energy. Here μnem(T = 0) is the chemical potential of the pure nematic solution at zero
temperature. Note that r < 0 solution has the lower free energy.

E. Effect of multiplicity of bands

Here we quickly demonstrate that cooperation can also
occur when the system has multiple bands. A minimal model
for the Hamiltonian for a system with a hole pocket at � and
an electron pocket each at the X and Y points (without any
orbital characterization) can be written as

H =
∑
�ksa

εa
�k c†

�ksa
c�ksa + HSC

int + Hnem
int ,

Hnem
int = −1

4

∑
ab�k�k′ss′

V nem
a�kb�k′c

†
�ksa

c�ksac†
�k′s′b

c�k′s′b,

HSC
int = 1

4

∑
ab�k�k′ss′tt ′

V sc
a�kb�k′c

†
�ksa

c†
−�ks′a

c−�k′tbc�k′t ′bσ
y
ss′σ

y
tt ′ , (25)

where a, b ∈ {�, X,Y }, and normal band dispersions εa
�k are

ε�
�k = μh − k2

2m
,

εX
�k = k2

x

2m(1 + ε)
+ k2

y

2m(1 − ε)
− μe,

εY
�k = k2

x

2m(1 − ε)
+ k2

y

2m(1 + ε)
− μe,

where �k of each band is measured from the corresponding
center of the pocket, and ε < 1 is a parameter controlling the
ellipticity of the electron pockets. The interactions take the
factorized form

V nem
a�kb�k′ = V nem

ab ga(�k)gb(�k′) (26)

and

V sc
a�kb�k′ = V sc

abYa(�k)Yb(�k′), (27)

where

g� (�k) =
√

2 cos 2θ�k, (28)

gX (�k) = (α + β cos 2θ�k )/
√

α2 + β2/2, (29)

gY (�k) = (−α + β cos 2θ�k )/
√

α2 + β2/2, (30)

Ya(�k) = (1 + ra cos 2θ�k )/
√

1 + r2
a/2. (31)

Note that all θ�k’s are measured with respect to the x axis. Since
�X and �Y are in general different in the nematic phase, the
form factor Ya enables a general form of (s + d)-wave gaps
over the whole Brillouin zone, with angular harmonics up to
cos 2θ�k on each pocket.

FIG. 7. (a) Temperature evolution of �0 and �0 for parameters r = ±0.95, λsc = −0.5, λnem = 1.05, ωc = 2.35μnem(T = 0). Note the
competition and cooperation for the different values of r. (b) The free energy of the solutions in (a) indicating stability of the cooperating
solution. (c) Enhanced cooperation for parameters r = −0.95, λsc = −0.5, λnem = 1.05, ωc = 2.94μnem(T = 0). Again, this solution is more
stable than that of r = +0.95 which shows competition.
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FIG. 8. (a) Solutions of �′s at T = 0 as functions of r = rX = rY

for parameters ε = 0, α = 0, β = 1, all λnem
ab = 0.425, λsc

�X = λsc
�Y =

0.4, λsc
�� = λsc

X X = λsc
YY = λsc

XY = 0, with λnem,sc
ab = V nem,sc

ab ν0, r� = 1,
and μh = μe = 0.2ωc. The red curve is the stable solution, which
coexists with a superconducting order, where the black line is the
solution without superconductivity. At large negative r, enhanced
nematic order due to superconductivity is found. (b) A sketch show-
ing Fermi surface elongation (black solid contour) and magnitude of
superconducting gap around each pocket (width of colored region)
of the cooperative solution in (a) at large negative r. Different colors
on electron and hole pockets mean a sign reversal of the gap. This
cooperative solution has, on each pocket, the gap maximum and the
elongation of Fermi-surface contour in the same direction.

Proceeding with the mean-field approximation as before,
we get

HMF =
∑
�k,s,a

[εa
�k + �aga(�k)]c†

�ksa
c�ksa

−
∑
�k,a

(�aYa(�k)c†
�k↑a

c†
−�k↓a

+ H.c.), (32)

with nematic and superconducting order parameters

�a =
∑

b, �k′,s′

− 1

2
V nem

ab gb( �k′)〈c†
�k′s′b

c �k′s′b〉, (33)

�a = −
∑
�k′,b

V sc
abYb(�k′)〈c−�k′↓bc �k′↑b〉. (34)

