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Magnetic soliton rectifier via phase synchronization
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Most of the existing research on the dynamics of magnetic solitons such as a domain wall (DW) has focused
on the effect of DC forces, where the induced velocity is determined by the force strength. Here we show that AC
forces such as an oscillating magnetic field or current are also able to move a DW straight via synchronization
between the DW angle and the phase of the AC force. The resulting DW velocity is solely proportional to the
driving frequency of the AC force, but the strength of the AC field just affects the frequency range for criteria
for the phase-locking behavior. The AC-force-driven DW motion is shown to exhibit a phase locking-unlocking
transition, a critical phenomenon akin to the Walker breakdown of a DC-bias-driven DW motion. Our work
shows that a DW can be driven straight by synchronizing its angle to AC forces and thereby demonstrates a
proof-of-concept of magnetic soliton rectifiers (i.e., DC motion induced by AC forces), shedding a light on the
hitherto overlooked utility of internal degree of freedom for driving magnetic textures.
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I. INTRODUCTION

The dynamics of topological solitons in magnets has been a
topic of long-standing interest because of their intriguing fun-
damental physics as well as technological applications [1–3].
A prototypical example is a domain wall (DW) in an easy-axis
magnet, an interface between two different uniform ground
states. In 1974, Schryer and Walker studied the dynamics of
a DW induced by an external magnetic field and discovered
a nonlinear phenomenon, the so-called Walker breakdown,
which refers to the sudden drop of the DW velocity due to the
onset of its precessional motion [4]. More recently, current-
induced motion of a DW has been studied intensively due to
its potential utility as a topologically protected information
carrier in spintronic devices as demonstrated in magnetic DW
racetrack memory [3]. Most of the existing research on the
dynamics of a DW motion have focused on the effects of DC
field or current, where the induced velocity is determined by
the strength of the external force. Although the AC forces have
been utilized to advantage for the dynamics of DW [5–7],
the dynamics of a DW motion solely driven by AC forces
has remained a largely open area except for a few studies on
antiferromagnetic DW motion driven by rotating fields [8,9].
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The focus of this work is on the AC-force-induced dynamics
of a ferromagnetic DW.

The low-energy dynamics of a DW in a thin ferromag-
net strip with perpendicular magnetic anisotropy, where the
easy-axis anisotropy is perpendicular to the film, is known
to be well described by the two collective coordinates, its
time-dependent position X (t ) and in-plane angle of the DW’s
magnetization �(t ) [4,10,11]. In the previous studies on the
DW motion, the primary focus has been on the dynamics of
the position variable X , whereas the dynamics of the angle
variable � has been considered secondary and sometimes
undesirable [4,10,11]. The origin of this perception can be
found in a DW motion driven by a DC field [4]. When the driv-
ing field is sufficiently small, the DW moves to decrease the
Zeeman energy, but the DW angle � is maintained constant
since its dynamics is suppressed by the shape anisotropy. In
this regime, there is only one channel for energy dissipation,
the dynamics of X , and thus all the energy is spent only
on moving the DW. When the external field becomes strong
enough to overcome the shape anisotropy, the aforementioned
Walker breakdown occurs due to the gyrotropic coupling be-
tween the position and the angle and the DW precesses and
moves simultaneously. The Walker breakdown engenders a
new dissipation channel through the angle dynamics �̇ com-
pared to the small-field regime, giving rise to the substantial
slowdown of the DW. For this reason, finding an efficient way
to avoid the Walker breakdown by suppressing the dynamics
of the angle � has been a topic of significant interest [12–15].
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In this paper, we aim to challenge the conventional sub-
sidiary, often antagonistic view (in a sense that the angle
dynamics opens a new dissipation channel for suppressed DW
speed) on the dynamics of the DW angle � by investigating
the DW behavior when its angle is resonantly driven directly
by AC forces as a primary control variable. To this end, we
study the dynamics of a DW in the simultaneous presence of
DC and AC fields. Specifically, we consider the DC magnetic
field that is sufficiently strong to put the system above the
Walker breakdown so that the DW angle keeps changing at
a certain precession frequency, and investigated the effect of
the AC magnetic field on the DW velocity. We find that the
DW velocity changes linearly as a function of the frequency
of the AC field, not the strength of it, when the driving
frequency is close to the precessional frequency of the DW.
The frequency-dependent DW velocity is explained by the
phase locking between the AC field and the DW precession,
which is analogous to the phase locking between interacting
oscillators [16]. We also discover a critical phenomenon in
the AC-field-driven DW motion, which is identified as a phase
locking-to-unlocking transition.

