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Superconductivity at the three-dimensional Anderson metal-insulator transition

Bo Fan (��)* and Antonio M. García-García†

Shanghai Center for Complex Physics, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China

(Received 21 August 2020; revised 9 October 2020; accepted 22 October 2020; published 11 November 2020)

We study a disordered weakly coupled superconductor around the Anderson transition by solving numerically
the Bogoliubov–de Gennes (BdG) equations in a three-dimensional lattice of size up to 20 × 20 × 20 in the
presence of a random potential. The spatial average of the order parameter is moderately enhanced as disorder
approaches the transition but decreases sharply in the insulating region. The spatial distribution of the order
parameter is sensitive to the disorder strength: for intermediate disorders below the transition, we already observe
a highly asymmetric distribution with an exponential tail. Around the transition, it is well described by a log-
normal distribution and a parabolic singularity spectrum. These features are typical of a multifractal measure.
We determine quantitatively the critical disorder at which the insulator transition occurs by an analysis of level
statistics in the spectral region that contributes to the formation of the order parameter. Interestingly, spectral
correlations at the transition are similar to those found in noninteracting disordered systems at the Anderson
transition. A percolation analysis suggests that the loss of phase coherence may occur around the critical disorder.
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I. INTRODUCTION

Quantum coherence effects are of paramount importance
in the dynamics of disordered and quantum chaotic systems.
However, until rather recently, its effect on superconductiv-
ity has been relatively overlooked. A reason for that is the
so called Anderson theorem [1], also postulated by Gorkov
[2,3], that nonmagnetic impurities in metals did not break
Cooper pairs and therefore have only a relatively small ef-
fect on superconductivity. In parallel, experiments in metallic
superconductors [4,5] were relatively well described without
the need to consider these effects. However, computational
advances together with an enhanced experimental control and
the introduction of the scanning tunneling microscope started
to reveal a completely different picture. Numerical solutions
of two-dimensional BdG equations in a random potential [6,7]
showed an emergent granularity and strong spatial fluctua-
tions of the order parameter even for disorder strengths within
the metallic region but not far from superconductor-insulator
transition. This emergent granularity was later corroborated
experimentally [8–16]. Indeed, as spatial dimensionality is
reduced, it was explicitly observed that quantum coherence
effects became increasingly relevant [17,18]. For instance,
quantum size effects related to confinement were predicted
theoretically [19–24] and later confirmed experimentally in
Sn and Pb superconducting nanograins [25,26].

A distinct feature of the interplay of quantum coherence
and disorder in the noninteracting limit is the multifractality
of eigenstates [27–29] that occurs around the mobility edge
separating metallic and insulating states in three and higher
dimensions [30]. Two dimensions (2D) is the critical dimen-
sion [30] for localization. Strictly speaking, in an infinity
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disordered two-dimensional system, all states are exponen-
tially localized. However, for weak disorder, the localization
length is exponentially large and, for smaller sizes, the sys-
tem shows multifractal features [28,29] in a relatively large
window of disorder strengths. Moreover, other effects such as
spin orbit interaction may induce a transition strictly in two
dimensions [31].

The interplay between weak multifractality and supercon-
ductivity in two dimensions was recently studied [32] using
a simple Bardeen-Cooper-Schrieffer (BCS) formalism that
assumed that the order parameter was well described by the
multifractal eigenstates of the one-body problem. It was found
that the spatial distribution of the order parameter is described
by a log-normal distribution. The spatial average of the
distribution increases with disorder and it can be substantially
larger than the order parameter in the clean limit. The
qualitative effect of Coulomb interactions in this critical
region, investigated earlier [33], predicted a much more
dramatic enhancement. Recent experiments [34,35] in weakly
disordered two-dimensional NbSe2 and theoretical results
based on the numerical solution of the BdG equations [36,37]
have confirmed both the enhancement of superconductivity
with disorder and the log-normal distribution of the order
parameter.

In three dimensions (3D), the Anderson transition occurs
for strong disorder which makes a theoretical treatment more
difficult due to the absence of a small parameter. In this case
the interplay between the Anderson transition and supercon-
ductivity in this case was investigated in Refs. [38–40], earlier
than the two-dimensional analysis mentioned above, first by
Monte Carlo techniques [38] and after [39,40] by a BCS ap-
proach. According to the BCS analysis, the order parameter is
enhanced dramatically, up to orders of magnitude with respect
to the clean limit, and its moments [40] are consistent with
those of a log-normal distribution. So far, experiments could
not reproduce these features.
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Here we compare these expectations with the outcome
of the full numerical solution of the 3D BdG equations for
different disorder strengths with a special emphasis in the re-
gion around the superconductor-insulator transition. While the
spatial average of the order parameter increases moderately
with disorder, this increase stops when the system approaches
the transition. The spatial distribution of the order parameter
becomes increasingly broad even for disorder strength far
from the transition. Around the transition, it is close to log
normal as in the 2D case [32].

The critical disorder is determined by the analysis of level
statistics [41,42] in the spectral region that contributes to the
buildup of the order parameter. Spectral correlations around
the transition are intermediate between those of a metal and
insulator and qualitatively similar to those [41] of a nonin-
teracting disordered metal at the Anderson transition. The
disorder strength at which phase coherence is lost, estimated
by a percolation analysis, is similar to that at which the
superconductor-insulator transition occurs.

The paper is organized as follows. In Sec. II, we introduce
the model and determine the range of parameters where our
calculation is reliable. In Sec. III, we compute numerically
the spatial average of the order parameter 〈�(r)〉 and de-
termine the range of parameters for which enhancement of
superconductivity occurs. The dependence of disorder of the
local density of states is the subject of Sec. IV. Section V
is devoted to the study of the spatial distribution, and the
singularity spectrum of the order parameter. In Sec. VI, we
compute the overlap of eigenstates which allows us to esti-
mate the effective spectral window around the Fermi energy
which contributes significantly to the formation of the order
parameter. In Sec. VII, we estimate the critical disorder at
which the superconductor-insulator transition occurs by an
analysis of level statistics. We also show that level statis-
tics around the transition is intermediate between Poisson
statistics and random matrix theory as in a noninteracting
disordered system at the Anderson transition. In Sec. VIII,
we carry out a percolation analysis in order to estimate the
disorder strength at which phase coherence is lost. We find
that the percolating transition occurs around the same disorder
as the metal-insulator transition. In Sec. IX, we summarize
the main findings of the paper and enumerate a few related
problems for future research.