We self-consistently solve for nematicity and superconductiv-
ity just as in the one-band case. The behavior is not universal,
as there are many parameters for the electronic dispersion and
interactions. Nevertheless, we are able to demonstrate a possi-
ble case of cooperation in such systems as shown in Fig. 8. For
simplicity, the parameters here have been chosen (see caption
for parameters) such that the nematic order parameters �a on
all pockets are equal to �. Figure 8(a) shows solutions of
�� = �X = �Y ≡ � at T = 0 as functions of rX = rY ≡ r
that controls the gap anisotropy on the electron pockets. The
red curve is the solution with the minimum free energy, which
also coexists with superconducting order, while the black hor-
izontal line is the pure nematic solution �a = �nem

0 . At large
negative r, enhanced � due to the onset of a superconducting
order is observed. The cooperation between nematicity and
superconductivity results in a state such that on each pocket
the gap maximum and the elongation of the Fermi surface are
in the same direction, as sketched in Fig. 8(b).

V. SCENARIO 2: Tn < Tc

The preceding discussion was based on the assumption
that superconductivity condenses inside the nematic phase,
which is indeed the case in many Fe-based systems where
superconductivity and nematic order coexist. However, other
situations exist and are interesting. For example, when FeSe is
doped with S [23], the nematic phase transition line apparently
crosses the superconducting dome, such that a transition from
a tetragonal superconductor to a nematic one should be in
principle observable: for a narrow range of S concentrations,
0 < Tn < Tc. Similar crossings take place in the phase dia-
grams of Co-doped NaFeAs and BaFe2As2. More recently,
low-T ARPES data in tetragonal LiFeAs indicated a C4 sym-
metry breaking of the superconducting gap function below Tc,
although the transition point itself was not determined [25].

To study these and related cases, we propose scenario (b) of
Sec. III where nematicity coexisting with superconductivity is
described by two competing attractive channels, with s and d
symmetry. In the tetragonal phase, spin-fluctuation models of
electron pairing in Fe-based systems have shown that these
two channels may closely compete [30,34]. In the absence
of nematic order, however, the well-known weak-coupling
solution to the problem [32] shows that only pure s, pure d , or
s + id solutions are energetically favorable; all of these will
have C4-symmetric quasiparticle spectra and energy gaps. We
show below that it is possible for the system to spontaneously
break tetragonal symmetry at Tn � Tc, however. Special cases
of these solutions were found in earlier studies [19,26,35], and
shown to be either real (“s + d”) or complex with internal
phase generally different from π/2 (“s + eiθ d”), depending
on details of the system.

The model Hamiltonian takes the form of Eqs. (6) and (7).
The superconducting gap is expressed as a sum of s- and
d-wave harmonics: ��k = �s + �d f�k . The mean-field self-
consistency equations of the order parameters read

�0 = −V nem
∑

�k
f�k〈c†

�kc�k〉, (35)

�s = −V s
∑

�k
〈c−�k↓c�k↑〉, (36)

�d = −V d
∑

�k
f�k〈c−�k↓c�k↑〉. (37)

Letting λsc
s,d = ν0V s,d , λnem = ν0V nem, we look for solutions

of the type �s + eiθ�d . For a fixed λsc
s , we obtain the phase

diagram in the T -λsc
d plane as shown in Fig. 9.

Figure 9(a) shows the transition temperatures of different
solutions of the model. The black and the green lines are onset
temperatures of pure s- and pure d-wave superconducting
solutions, respectively, with their solid parts indicating the
leading instability for the corresponding λsc

d , and the dashed
ones indicating the subleading one. The blue solid curve is the
phase boundary of the nematicity that develops out of a pre-
existing s- or d-wave superconducting order and coexists with
an (s + d)-wave superconductivity. The yellow dashed line
represents the onset temperature of the pure nematic solution.
The red solid line marks the boundary between d wave and
the s + id phase. The red dashed line indicates the boundary
of the s + id phase that would exist in a system without any
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FIG. 9. (a) Transition temperatures of different solutions of
our Tc > Tn model with parameters λsc

s = −0.6, λnem = 1.04, ωc =
2.92μnem(T = 0). Black and green lines are Tc’s of the pure s- and
the pure d-wave superconducting solutions, respectively, with their
solid portions indicating the leading instability of the system. The
yellow dashed line is the onset of the pure nematic solution. The
nematic solution that develops out of a preexisting s- or d-wave
superconducting order and coexists with an (s + d)-wave supercon-
ductivity is enclosed by the blue curve. The solid red line separates
the s + id state from the d-wave state, and the dashed red line rep-
resents the boundary of the s + id state in the absence of nematicity.
(b) The phase diagram consisting of only the actual transitions from
(a) confirmed by free energy calculation.

nematic order. We note that we do not find a solution which
is of the form s + eiθ d + �0, with θ �= 0 or π . Free energy
calculations confirm that the actual transitions take place only
at the solid lines, yielding the phase diagram as in Fig. 9(b).
All solid lines represent second-order phase transitions except
the boundary between the s + id and s + d + � phases, where
the transition is discontinuous.