In addition, we find the same phenomenon in the current-
induced DW motion in the presence of DC spin-transfer
torque (STT) and AC spin-orbit torque (SOT), which can
be realized in heterostructures consisting of a metallic fer-
romagnet and a heavy metal with insulating barrier, e.g.,
Pt/NiO/CoTb used in Ref. [17]. The resulting AC-current-
induced DW motion is independent of the DW-type differing
from the field-driven case, and thus can be used for realiz-
ing DW racetrack memory [3]. All the theoretical results are
supported by micromagnetic simulations. We envision that
hitherto overlooked internal degrees of freedom of topological
magnetic solitons can serve as alternative handles for the
dynamics of the solitons, wherein AC forces can be used as
useful and versatile tools.

II. RESULTS AND DISCUSSION

Our model system is a thin ferromagnetic film with
perpendicular magnetic anisotropy, which can be de-
scribed by the following Hamiltonian: U = ∫ dx{A[(∂xm)2 −
Km2

z + Kym2
y ]/2 − MSH · m}, where m = (mx, my, mz ) is the

unit vector in the magnetization direction, A > 0 is the
exchange coefficient, K > 0 is the easy-axis anisotropy per-
pendicular to the film which includes the shape anisotropy
for a thin film, Ky > 0 is the hard-axis anisotropy, MS is
the saturation magnetization, and H is an external field.
The solution for a DW connecting the two ground states,
m(x → ±∞) = ±qẑ, is given by m = {sech[(x − X )/λ]
cos �, sech[(x − X )/λ] sin �, q tanh[(x − X )/λ]} [4], where
λ = √

A/K parametrizes the DW width and q = ±1 repre-
sents the type of DW. Here, X is the position of the DW, which
represents a zero-energy mode associated with the sponta-
neous breaking of the translational symmetry by the DW;
� is the in-plane angle of the DW’s magnetization, which
represents an internal degree of freedom. The low-energy dy-
namics of the DW can be described with these two collective
coordinates, X (t ) and �(t ).

The dynamics of a ferromagnet can be described by the
Landau-Lifshitz-Gilbert (LLG) equation [18,19]: ṁ − αm ×

ṁ = −γ m × Heff , where γ > 0 is the gyromagnetic ratio,
Heff = −δU/(MSδm) is the effective magnetic field, and
α > 0 is the Gilbert damping constant parametrizing the
energy-dissipation rate through the magnetic dynamics. For
the external field, we consider both a DC field along the z axis
and an AC field along the y axis: H = Hzẑ + Hy cos(ωt )ŷ. See
Fig. 1(a) for the schematic illustration of a DW and external
fields. Without loss of generality, we can consider the cases
with ω > 0, Hy > 0, and Hz > 0. The equations of motion for
X and � can be obtained from the LLG equations within the
collective coordinate approach [10,11]. One for the angle is
given by(

α + 1

α

)
�̇=γ Hz

α
+ γ HK sin (2�)

4
+ πγ Hy cos (ωt ) sin �

2
,

(1)
where HK ≡ 2Ky/MS is the hard-axis anisotropy field. The
equation of motion for the position is given by

Ẋ = qλ/α(�̇ − γ Hz ). (2)

Note that the DW velocity Ẋ depends linearly on the DW
angle precession �̇ in Eq. (2), which is the main property
of the equation that is utilized in this work. One way to
understand Eq. (2) is as follows. When there is no damping in
the system α = 0, then the DW angle rotates at the frequency
given by γ Hz, mimicking the ferromagnetic resonance, while
the DW position is fixed Ẋ = 0. However, in real materials,
there is always finite damping α > 0. In this case, the finite
DW precession |�̇| > 0 gives rise to the energy dissipation.
The energy conservation dictates the decrease of the internal
energy, which is accomplished by the change of the domain
wall position X and the consequent decrease of the Zeeman
energy. The first line on right-hand side of Eq. (1) shows
that the DC field Hz tends to rotate the DW, and that can be
compensated for by the hard-axis anisotropy field HK. Here,
we consider the cases where the DC field is sufficiently strong
so that it dominates the hard-axis anisotropy and thereby in-
duces the DW precession: Hz > αHK/4, which is above the
so-called Walker breakdown field [4]. In this regime, for the
long-term dynamics, the time-averaged precession is finite,
〈�̇〉 > 0, and thus the hard-axis anisotropy term ∝ HK in
Eq. (1) that is sinusoidal in the angle can be neglected over
the other terms [10,11]. By taking this approximation setting
HK = 0, Eq. (1) can be recast into