II. DISORDERED BOGOLIUBOV–de GENNES EQUATIONS

The following BdG equations [7,43,44] result from the
evaluation of the path integral of a disordered fermionic tight
binding model in a cubic lattice with short-range attractive
interactions by the saddle-point method that is only exact in
the mean-field limit:(

K̂ �̂

�̂∗ −K̂∗

)(
un(ri )
vn(ri )

)
= En

(
un(ri )
vn(ri )

)
, (1)

where

K̂un(ri ) = −t
∑

δ

un(ri + δ) + (Vi − μi )un(ri ), (2)

δ stands for the nearest neighboring sites, t is the hopping
strength, Vi is strength of the random potential at site i,

extracted from a uniform distribution [−V/2,V/2], and μi =
μ + |U |n(ri)/2 incorporates the site-dependent Hartree shift.
The chemical potential μ is determined by the averaged
density 〈n〉 = ∑

i n(ri )/N . U is the pairing interaction and
�̂un(ri ) ≡ �(ri)un(ri). The same definition applies to vn(ri).
The BdG equations are completed by the self-consistency
conditions for the site dependent order parameter �(ri) and
density n(ri),

�(ri ) = |U |
∑

En�ωD

un(ri)v
∗
n (ri ) (3)

and

n(ri) = 2
∑

n

|vn(ri)|2, (4)

where ωD is the cutoff energy. We solve these equations for
a cubic lattice of N = L × L × L sites, where L is the side
length of the sample in units of the lattice constant. In order to
minimize finite size effects, we employ the periodic boundary
conditions. We employ a standard iterative algorithm. Start-
ing with an initial seed for the order parameter, we solve
Eq. (1) numerically, and obtain the eigenvalues En and the
corresponding eigenvectors {un(ri), vn(ri )}. We then use the
self-consistent condition, Eqs. (3) and (4), to get the new
value of �(ri) and μi. We repeat the process until the absolute
error of �(ri) is smaller than 5 × 10−6 or the relative error
is smaller than 1 × 10−3. For convenience, all the parameters
are in units of t = 1 and the density is fixed at 〈n〉 = 0.875
throughout the paper. Most of the presented results are for the
size of L = 20. We calculate 100 different disorder realiza-
tions for each disorder in the transition region V = 10 and
V = 12, for which we care most. For weaker disorder V � 8,
we calculate 50–60 disorder realizations for each disorder.
And for stronger disorder V = 14 and V = 16, which is in the
insulator region, we only calculate 10–20 disorder realizations
because it takes too many iterations to converge.

Characteristic superconducting length and choice
of parameters

Our first task is to determine the range of parameters where
our calculation is reliable. For this to happen, the typical
length of the superconducting state must be smaller than the
system size. For the former, we choose the typical size of the
order of the parameter correlations ξD,

ξD =
√∑

r〈�(0)�(r)〉r2

N〈�(0)�(0)〉 , (5)

which is close to the standard superconducting coherence
length. As we mentioned earlier, the quantum coherence ef-
fects we aim to investigate are stronger if the electron-phonon
coupling U is weaker. Therefore, we set |U | to the smallest
possible value so that ξD is less than the maximum size L ∼ 20
we can reach numerically in the region of relatively strong dis-
order, close to the transition, we are mostly interested in. The
results shown in Fig. 1 indicate that U = −1 is the smallest
coupling for which we can obtain reliable results. In the weak
disorder region V � 6, ξD is almost the system size but, for
stronger disorder V ∼ 10, ξD is reduced considerably so finite
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FIG. 1. Characteristic length ξD as a function of disorder for
U = −1 that indicates the typical size of a superconductor island.
ξD changes slowly when disorder is weak V � 6. However, for
8 � V � 12, ξD decreases faster and is much smaller than the system
size which assures the reliability of our numerical results.

size effects are not important and our results are reliable in
this region. We note that the dimensionless coupling constant
λ increases with |U |, and also with 〈n〉, and our choice of
couplings is close to that of realistic weakly coupled metallic
superconductors such as Sn.

III. SPATIAL AVERAGE OF 〈�(ri )〉 AND ENHANCEMENT
OF SUPERCONDUCTIVITY BY DISORDER

We compute the disorder dependence of the spatial aver-
age of the order parameter 〈�(r)〉 = 1/N

∑
i �(ri) in order

to clarify whether the amplitude of the order parameter is
enhanced by disorder. We have found that, see Fig. 2, the
averaged order parameter 〈�(r)〉 indeed increases with dis-
order though this increase eventually stops for V ∼ 12. For

stronger disorder, it decreases monotonically. We shall see
that the maximum occurs around the critical region where the
transition occurs. For very weak disorder V ∼ 2 (not shown),
where our calculation is less reliable, we observe a decrease
of the order parameter with respect to the clean limit which
is likely a finite size effect of not much relevance in this
context as it will be severely reduced if the system size could
be increased. These results are different from the analytical
[45] and numerical results [36,37] in the two-dimensional
weak-coupling, weak-disorder limit where the enhancement
is substantially larger and no decrease for stronger disorder
was observed. Although these features may depend on the
coupling strength, the differences are ultimately related to
the fact that, in two dimensions, the effective critical region
is much broader. These results seem also in disagreement
with previous BCS analytical results [39,40] at the three-
dimensional transition where the predicted enhancement of
the order parameter with disorder is much larger as the order
parameter has a power-law dependence with the dimension-
less electron-phonon coupling.

For the sake of completeness, we also compute the energy
gap Eg. We observe, see Fig. 2(a), a monotonic increase with
disorder that agrees with the average of the order parameter in
the weak disordered limit only. This discrepancy between the
two quantities for sufficiently strong disorder is also observed
in 2D disordered superconductors [6,7,36].