Here it is important to notice that the nematic phase
exists only around |λsc

d |/|λsc
s | ≈ 1, i.e., where the s- and

the d-wave superconducting channels are nearly degenerate.
At the exact degenerate point, Tn = Tc, and Tn is enhanced
from the onset temperature of the pure nematic solution due to
the coexisting s + d superconductivity. Reentrance behavior
is also observed in a narrow region of |λsc

d | to the left of the
degenerate point. In this region, with decreasing temperature,
the system first enters the nematic phase from a predeveloped
s-wave superconductivity, then leaves this phase at a lower
temperature as shown in Fig. 10(a). Figure 10(b) displays
the onset of the nematic order and the s-wave gap inside a

d-wave superconducting state to the right of the degenerate
point.

VI. OUR RESULTS IN THE CONTEXT OF EXPERIMENTS

While the interplay of nematicity and superconductivity
has been investigated before in the GL formalism [19,25],
this work considers a microscopic model that provides a
benchmark for further investigations. The cooperative effect
reported here in both the one-band and three-band cases
is consistent with the thermodynamic data in Ref. [23] on
FeSe1−xSx. However, in this cooperative case, note that both
our one-band and three-band model results predict the gap
anisotropy to align with the FS elongation. In fact, the gap
structure in FeSe1−xSx reported by ARPES in Ref. [36] is
antialigned. Furthermore, a similar contradiction with the
measured gap structure of FeSe itself [37] in a calculation with
a similar model was reported in Ref. [21], where the observed
rise of Tc upon electron irradiation [20] was found to require
competition of nematic and superconducting order. These two
discrepancies are almost certainly an indication that orbital
physics may be relevant to observe the cooperative effect with
antialigned distortion, since the momentum dependence of
the interaction in the current model is taken as given, and is
thus equivalent to a band-only model where the interaction
depends exclusively on the angle-dependent density of states.
The presence of mixed orbital character in states near a given
Fermi surface sheet can, via trivial matrix element effects or
via many-body decoherence, create a dramatically different
momentum dependence than that expected from DOS effects,
e.g., nesting. A study of competition vs cooperation of ne-
maticity and superconductivity including these factors will be
part of future investigations.

Recently it was reported that LiFeAs may be a nematic
superconductor [25], breaking the tetragonal symmetry of
the normal state at some temperature below Tc. Within our
framework, such a result is quite possible, especially if there
is a competing d-wave channel. It would be interesting to
seek independent evidence for the existence of competing
superconducting channels, e.g., the existence of Bardasis-
Schrieffer-type modes in the Raman spectrum [38,39]. To
our knowledge, measurements of electronic Raman scattering
below Tc capable of detecting such modes have not been

FIG. 10. Order parameters as functions of temperature for (a) |λsc
d | = 0.82|λsc

s | and (b) |λsc
d | = 1.08|λsc

s | in Fig. 9(a). Here �0
s and �0

d are
the pure s- and the pure d-wave superconducting solutions, respectively.
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reported on LiFeAs. It is worth noting that the competition
and cooperation effects we discussed in this article, along with
the phase diagram in Fig. 9, provide insights into the possible
phases that result from the interplay between superconductiv-
ity and nematicity. In the phase diagram of Fig. 9, we kept
the electronic occupation fixed and used the ratio between
the d-wave and s-wave coupling constants as the independent
tuning parameter. Determining its relationship to typical ex-
perimental tuning parameters, such as chemical substitution
and pressure, is a challenging task that depends crucially on
microscopic considerations. While this is left for a future
project, we note that in the relevant case of S-doped FeSe,
the electronic occupation is unchanged, since S is isovalent
to Se.