�̇ = ω0 + ω1 sin (� − ωt ) + ω1 sin (� + ωt ), (3)

where ω0 ≡ γ Hz/(1 + α2) is the DW rotation frequency in
the absence of the AC field and ω1 ≡ παγ Hy/[4(1 + α2)]
represents the magnitude of the AC field. The obtained equa-
tion without the last term is called the Adler equation which is
known to have a steady-state phase-locked solution �̇ = ω in
the studies about the injection locking of a nonlinear oscillator
coupled to a resistance-inductor-capacitor circuit [16]. The
Adler equation has been invoked in spintronics to explain the
phase locking of the spin-torque oscillator to an AC current
[20–22].

When the driving frequency f = ω/2π is sufficiently close
to the precession frequency fM = ω0/2π of the magnetization
of the DW MDW [see Fig. 1(b)], the criteria for which will be
determined below, the DW angle is synchronized with the AC
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(a)

(c) (d) (e)

(b)

FIG. 1. Domain wall (DW) subjected to a DC and an AC fields. (a) Schematic for a DW motion in a ferromagnet with perpendicular
magnetic anisotropy subjected to a DC field Hz (along the z axis) and an AC field Hy cos(ωt ) (along the x axis). Blue area, magnetization-up
state (circled dot); red area, magnetization-down state (crossed circle). (b) Schematic for an angular motion of the magnetization of the DW
and an AC field rotating at the frequencies fM and f , respectively. (c)–(e) Time dependence of the magnetizations (Mx, My, Mz) along the
ferromagnetic strip for the DC field Hz = − 3 mT and the AC field Hy = 40 mT with the AC-field frequency f = 200 MHz.

field (i.e., the resonance between the DW angle dynamics and
an AC field). Between the two possible simplest choices for
synchronization, �̇ ≈ ω and �̇ ≈ −ω, the first term ω0 > 0
in Eq. (3) drives the system into the former synchronization.
In this phase-locked regime, the DW angle satisfies �(t ) =
ωt + δ�(t ) with 〈δ�̇〉 = 0, where 〈· · · 〉 denotes the averaging
over long time (compared to the frequency ω). From Eq. (2),
the resultant time-averaged DW velocity V = 〈Ẋ 〉 is given by

V = qλ

α
ω − qλ

α
γ Hz. (4)

This is our first main result: the DW velocity in the simultane-
ous presence of DC and AC fields in the phase locked regime.
The first term ∝ ω is the DW velocity induced by the AC field
by the synchronization of the DW angle and the AC field. Note
that it is a linear function of the frequency of the AC field and
it is independent of the magnitude of the AC field. The second
term, ∝ Hz, is the well-known DC-field-induced DW velocity
below the Walker breakdown [4].

The necessary criteria to be in the phase-locked regime
can be found as follows. In terms of δ�, Eq. (3) reads
(ω − ω0) + δ�̇ = ω1 sin(δ�) + ω1 sin(δ� + 2ωt ). If there
were no second term, then δ� = arcsin[ (ω−ω0 )

ω1
] solves the

equation, which yields the phase-locked condition |ω − ω0| <

ω1. However, the last term necessitates the inclusion of the
sinusoidal contributions, changing the obtained condition. To
obtain the self-consistency condition for the phase-locked
regime, we use an ansatz δ�(t ) = δ�0 + A cos(2ωt ) +
B sin(2ωt ) with the time-independent δ�0 and solve the
equation for δ�0, A, and B to linear order in A and B by
assuming |ω1/ω0| � 1 (which is equivalent to α|Hy| � |Hz|).
The resultant critical frequencies, whose derivation is in the
Appendix, are given by

ωu,l
c = 1

2

(
ω0 ± ω1 +

√
ω2

0 ± 2ω0ω1
)
, (5)

where + and − are for the upper ωu
c and the lower ωl

c criti-
cal frequencies, respectively. This is our second main result.
Note that the strength Hy of the AC field determines the fre-
quency range where the obtained phase-locking DW velocity
V [Eq. (4)] can be realized.