As in the two-dimensional case, the increase for strong
disorder in the insulating region is a consequence of Anderson
localization effects that enlarge the mean level spacing as the
typical distance is no longer the system size, but the local-
ization length that decreases as disorder increases. Therefore,
the observed monotonous increase with disorder, that does not
flatten or reverse tendency around the transition, is not re-
lated to superconductivity for sufficiently strong disorder but
rather with the physics of Anderson localization. In summary,
disorder in three dimensions may enhance superconductivity
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FIG. 2. Spatial average of the order parameter 〈�(r)〉 (normalized by �0 ∼ 0.002t) and the spectral gap Eg (normalized by Eg0 ∼ 0.002t),
obtained from the solution of the BdG equations, as a function of disorder V for different sizes and U = −1. For weak disorder V < 4,
size effects are rather large (not shown), indicating that the sample size is not large enough to get meaningful results. Therefore, we restrict
our analysis to V � 4, where size effects are not important. The numerical results 〈�(r)〉 are in agreement with the analytical prediction of
Ref. [32]; based on a simpler BCS approach, the average order parameter increases with disorder, which suggests that disorder can enhance
superconductivity. Finally, it decreases in the strong disorder regime. We shall see that the latter is due to the weakening of eigenstates
overlapping close to the Fermi energy. By contrast, as in the 2D case, the spectral gap increases with disorder monotonically.
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FIG. 3. (a) Density of states (DOS) for different disorder (V = 2, 4, 8, and 16). The inset is the DOS between −0.4 � E � 0.4 to show
the gap. Disorder reduces the DOS, but enlarges the energy band and the gap around E = 0. As in the noninteracting case, the DOS varies
smoothly with disorder and therefore it is not a good indicator of the Anderson transition. (b) The chemical potential μ as a function of
disorder and system size. The chemical potential μ, which is determined by the charge density 〈n〉, is less sensitive to the size L. As is shown,
the chemical potential decreases monotonically with the disorder strength.

but it is a relatively small effect that stops around the critical
region. On the insulating side, disorder is always detrimental
to superconductivity.

IV. DENSITY OF STATES

In this section we investigate the impact of disorder in the
local density of states (DOS),

DOS = 1

N

∑
ri

[
u2

n(ri)δ(E − En) + v2
n (ri )δ(E + En)

]
, (6)

aimed to illustrate similarities and differences with the nonin-
teracting case. There is always a finite gap around E = 0, see
the inset in Fig. 3, representing the superconducting energy
gap. The DOS have two peaks around the gap corresponding
to the superconducting coherence peaks, a signature of BCS
theory. These peaks are suppressed in the 2D strong disorder
limit [7]. Other features are qualitatively similar to that of
the noninteracting limit [46]. For instance, for weak disorder,
we observe that, as in the noninteracting limit, oscillations
eventually vanish as disorder increases. Likewise, the DOS
is reduced for stronger disorder but the spectral support in-
creases. These similarities suggest that, at least in the weak
disorder regime, where coherence effects are not important,
the eigenstates of the BdG equations may be qualitatively
similar to those in the noninteracting limit which may justify
a BCS approach at least for not too strong disorder.

Finally, we note the spectrum of the BdG equations has
a parity symmetry in the noninteracting limit |U | → 0 [46],
namely, DOS(E ) = DOS(−E ). However, once interactions
are switched on, the spectrum of the BdG equations, and
therefore the related DOS, does not have this symmetry. As
a consequence, the spectrum is effectively shifted by the
chemical potential, which shows a monotonic decrease with
disorder, as is shown in Fig. 3(b). We know that in the non-
interacting case, the wave function corresponding to E = 0
is always the most extended state in comparison with other
energies. If the spectrum is shifted, the wave functions u(r)

and v(r) around E = 0 are no longer the most extended states.
However, only states around E = 0 contribute to the order
parameter significantly. Therefore, this shift in the DOS may
explain why the critical disorder is smaller in the BdG equa-
tions with respect to the noninteracting limit.

V. SPATIAL DISTRIBUTION OF THE ORDER PARAMETER

In this section, we investigate the spatial dependence of the
amplitude of the order parameter �(ri ). Our main motivation
is to characterize its spatial distribution as a function of disor-
der. Of special interest is to clarify the role of the log-normal
spatial distribution [32,36] that describes the distribution of
�(ri) of two-dimensional, weakly coupled, weakly disordered
superconductors. The analytical derivation of the log-normal
distribution [32] in the 2D case is heavily based on the as-
sumption of weak disorder, large conductance, so it is unclear
to be valid at the Anderson transition in three dimensions
where disorder is strong and the dimensionless conductance is
of order one. We also analyze the singularity spectrum f (α)
[47] to obtain further information of the spatial distribution of
the order parameter around the transition.

A. Spatial dependence and probability distribution of the order
parameter amplitude

The spatial dependence of the order parameter �(ri ), re-
sulting from the numerical solution of the BdG equations for
a single disorder realization, is depicted in Fig. 4. As was
expected, �(ri) becomes more spatially inhomogeneous as
the strength of the random potential V increases. For V > 12,
it is already rather localized in small regions of the sample
which is an early indication that the transition could be lo-
cated around that disorder strength. When V = 16, the order
parameter is concentrated in a small spatial region, which
suggests that the transition to the insulating region has already
taken place.

184507-4



SUPERCONDUCTIVITY AT THE THREE-DIMENSIONAL … PHYSICAL REVIEW B 102, 184507 (2020)

FIG. 4. Spatial distribution of the order parameter �(ri ) for a 20 × 20 × 20 lattice. The cutoff energy ωD = 2, coupling constant U = −1
(both in units of t), and the density 〈n〉 = 0.875. The disorder strength is V = 4, 10, 12, and 16 from (a) to (d). The order parameter
amplitude �(ri ) is normalized by �0 ∼ 0.002. As was expected, spatial inhomogeneities increase strongly with disorder. Especially for V =
12, we observe a rather intricate spatial pattern with large regions with an almost vanishing order parameter combined with localized splash
corresponding to large enhancement of superconductivity that occurs across the sample.