VII. CONCLUSION

In this work, we have presented a model that allows us
to microscopically study whether superconductivity and ne-
maticity compete or cooperate. While the former is the more
common and expected scenario, this work shows that for
certain anisotropic pairing interactions cooperation is also
possible. In our current model, where orbital degrees of free-
dom are neglected, a signature of the cooperation would be
the alignment of the FS elongation with the superconducting
gap maxima. We note that the comparison with a recent exper-
iment on the S-doped FeSe system, that exhibits cooperation
of nematic and superconducting orders, appears to show the
opposite orientation of the gap maxima relative to the Fermi
surface distortion, leading us to believe that the orbital effects
neglected here play a crucial role in these systems.

We have verified our conclusions for both one- and three-
band models. Interestingly, although we were not able to
explore the parameter space of the three-band model thor-
oughly, we find that cooperation appears to be significantly
more likely to occur, and stronger than in one-band sys-
tems. We have also shown that if nematicity emerges from
superconductivity, the cooperation is still seen when the su-
perconducting state has competing s- and d-wave orders, of
possible relevance to recent measurements on LiFeAs. We
note that the cooperative effect is diminished at lower tem-
peratures.

Our results open up some obvious new lines of inquiry.
Having thoroughly understood the one-band results, one can
use this to study the effect of multiple orbitals making up the
band, and study the effect of disorder on this phenomenon.
Full exploration of the phase space for three-band models is
also called for. More ambitious still will be inclusion of a
pairing interaction that is derived from electronic scattering
processes, e.g., spin fluctuations, based on the underlying,
distorted nematic band structure as it evolves with temperature
[40]. Studies along these lines are ongoing.
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APPENDIX A: PROJECTING OUT THE POMERANCHUK
AND SINGLET SUPERCONDUCTING CHANNELS

Consider the following rewriting of the interaction term:

Hint = 1

2

∑
�q

V (�q)n(�q)n(−�q)

= 1

2

∑
�k�k′ �q

V (�q)c†
�kα

c†
�k′β

c�k′+�qγ
c�k−�qδ

δαδδβγ

= −1

4

∑
�k�k′ �q

V (�k − �k′)c†
�kα

c�k+�qβ
c†

�k′+�qγ
c�k′δ

× [δαβδγ δ + �σαβ · �σγ δ]

= −1

4

∑
�k�k′ �q

V nm f ∗
n (�k) fm(�k′)c†

�kα
c�k+�qβ

c†
�k′+�qγ

c�k′δ

×[δαβδγ δ + �σαβ · �σγ δ]. (A1)

In an inversion-symmetric system in the continuum limit,
V nm → V nδnm. Under our assumption, we expect the above
bare interaction term to grow such that the d-wave charge
channel (the term with δαβδγ δ and n = 2) is relevant over the
other terms. The instability is expected at q = 0 as the static
susceptibility is peaked at q = 0. Picking this �q we arrive at
HNem

int . We denote the renormalized interaction in this channel
with V nem.

Similarly, we can investigate the Cooper channel by rewrit-
ing the interaction term as

Hint = 1

2

∑
�q

V (�q)n(�q)n(−�q)

= 1

4

∑
�k�k′ �q

V (�k − �k′)c†
�kα

c†
−�k+�qβ

c−�k′+�qγ
c�k′δ

×[δαβδγ δ + �σαβ · �σγ δ]

= 1

4

∑
�k�k′ �q

V nm f ∗
n (�k) fm(�k′)c†

�kα
c†
−�k+�qβ

c−�k′+�qγ
c�k′δ

×[δαβδγ δ + �σαβ · �σγ δ]. (A2)

Here we assume the singlet channel σ y for n = 0 = m is
enhanced over the triplet and other singlet channels. Con-
densation happens at q = 0 because the Cooper logarithm is
the strongest at q = 0. Setting �q = 0, we are led to HSC

int . We
denote the renormalized interaction in this channel with V sc.
It should be noted that there is no double counting involved
since the components of V that are enhanced correspond to
different processes (particle-hole scattering for nematic and
particle-particle scattering for superconducting). Different in-
teraction matrix elements contribute to these processes and
can thus be separately enhanced.
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APPENDIX B: FREE ENERGY DERIVATION FROM
LUTTINGER-WARD FUNCTIONAL

Following the prescription in Refs. [41–43], we note that

F = −
∫

K
Tr

[
ln

{ − G−1
K

}] − 1

2

∫
K

Tr[�K GK ]