Our analytical results are compared with micromagnetic
simulations, which solve the LLG equations for individual
spins on a discrete lattice. We consider a one-dimensional
model, which has been successful to describe the DW dy-
namics in ferromagnetic strips with perpendicular magnetic
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(a)

(c) (d) (e)

(b)

FIG. 2. DW angular and linear motion in the phase-locked and the phase-unlocked regimes. Panels (a) and (b) show the DW velocity V
as a function of the frequency f of the AC field in the presence of the DC field, Hz = ±3 mT and Hy = 40 mT. The symbols represent the
results of the micromagnetic simulations and the purple solid line indicates the analytic result based on Eq. (4). The phase-locking regime (red
area) and phase-unlocking regime (blue area) are shown in (b). Panels (c)–(e) represent the time dependence of the magnetization of My in the
phase-locked regime (for f = 100 and 200 MHz) and unlocked regime (for f = 500 MHz), respectively.

anisotropy [23–26]. For the micromagnetic simulations for
Figs. 1–3, the following material parameters are used: MS =
1.4 × 106 A/m, A = 10−11 J/m, K = 3 × 106 J/m3, α = 0.3,
and γ = 1.76 × 1011 rad/s T. The demagnetizing field is in-
cluded in this calculation in full. The considered sample
geometry (length × width × thickness) is 1000 nm × 50 nm ×
0.3 nm with the cell size of 0.2 nm × 50 nm × 0.3 nm. The
Runge-Kunta method was used to integrate the LLG equations
with the time step of 2.5 × 10−11 s. We present the results
for the DW with q = 1 below; the simulation results with
q = −1 show the analogous agreement with the theory (not
shown). Figures 1(c)–1(e) show the time dependence of the
magnetizations (Mx, My, Mz) along the ferromagnetic strip for
the DC field Hz = − 3 mT and the AC field Hy = 40 mT with
the AC-field frequency f = 200 MHz. The blue dashed lines
indicate the periodicity, which corresponds to 1/ f = 5 ns (see
the red dashed line). It clearly shows the time-dependent
magnetization synchronized with the AC field. Thus, in the
phase-locked regime, the driving frequency from the AC field
is sufficiently close to the precession frequency of the magne-
tization of the DW. The black solid line in Fig. 1(e) represents
the DW velocity V .

Figure 2(a) shows the results for the DW velocity V as a
function of f = ω/2π for Hz = ± 3 mT and Hy = 40 mT. The
plot shows that the DW velocity changes linearly as a function
of the frequency of the AC field when the driving frequency is
close to the precessional frequency of the DW: the frequency
of the DW fM is the same as f [see Figs. 2(c) and 2(d) for My

with f = 100 and 200 MHz]. The frequency-dependent DW
velocity is explained by the phase locking between the AC
field and the DW precession, which is analogous to the phase
locking between interacting oscillators [16]. The purple solid
line shows the analytical result for V [Eq. (4)] in the phase-
locked regime. Figure 2(b) shows the simulation results in the
wider range of f . The plot clearly shows the phase locking-to-
unlocking transition. The red (blue) box represents the phase-
locked (phase-unlocked) regime. When the driving frequency
is far away from the precessional frequency of the DW, the
velocity is no longer controlled by the AC-field frequency: fM

does not follow f [see Fig. 2(e) for My with f = 500 MHz].
Figure 3(a) and 3(b) show the micromagnetic simulation

results (symbols) for Hz = ±1 and ±3 mT, respectively, with
various AC fields Hy = 10, 20, 30, and 40 mT. The analyt-
ical results shown as the purple solid lines and the results
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(a)

(b)

(c)

FIG. 3. DW velocity induced by the resonance between the DW
angle and the AC field. Panels (a) and (b) show the DW velocity
V as a function of the frequency f of the AC field in the presence
of the DC field, Hz = ±1 and 3 mT, respectively. The symbols
and the lines are from micromagnetic simulations and analytical
solutions [Eq. (6)], respectively. (c) The upper critical frequencies
f u
c (≡ ωu

c/2π ) for the phase locking-to-unlocking transition as a
function of the AC-field magnitude. The symbols and the lines are
from micromagnetic simulations and analytical solutions [Eq. (8)],
respectively.