The probability distribution of �(ri ), depicted in Fig. 5,
captures accurately the gradual increase of spatial inhomo-
geneities. In the weak disorder region, the distribution is
narrow and symmetric with a peak around the average order
parameter. Deviations from a Gaussian distribution are small.
As disorder increases, but is still far from the transition, the
distribution becomes broader and asymmetric. For V ∼ 6, the
tail of the distribution is well described by an exponential
decay and, though asymmetric, the distribution has a clear
maximum.

As disorder is further increased V � 8, the distribution
becomes broader with tails that decay more slowly. We recall
that, assuming that eigenfunction correlations in the nonin-
teracting limit are multifractal, it was found [32] that the
probability distribution for the order parameter �(ri ) of a
two-dimensional superconductor in the weak-coupling, weak-
disorder limit is log normal,

P

(
�(r)

�̄

)
= �̄

�(r)
√

2πζ
exp

(
−

[
ln

(
�(r)
�̄

) − η
]2

2ζ 2

)
, (7)

where ζ and η are disorder dependent constants. Surprisingly,
we find an increasingly good agreement with the log-normal
distribution. The singularity spectrum, depicted in Fig. 6, is
still parabolic in this range of parameters. This parabolicity
is directly related to the spectrum of multifractal dimensions
that enters in the analytical derivation [32] of the probability
distribution in the 2D case. Indeed, in Ref. [40], the analytical
calculation of the moments of the order parameter at the 3D
Anderson transition were consistent with this result.

As disorder further increases, when V � 10, the maximum
of the distribution shifts to small values of the order param-
eter. The tail becomes broader with an even slower decay.
Overall, the distribution is still well described by a log-normal
distribution.

As can be observed in Fig. 5 for V ≈ 12, the maximum is
not noticeable and the distribution is flat for very small values
of the order parameter. This indicates that in a substantial
number of points, the order parameter either vanishes or is
much smaller than the bulk value for no disorder. We find
it plausible that the insulating transition occurs precisely at
this disorder strength. For stronger disorder, corresponding to
the insulating region, the decay seems to become power law.
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FIG. 5. Probability distribution of the order parameter �(ri ) [normalized by its spatial average �̄ ≡ 〈�(r)〉] for different disorder strength
V . The numerical results (circle) are fit with a log-normal distribution Eq. (7) (solid line). For weak disorder V = 2, the distribution is
symmetric, relatively narrow, and close to Gaussian. For intermediate disorder V = 4–8, it becomes broader, asymmetric, and with an
exponential tail. As disorder strength approaches the critical region, V ∼ 10, the fitting to a log-normal distribution becomes increasingly
accurate though with a maximum very close to zero, V ∼ 12, which indicates a very asymmetric distribution.

This regime will be discussed in more detail in a forthcoming
publication [48].

B. Singularity spectrum of the order parameter
amplitude distribution

In order to obtain further information about the spatial
distribution of the order parameter, we now compute the
singularity spectrum f (α) [47]. More specifically, we aim
to clarify to what extent the order parameter amplitude in-
herits the multifractality [27,28] of eigenstates observed in
the noninteracting limit and, approximately, for what disorder
strength the superconductor-insulator transition occurs.

In the noninteracting limit, the singularity spectrum, also
called the f (α) spectrum, is related to the scalings of the
density of probability associated to multifractal eigenstates at
the Anderson transition. In 2D, eigenstates are approximately
multifractal for weak disorder provided that the system size
is much smaller than the localization length. In this weak
multifractal region, the f (α) spectrum is parabolic [28]. A
qualitatively similar parabolic singularity spectrum [49–51] is
a feature of the 3D Anderson transition despite the fact that
the transition occurs at strong disorder.

From Eq. (3), �(ri ) is given by a self-consistent condition,
which is a weighted average over the eigenstates un(ri) and

vn(ri ) of the BdG equations. At least for clean nanograins
[22], it was found that un(ri ) and vn(ri ) are proportional to
the eigenstates of the one-body problem �n(ri) for sufficiently
weak coupling. Therefore, it seems plausible, especially if the
weighted sum defining �(ri) does not contain many eigen-
states, that some of the anomalous scaling features, reflected
in the singularity spectrum of the eigenstates of the one-body
problem, may be inherited by the order parameter.

In order to carry out the computation, we define |P(ri)|2 =
�(ri )∑

j=1 �(r j )
and compute the f (α) spectrum of the measure

|P(ri )|2 following the method introduced in Refs. [34,47]. We
define αq and f (q) from |P(r)|2 as follows:

αq = 1

lnN

N∑
i=1

|P(ri )|2q∑N
j=1 |P(r j )|2q

ln
|P(ri )|2∑N
j=1 |P(r j )|2

, (8)

f (q) = 1

lnN

N∑
i=1

|P(ri )|2q∑N
j=1 |P(r j )|2q

ln
|P(ri )|2q∑N
j=1 |P(r j )|2q

, (9)

where N = L × L × L is the total number of lattice sites.
The results for disorder strengths V = 4, 8, 12, and 16 are
depicted in Fig. 6. We find that the singularity spectrum f (α)
for intermediate disorder V ∼ 12 is well approximated by
f (α) = 3 − (α−α0 )2

4(α0−3) , with α0 ∼ 4. Approximately, this is the
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FIG. 6. Singularity spectrum f (α) related to the order parameter �(ri ) for a 20 × 20 × 20 lattice size and for V = 4, 8, 12, and 16 from
(a) to (d). The cutoff energy ωD = 2, coupling constant U = −1, and the density 〈n〉 = 0.875. It agrees well with the parabolic prediction
(dotted line) corresponding to multifractal eigenstates. Also in agreement with the theoretical prediction, the parabolic curve becomes broader
and its maximum shifts to larger values as disorder increases. The only exception is (d), for V = 16, which is in the insulator region. The
parabolic fitting only describes well around the central part of the singularity spectrum but not the observed termination of multifractal
dimensions. This is an indication, together with the large value of α0 = 4.6306, that the system is no longer critical at this disorder strength.

analytical prediction [49,51] for the three-dimensional system
at the Anderson transition. Moreover, precisely in this region,
the parameter α0, depicted in Fig. 7, that controls the broad-
ness of the singularity spectrum, experiences a faster increase
with disorder. These results point to a spatial distribution of
the order parameter characterized by multifractal-like spatial
structure. We will confirm this prediction in Sec. VII by a
detailed analysis of the level statistics of the system.