≡ F1 + F2, (B1)

where GK is the Green’s function given by G−1
K = [G0

K ]−1 −
�K , and

G0
K =

(
1

iωn−ε�k
0

0 1
iωn+ε�k

)
, (B2)

with ωn → (2n + 1)π and the self-energy �K is

�K =
(

�̄0 f�k −�0Y�k−�∗
0Y�k −�̄0 f�k

)
. (B3)

Thus,

GK = 1

ω2
n + E2

�k

(−(iωn + ε̄�k ) �0Y�k
�∗

0Y�k −(iωn − ε̄�k )

)
. (B4)

The term F1 can be computed as

F1 = −
∫

K
Tr

[
ln

{−G−1
}]

= −
∫

K
Tr[ln{H − iωn}]

=
∫

K

∫ ∞

−iωn

dλTr
[{H + λ}−1

]

⇒ �F1 =
∫

K

∫ ∞

−iωn

dλTr
[{Hsc + λ}−1 − {Hn + λ}−1]

=
∫

K

∫ ∞

−iωn

dλ

{
1

λ − E
+ 1

λ + E
− 1

λ + ε
− 1

λ − ε

}

= −
∫

K
[ln(−iωn − E/T ) + ln(−iωn + E/T )

− ln(−iωn + ε/T ) − ln(−iωn − ε/T )]

= −T
∫

�k
ln

[
(1 + eE/T )(1 + e−E/T )

(1 + eε/T )(1 + e−ε/T )

]

= −T
∫

�k
ln

[
cosh2(E/2T )

cosh2(ε/2T )

]
. (B5)

Similarly the second part of the free energy yields

�F2 =
∫

�k

�2
0Y2

�k + �̄0 f�k ε̄�k
2E�k

tanh
E�k
2T

, (B6)

where we have used that∑
n

eiωnη
+
ln[iωn − A]

= −
∫

C

dz

2π i
ezη+

nF (z)ln[z − A]

= −
{∫ A+iδ

−∞+iδ

dz

2π i
nF (z)ln[z − A]

FIG. 11. Behavior of R(�) − L(�) as function of � at different
temperatures around Tn. Here we take a parabolic electron band in
the normal state as an example and use λnem = 1.05.

+
∫ −∞−iδ

A−iδ

dz

2π i
nF (z)ln[z − A]

}

= −
{∫ A

−∞

dz

2π i
nF (z)ln[z − A + iδ]

−
∫ A

−∞

dz

2π i
nF (z)ln[z − A − iδ]

}

= −
∫ A

−∞

dz

2π i
nF (z){ln[z − A + iδ] − ln[z − A − iδ]}

= −
∫ A

−∞
dz nF (z)

= ln
[
1 + e−A

] − ln ∞. (B7)

The apparently undefined ln ∞ cancels out in all physical
calculations when one calculates any free energy difference.

APPENDIX C: POSITIVE DEFINITENESS OF THE
COEFFICIENT IN EQ. (22)

Here we show that the quantity

Q = V nem

2

∑
�k

f 2
�k

sech2[ε̃�k/2T ]

2T
,

which appears in Eq. (22) of the main text, is always less than
unity. Note that this quantity does not know anything about the
superconducting state, and �0 in ε̃�k is the positive solution to

� = V nem

2

∑
�k

f�k

[
tanh

ε�k + � f�k
2T

− 1

]
. (C1)

Let us introduce L(�) ≡ left-hand side of Eq. (C1) = � and
R(�) ≡ right-hand side of Eq. (C1). This equation has two
non-negative solutions at any T < Tn: � = 0 and � = �0.
Differentiating R(�) with respect to � we get

dR

d�
= V nem

2

∑
�k

f 2
�k

sech2[(ε�k + � f�k )/2T ]

2T
. (C2)
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Notice that dR/d�|�=�0 = Q. Treating dR/d�|�=0 as a
function of T , and taking ε�k = k2/2m − μ as an example,
this function is monotonically decreasing with increasing
T . When T � Tn, the quantity dR/d�|�=0 � 1, with the
equality taking place at T = Tn. This can also be seen from
Eq. (11). When T < Tn, dR/d�|�=0 > 1, which means that

R(�) starts above L(�) near � = 0 as shown in Fig. 11.
What can also be proved is that for any T , dR/d�|�→+∞ =
(1/2)λnem < 1 and d2R/d�2 < 0 at any positive �. This
means that as � increases, R(�) crosses L(�) from above
at � = �0 for any T < Tn. This guarantees dR/d�|�=�0 =
Q < dL/d�|�=�0 = 1.
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