from micromagnetic simulation agree well. Note that the DW
velocity is independent of the magnitude of the AC field Hy

within the phase-locked regime. Note that one can observe, in

principle, the fast DW velocity (∼a few km/s) if the lower
damping parameters could be chosen. (See Sec. IV in the
Supplemental Material [27].) Figure 3(c) shows the results
from micromagnetic simulation (closed symbols for each Hz)
and the analytical result (dashed lines) [Eq. (5)] for the upper
frequencies f u

c (≡ ωu
c/2π ) for the phase locking-unlocking

transition with various Hz and Hy, showing good agreement as
well. The extra set of simulation results, which are obtained
for different material parameters, as well as for the upper
and the lower critical frequencies f u,l

c (≡ ωu,l
c /2π ) and their

agreement with the analytical results are discussed in the
Appendix and Supplemental Material.

For practical applications of a DW as a memory unit in
spintronics, it is important to achieve the current-induced uni-
directional DW motion without relying on an external field
[3]. For this reason, we investigate the current-induced DW
motion in the simultaneous presence of a DC STT and an AC
SOT. The possible experimental setup is shown in Fig. 4(a),
consisting of a metallic magnet and a heavy metal with an
insulating barrier. One readily available material platform is
Pt/NiO/CoTb heterostructure, where Pt has been shown to
be able to exert SOT on CoTb through an antiferromagnetic
insulator NiO [17].

The dynamics of a ferromagnet in the presence of
STT [28,29] and SOT [24,30–33] can be described by
the augmented LLG equation: ṁ − αm × ṁ = −γ m ×
Heff + τSTT + τSOT, where DC STT is given by τSTT =
P(JDC · ∇ )m − βPn × (JDC · ∇ )n and AC SOT is given
by τSOT = γ BF cos(ωt )m × ŷ + γ BD cos(ωt )m × (m × ŷ).
Here, JDC = JDCx̂ is the DC charge current density, β is
the dimensionless number parametrizing the dissipative
component of STT, P = (h̄γ /2eMS)(σ↑ − σ↓)/(σ↑ + σ↓)
(with e > 0 the electron charge) represents the polarization of
the spin-dependent conductivity σs (s =↑ chosen along −m),
BF = (h̄/2e)(θFJAC/MStz) and BD = (h̄/2e)(θDJAC/MStz)
are, respectively, the fieldlike and the dampinglike
SOT magnitudes induced by the AC current density
JAC = JAC cos(ωt )x̂, tz is the thickness of the ferromagnet,
and θF and θD are the spin Hall angles for the corresponding
SOT components. The equations of motion for X (t ) and �(t )
can be obtained within the collective coordinate approach
[10,11]. The equation for the angle is given by

(
α + 1

α

)
�̇ = q(β − α)PJDC

αλ
+ γ HK sin (2�)

4

− πγ

2

(BD

α
+ BF

)
cos (ωt ) cos �. (6)

The equation of motion for X is given by

Ẋ = qλ

α

(
�̇ − qβPJDC

λ
+ π

2
γ BD cos (ωt ) cos �

)
. (7)

We consider the cases where the DC STT is sufficiently
strong to put the DW dynamics above the Walker breakdown,
(β − α)PJDC/(αλ) > γ HK/4, so that the DW precesses with
the finite average angular velocity, 〈�̇〉 > 0. Then, the phase-
locked solutions to the above two equations for the current-
induced DW motion can be obtained in an analogous way for
the solutions to Eqs. (1) and (2). In the phase-locked regime,
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(a)

(b) (c)

FIG. 4. DW velocity induced by the resonance between the DW angle and the AC current. (a) Schematics for the current-induced DW
motion, where a ferromagnet is subjected to STT by a DC current density JDC through the magnetic layer and SOT by an AC current density
JAC cos(ωt ) through a heavy-metal layer. (b) The DW velocity V as a function of the frequency f of the AC current. The symbols and the
lines are from micromagnetic simulations and analytical solutions [Eq. (A4)], respectively. (c) The upper and the lower critical frequencies f u,l

c

for the phase locking-unlocking transition. The symbols and the lines are from micromagnetic simulations and analytical solutions [Eq. (8)],
respectively.