We note that, for V = 16, clear deviations from a parabolic
spectrum are observed and the fitted α0 is larger than the
prediction for the Anderson transition in three-dimensional
noninteracting systems. This suggests that the system is al-
ready an insulator and that therefore the critical disorder at
which the transition occurs is around V ∼ 12.

Having shown that at certain disorder strength, the order
parameter may have multifractal features. We study in the
next section how many eigenstates contribute effectively to
the formation of the order parameter, especially around this
critical region. This is important as the level statistic analysis
must be restricted to the spectral window relevant for the
formation of the Cooper pairs.

VI. WHAT DO EIGENSTATES un(r) AND vn(r)
CONTRIBUTE TO �(r)?

In order to have a more quantitative understanding about
how exactly �(r) is built up from the eigenfunctions
{un(r), vn(r)} of the BdG equation, we study

Puv =
∑

r

∣∣u2
n(r) − v2

n (r)
∣∣. (10)

A strong overlap of un and vn corresponds to Puv ≈ 0, while
if un and vn are completely decoupled, then Puv ≈ 1 since∑

r[u2
n(r) + v2

n (r)] = 1. We note that, because of the self-
consistent condition Eq. (3), only eigenstates un and vn that
overlap strongly contribute significantly to �(r). Therefore,
the study of Puv will reveal how many eigenstates effectively
contribute to the formation of the order parameter. This will be
important later for the determination of the critical disorder at
which the transition to localization occurs. Results, depicted
in Fig. 8, show that only for a small number of eigenstates near
E = 0, which is much less than the total number of states con-
tained in the Debye energy window, is the overlap strong so
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FIG. 7. α0 as a function of disorder. For relatively weak disorder
V � 10, α0 changes slowly with disorder. However, in the critical
region, V ∼ 12, the increase is faster, which suggests a stronger
spatial inhomogeneity.

that Puv is close to zero. For the rest, Puv ≈ 1, which strongly
suggests that only a small set of eigenvectors participate in
the construction of the order parameter �(ri ). Interestingly, as
disorder increases, the number of strongly coupled eigenstates
Puv ≈ 0 increases as well. However, for V � 12, it seems that
the trend is reversed. Fewer eigenstates contribute and the
overlap strength is weaker. Even for eigenstates very close to
E = 0, Puv is never close to zero.

We take into account that, through the self-consistent con-
dition Eq. (3), �(ri ) is also directly related to the overlap
between un(ri ) and vn(ri ). It is not surprising that the spatial
average of �(ri ) increases with V up to V ∼ 10 where the
increase stops and finally decreases for stronger disorder. Ef-
fectively, as disorder increases, more eigenstates contribute to
the formation of the order parameter which, as we said, will
likely help its enhancement. More quantitatively, as depicted
in Fig. 8(b), more than 100 states are strongly coupled for
V = 8. However, such strong correlation is restricted to no
more than 20 eigenvectors for V = 4; see Fig. 8(a).

With the chosen Debye energy, about 35% of eigenstates,
around 3000 states for size 20 × 20 × 20, as is depicted
in Fig. 8(a), contribute to the order parameter. However,
see Fig. 8, only a very small part of states near E = 0
contributes significantly to the buildup of the order param-
eter. For a more quantitative estimation, we define S(ri ) =
|U | ∑M

n=1 un(ri )v∗
n (ri ), which for sufficiently large M becomes

the order parameter. We only show the first 800 states in Fig. 9,
which already represent more than 80% of the total value
of 〈�(r)〉.

More interesting is the fact that only the first 100 states,
that represent about 3% of the allowed eigenstates in the
Debye window, are responsible for more than 50% of the
value of 〈�(r)〉. Indeed, if we only take the first 10 eigenstates
into consideration, 〈S(r)〉 still reproduces a sizable part of
〈�(r)〉, which is weakly dependent on the considered disorder
strength.

These results are consistent with the overlap of eigenfunc-
tion {un, vn} shown in Fig. 8. About 100 states closer to E = 0
are strongly coupled when V = 8, while less than 20 states
are strongly coupled when V = 4. Moreover, the coupling

of u(r) and v(r) for the first 10 eigenstates is qualitatively
similar for the different disorder strength, which results in a
similar 〈S(r)〉/〈�(r)〉 in this region. Therefore, a relatively
small number of strongly coupled eigenstates close to E = 0
are the leading contribution to the order parameter. These
results are fully consistent with the observed enhancement of
superconductivity for not too strong disorder and also provide
support that the eigenstates that most contribute to the order
parameter close to the transition are all critical.

VII. DETERMINATION OF THE CRITICAL DISORDER
FOR THE METAL-INSULATOR TRANSITION

BY LEVEL STATISTICS

We have already investigated the interplay of disorder and
superconductivity for a broad range of disorder strengths. We
have accrued substantial evidence that, around V ∼ 12, the
superconducting state undergoes substantial changes. More-
over, the results of the previous section suggest that only a
small set of eigenvectors and eigenvalues of the BdG equa-
tions contribute substantially to the order parameter. Based on
these two findings, in this section, we aim to determine the
location of the insulating transition with more precision. For
this purpose, we carry out an analysis of level statistics of the
eigenvalues of the BdG equations.

We restrict ourselves to the spectral region inside the De-
bye energy window since our main interest is to characterize
the dynamics of the superconducting state. More specifically,
we only consider a small set of eigenvalues, from 15 to
500 depending on disorder and size, around E = 0 which,
according to the findings of the previous section, see Fig. 8,
correspond to eigenvectors that contribute substantially to the
formation of the order parameter. For those eigenvalues, we
compute different spectral correlators: the level spacing distri-
bution and the adjacent gap ratio and its distribution P(r) that
characterize quantum dynamics for long times and therefore
are sensitive to the insulating transition. We note that in three
dimensions, where critical features only occur close to the
transition, the superconductor is at the Anderson transition
provided that the eigenstates that effectively contribute to
the order parameter are all critical. We shall see that this is
the case.

A. Nearest neighbor level spacing distribution P(s)

We note that, in the limit of no disorder, the eigenvalues are
twofold degenerate [36]. By turning on disorder, this degener-
acy is lifted but for sufficiently weak disorder there is almost
no mixing with neighboring eigenvalues. Therefore, the full
spectrum is effectively the superposition of two spectra. Since,
for weak disorder, we expect metallic features, level statistics
are expected to be described by the prediction of random ma-
trix theory (Wigner-Dyson statistics). For sufficiently strong
disorder, neighboring eigenvalues get mixed and the spectrum
is no longer a superposition of two independent spectra. In this
case, we still expect agreement with Wigner-Dyson statistics
for a single spectrum provided that this system is not too close
to the transition.

Results depicted in Fig. 10 confirm this picture. For
weak disorder, V = 4, level statistics agree well with the
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FIG. 8. Coupling between un and vn. 1 − Puv , as expressed in Eq. (10), for different disorder strength V = 4, 8, 12, and 16 from (a) to
(d). The vertical red line shows the position of the cutoff energy ωD = 2. For disorder V � 10, eigenfunctions corresponding to the lowest
eigenvalues are almost identical and therefore 1 − Puv ≈ 1. However, for disorder V = 12, 1 − Puv ≈ 0.5, even for the lowest eigenfunctions.
In the insulator region V = 16, eigenfunctions are localized, which results in a weak overlap and therefore in an even smaller 1 − Puv . For
V � 8, the number of strongly correlated eigenstates increases with disorder, compare (a) and (b), which explains why disorder enhances
superconductivity; see Fig. 2.

theoretical prediction for the superposition of two spectra
with Wigner-Dyson statistics. The level spacing distribution,
namely, the probability of having two consecutive eigenvalues
at a distance s in units of the mean level spacing, is in this
case [52] Psup(s) = π

16 s[1 − erf (
√

πs/4)] exp(−πs2/16) +
1
2 exp(−πs2/8), where erf (s) is the error function.

As disorder increases V ∼ 8, we observe that level statis-
tics agree well with the prediction of Wigner-Dyson statistics,
also termed the prediction for the Gaussian orthogonal ensem-
ble (GOE), but for a single spectrum P(s) = π

2 s exp (−πs2

4 ),
not a superposition [52]. The reason for that is that a stronger
disorder mixes the eigenvalues of the two spectra resulting in
a single quantum chaotic spectrum that follows the predic-
tion of random matrix theory expected in disordered metallic
systems.

For stronger disorder, see Figs. 10(b) and 10(c), there
are deviations from Wigner-Dyson statistics in all spectral
correlators: level repulsion is still present in P(s) but the
decay is slower than the prediction of Wigner-Dyson statistics.

As disorder increases further, it approaches an exponential
decay which is the expectation for a Poisson distribution
P(s) = exp(−s) which characterizes the spectral correlations
of disordered insulators. Around V = 12, we observe strik-
ing similarities with the spectral features predicted at the
Anderson metal-insulator transition [41,42]. Level repulsion
persists but the tail of P(s) decays exponentially ∼e−As with
A > 1. For larger disorder when V = 16, the level statis-
tics are close to Poisson statistics which is the expected
results for an Anderson insulator. These results suggest a
transition around V = 12. We will confirm it in the next
section.

B. Probability distribution of consecutive level spacing P(rn)
and the adjacent gap ratio 〈r̃n〉

The computation of the P(s) involves the unfolding of
the spectrum so that the average mean level spacing is the
unity. This process, which in our case was carried out by low
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FIG. 9. 〈S(r)〉/〈�(r)〉 as a function of M, the number of states,
starting from the ground, that are taken into consideration to obtain
〈S(r)〉. The system size is 20 × 20 × 20, ωD = 2, U = −1, and the
density 〈n〉 = 0.875. About the first 100 states, corresponding to 3%
of states inside the Debye window, contribute to more than 50% of
the value of the order parameter. This percentage is larger as disorder
increases.

degree polynomials, adds some uncertainty since the results,
at least quantitatively, may weakly depend on the unfolding
procedure. In order to avoid this problem, we compute the
adjacent gap ratio and the distribution of consecutive level
spacing that do not require any unfolding.

The ratio of the consecutive level spacing is defined as [55]

rn = sn

sn−1
, (11)

where sn = En+1 − En is the nearest-neighbor spacing of the
ordered eigenenergies E1 � E2 � · · · � En. Therefore, the
adjacent gap ratio is naturally defined as

r̃n = min

(
rn,

1

rn

)
. (12)

The analytical predictions for the ensemble average of these
correlators, and its distributions, for the case of random ma-
trices, that should also apply to quantum disordered metals, is
known explicitly [55,56]. A distinct feature of these spectral
correlators is its ultralocality, namely, they provide informa-
tion about time scales much larger than the Heisenberg time.
For instance, they provide information about whether the
spectrum has (has no) level repulsion as in a metal (insulator).
In some sense, it is a zoom in version of the small s limit
of P(s). For that reason, we expect that finite size effects,
that are more important in this limit, may play some role in
suppressing localization effects on the insulating size of the
transition.

We start our analysis with the calculation of the ensemble
average adjacent gap ratio 〈r̃n〉 for different disorder V . We
also carry out a finite size scaling analysis by studying the
dependence of the results with L.

In order to avoid effects related to the superposition of two
spectra, of no interest now, we only consider relatively strong
disorder strengths: V � 8.

As is shown in Fig. 11(b), the gap ratio undergoes a
crossover from the Wigner-Dyson 〈r̃n〉 ≈ 0.53 to the Poisson
statistics 〈r̃n〉 ≈ 0.39 [55] around the critical disorder V ∼ 12.
More importantly, within the limited range of sizes that we can
test numerically, we observe that all curves nicely cross each
other at V ≈ 12.6 so that, at this disorder, level correlations
are approximately size independent, which is a distinct feature
of Anderson transitions [41,42].

For the sake of completeness, we also compute the proba-
bility distribution of the ratio of the consecutive level spacing
〈rn〉 and the adjacent gap ratio 〈r̃n〉. We have found, see
Fig. 11(a), that even in the critical region V ≈ 12, the distribu-
tion is very close to the Wigner-Dyson prediction expected in
a good disordered metal. Only for much stronger disorder do
we observe the transition to Poisson statistics that describes
spectral correlations in a disordered insulator. This is not sur-
prising as the adjacent gap ratio is an ultrashort-range spectral
correlator that is mostly sensitive to level repulsion. The latter
is a feature that, because of finite size effects, is still observed
in the insulating region not too far from the transition. Indeed,
results of the adjacent gap ratio are fully consistent with those
of the level spacing distribution.

In summary, the analysis of spectral correlations, espe-
cially the finite size scaling analysis of the adjacent gap ratio,
indicates the existence of an Anderson transition around Vc ≈
12.6. Level statistics around the transition are intermediate
between those of a metal and an insulator and qualitatively
similar to those of three-dimensional noninteracting systems
at the Anderson transition: level repulsion, a distinctive spec-
tral feature of a disordered metal, is observed but the decay
of the level spacing distribution is exponential, as for an insu-
lator ∼e−s, though with a larger exponent ∼e−As, A ≈ 2. As
disorder increases further, the exponent A → 1 tends to the
Poisson statistics result.

VIII. ESTIMATION OF THE CRITICAL DISORDER FOR
THE BREAKING OF PHASE COHERENCE BY A

PERCOLATION ANALYSIS

We have shown in the previous section that the transition
to an insulator occurs around Vc ∼ 12. A natural question to
ask is whether superconducting phase coherence persists until
the insulating transition or the loss of global order occurs for
weaker disorder. We tentatively address this question by a
percolation study of the order parameter. A word of caution
is in order: the critical disorder obtained from the percolation
analysis is just a rough estimation for the existence, or not, of
phase coherence.

We define that, for a given disorder, the superconductor is
phase coherent if the order parameter amplitude �(ri) forms
a percolating cluster. Strictly speaking, a point belongs to the
percolating cluster if the order parameter does not vanish.
However, on physical grounds, we consider a cutoff value �c

so that, if the order parameter is smaller than �c at a given
point, this point does not belong to the percolating cluster.
With these assumptions, if the probability p that a point in
the sample does not contribute to the percolating cluster is
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FIG. 10. Nearest neighbor level spacing distribution P(s) for different disorder V for a 20 × 20 × 20 lattice, a cutoff energy ωD = 2,
U = −1, and 〈n〉 = 0.875. (a) For weak disorder V = 4 we find excellent agreement with the prediction for superposition of two spectra with
Wigner-Dyson statistics (two GOEs are indicated by cyan line). Due to the symmetries of the BdG equations, this is the expected result. As
disorder increases to V = 8, the two spectra are mixed and we observe Wigner-Dyson statistics (GOE is indicated by red line). Inset: same but
in log scale. (b) For sufficiently strong disorder V � 10, the two spectra are mixed and we observe level repulsion typical of a single GOE.
For V = 10, level statistics are relatively well described by Wigner-Dyson statistics typical of a disordered metal. For V = 12, level statistics
show typical features of a metal-insulator transition [41,53,54] such as level repulsion for s 
 1 and exponential decay for s � 2. For V = 16,
P(s) is close to Poisson statistics that characterizes spectral correlations of a disordered insulator. (c) The tail of P(s) is fitted by P(s) = B e−As,
where A and B are the fitting parameters. At V = 12, the tail of P(s) decays exponentially with A ≈ 2.03. This is a distinct feature of a system
at the Anderson transition.

smaller than the percolation threshold pc = 0.311 [57] for a
3D cubic lattice, then there is no percolating cluster and phase
coherence is lost. Results are shown in Fig. 12 for different
values of the cutoff �c.

As was expected, the location of the transition depends on
the chosen cutoff �c. However, the dependence is relatively
weak and size independent, which allows one to estimate with
reasonable accuracy the critical disorder Vc ≈ 13 ± 1 at which
the percolation transition occurs. Interestingly, it is very close

at the critical disorder at which the insulating transition takes
place. Although further research would be necessary, such as
an explicit calculation of the superfluid density, to settle this
issue, our findings suggest that phase coherence may be lost
around the same range of disorder at which the insulating
transition occurs.

In summary, both the percolation and the insulating tran-
sition take place at a similar disorder strength. Although the
percolation analysis does not provide a precise determination
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FIG. 11. (a) Probability distribution of the ratio of consecutive level spacing P(rn); see Eq. (11). Inset: the probability distribution of the
adjacent gap ratio P(r̃n); see Eq. (12). It shows that, even in the transition region V ∼ 12, the distribution still follows the GOE prediction (red
solid line). For V = 16, it approaches Poisson statistics. (b) Finite size scaling analysis of the adjacent gap ratio 〈r̃n〉 as a function of disorder
V . When L = 14 and 16, we average 200 samples around the transition when V = 10 and V = 12, but only 60 samples for V = 8 and 40
samples for V = 14, 16. For L = 18, we calculate 150 disorder realizations around the transition, 60 disorder realization for V = 8, and 30 for
the insulator. As disorder increases, we observe a crossover, that becomes sharper as L increases, from the Wigner-Dyson prediction (GOE)
that describes the spectral correlations of a disordered metal to Poisson statistics expected to describe the correlations of a disordered insulator.
The crossing point Vc ≈ 12.6 signals the location of the transition.
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FIG. 12. Probability that the amplitude of the order parameter
〈�(r)〉 is larger than the cutoff value �c as a function of disorder
V and different system sizes L. We set three cutoff values �c: 5 ×
10−4 (circle), 2 × 10−4 (square), and 1 × 10−4 (triangle). The red line
around 0.311 is the percolation threshold pc for a simple 3D cubic
lattice [57]. The interaction term U = −1, the Debye energy ωD = 2,
and the density 〈n〉 = 0.875.

of the critical disorder for the loss of phase coherence, this fact
suggests that phase coherence is likely lost at a similar value
of disorder.

IX. DISCUSSION AND CONCLUSIONS

The results of the paper, together with previous findings
in two dimensions, provide a rather detailed picture of the
interplay of disorder and superconductivity, especially in the
critical region around the Anderson transition, as follows.

First, it is beyond any reasonable doubt that disorder does
affect profoundly the superconducting state. The amplitude of
the order parameter, even in the metallic region and relatively
far from the transition, has a broad spatial distribution. Close
to the transition, it is log normal, at least in the range of sizes
we can test, in both 2D and 3D. The singularity spectrum,
related to the amplitude distribution of the order parameter,
is parabolic as that of the density of multifractal eigenstates
at the Anderson transition. This emerging picture seems to
disagree with the predictions of the Anderson theorem that
disorder does not affect qualitatively the superconducting
state. However, we consider that it disagrees with the many
interpretations of the Anderson theorem in the literature rather
than with the original content of Anderson’s statement [1].

Second, the answer to the question about whether disorder
can enhance superconductivity is responded affirmatively. In
both 2D and 3D, this enhancement occurs for a broad range
of disorder strengths but only for weak electron-phonon cou-
pling. The averaged order parameter could be enhanced up
to two or three times, especially in 2D. However, it is likely
that the enhancement of the critical temperature will be much
less due to phase fluctuations induced by disorder. Moreover,
we stress our results were obtained under the assumption that
the density is kept fixed and the chemical potential changes

by varying disorder. Therefore, it is uncertain that disorder
can enhance the global critical temperature to the point that
it is relevant for practical applications. Likewise, in 3D, the
maximum enhancement occurs around the transition, a re-
gion where thermal and quantum fluctuations, that lower the
critical temperature, will be larger. Therefore, it is unclear to
what extent this enhancement of the order parameter is also
observed in the critical temperature. This perception could
change with the discovery of a weakly coupled supercon-
ducting material with a critical temperature above the one for
MgB2.

Third, despite the strong spatial fluctuations, phase coher-
ence holds approximately until the critical disorder at which
the insulating transition occurs.

Fourth, all quantum coherence effects, from the strength of
spatial fluctuations to the enhancement of superconductivity
of the order parameter, become more prominent as either
the electron-phonon coupling strength or the Debye energy
decreases.

Fifth, natural extensions of this research include the effect
of Coulomb interaction and a perpendicular magnetic field.
Regarding the former, charging effects could be included by
assuming that the inhomogeneities could be seen as a Joseph-
son junction array where the introduction of charging effects
is simpler. Regarding the latter, it would be interesting to in-
vestigate different aspects of vortices physics and, especially,
the Kosterlitz-Thouless transition in a superconducting state
with multifractal-like features. Likewise, the study of finite
temperature effects and transport properties around the An-
derson transition are other natural extensions of this work.
We aim to address some of these problems in the near
future.

Six, our results have been obtained for a very specific
model of disorder that for instance neglects off-diagonal dis-
order and using oversimplifying assumptions such as keeping
the Debye energy constant despite the fact that it is certain
that disorder will affect the phonon spectrum at the very
least by a renormalization of the Debye energy or considering
a quadratic dispersion relation that neglects nontrivial band
structure effects. Therefore, a natural question to ask is to
what extent our results are applicable to realistic supercon-
ducting materials. We first stress our model is in line with
previous approaches to this problem in the literature. Indeed,
it is more realistic, as we can reach smaller values of the
dimensionless coupling constant which are closer to those
of metallic superconductors such as Sn. We consider a finite
value of the Debye energy while in most previous papers it
was set to infinity in order to facilitate the convergence of the
numerical calculation. However, our model is still far from
being a quantitative description of any realistic materials. It
could be made more realistic with relatively minor effort by
including some form of disorder dependence of the Debye
energy, the effect of off-diagonal disorder, and other types of
disorder distributions, or some details of the band structure.
However, we do not do it because we do not have experimental
input of how this dependency should exactly be. The reason
is that, despite the rapid progress in experimental control,
disorder alters the properties of the material in a way that is
difficult to predict either experimentally or by first principle
calculations.
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Does this mean that comparison between theory and ex-
periment is not possible? We do not think so. In a recent paper
[34], we show that the distribution of the superconductor gap,
as measured by STM techniques, of a one-layer disordered
NbSe2 agreed well with the theoretical prediction, a log-
normal distribution. For the comparison, we had to fit some
parameters of the distribution, but its form was a robust theo-
retical prediction. In part, this is due to the fact that the physics
around the insulating transition is expected to be universal.
For that reason, even though our model is schematic it can still
capture the main features of the transition as observed in ex-
periments. Although, it is unclear how to extend this compar-
ison to three dimensions where STM techniques are not avail-
able, we expect that global observables such as the specific
heat or the ac conductivity could be sensitive to the transition.

In conclusion, we have investigated the superconducting
state around the Anderson transition that in the noninteracting
limit is described by multifractal eigenstates by using the
BdG formalism. We have found that the spatial average of the
order parameter is enhanced as disorder is increased but only

for disorder strength below the transition. The distribution
of the order parameter is log normal around the transition.
For lower disorder, it is still broad and asymmetric, which
illustrates the important role of disorder even relatively far
from the transition. As for noninteracting electrons at the
Anderson transition, the singular spectrum is parabolic and
level statistics are intermediate between Poisson and ran-
dom matrix theory predictions. All these are typical features
of systems where multifractality plays an important role. A
qualitative percolation analysis reveals that the loss of phase
coherence is likely to occur around the same disorder as the
superconductor-insulator transition.
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