where 〈�̇〉 = ω, the DW velocity is given by

V = λ(BF − αBD)

BD + αBF
ω − BD + βBF

BD + αBF
PJDC. (8)

This is our third main result: the DW velocity in the si-
multaneous presence of a DC STT and an AC SOT in the
phase-locked regime. The first term ∝ ω is the DW velocity
induced by the synchronization of the DW angle dynamics
and the AC SOT, which is linear in the frequency and in-
dependent of the magnitude. Note that the DW velocity is
independent of the DW type q = ±1, which is in contrast to
the field-induced DW velocity [Eq. (4)]. This has an important
consequence for practical applications: A train of DWs of
different types of q = ±1 can be driven all together in the
same direction, which is crucial to realize the magnetic DW
racetrack memory [3]. The necessary condition for the DW
motion to be in the phase-locked regime can be obtained by
Eq. (5) analogously to the field-driven case.

The analytical results are checked with micromagnetic
simulations solving the discrete LLG equations. For the
micromagnetic simulations for Fig. 4, the following ma-
terial parameters are used: MS = 106 A/m, A = 10−11 J/m,

K = 9 × 105 J/m3, Ky = 500 J/m3, and α = 0.02. The de-
magnetizing field is accounted for as a shape anisotropy in
this calculation. The considered sample geometry (length ×
width × thickness) is 3200 nm × 50 nm × 1 nm with the cell
size of 0.4 nm × 50 nm × 1 nm. The parameters for STT and
SOT are P = 0.5(h̄γ /2eMS), β = 0.06, θF = 0.28, and θD =
−0.07 [33–36]. The results are shown in Fig. 4(b), where the
DC current density JDC = 2 × 1012 A/m2 and the AC current
densities JAC = 2, 4, 6, 8 × 1010 A/m2 are used. The symbols
and the lines show the results from micromagnetic simulation
and the analytical results [Eq. (8)], showing good agreement.
Figure 4(c) shows the result from micromagnetic simulation
and the analytical result [Eq. (5)] for the critical frequencies
f u,l
c for the phase locking-unlocking transition, which also

exhibits good agreement except for the frequency close to 0
where the high-frequency approximation for Eq. (5) becomes
invalid. We would like to mention that, in the simulations,
the DC current of the large magnitude is applied for illus-
trative purpose so that the DW precession frequency fM is
high enough to exhibit both the upper and the lower critical
breakdowns. However, the AC-force-driven DW motion are
expected to work as long as the DW is in the precessing regime
which can be achieved by the DC current of much smaller
magnitudes.
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III. CONCLUSION

We have shown analytically and numerically that, in the
simultaneous presence of a DC and an AC force, where
forces can be either external magnetic fields or currents, a
ferromagnetic DW can synchronize its angle with the AC
force, which in turn gives rise to its straight motion via the
gyrotropic coupling between the angle and the position. In
other words, we have demonstrated that DC motion can be
achieved by AC driving forces, realizing a magnetic soliton
rectifier. One notable feature of the resultant velocity is that
it is linearly proportional to the frequency of the AC force
and independent of its magnitude. We have also discussed
the transition from phase locking to phase unlocking, and
obtained the necessary criteria for the phase-locking behavior.
In this work, we have focused on the cases where the DC
force is strong enough to induce the precessional dynamics
of the DW (i.e., above the Walker breakdown). Further in-
vestigations are needed to understand the DW dynamics in
the presence of general DC and AC forces and thereby obtain
the full nonequilibrium phase diagram of the DW motion. In
addition, we expect that AC-force-driven DW motion exhibits
fractional synchronization phenomena where the angle pre-
cession frequency is locked to a nonintegral rational multiple
of a driving frequency, which we leave as a future research
topic. Last, the identified mechanism for the AC-force-driven
DW motion utilizes the gyrotropic coupling between the DW
angle and the position of ferromagnetic DWs, and thus it
would not be operative for antiferromagnetic DWs, which lack
in the gyrotropic coupling as manifested by the absence of
the Walker breakdown [37,38]. We hope that our work will
trigger new theoretical and experimental researches in the
future, where the DW angle is viewed as an active degree of
freedom for controlling the DW.
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APPENDIX: DERIVATION OF THE CRITERIA FOR THE
PHASE LOCKING-UNLOCKING TRANSITION

Equation (5) of the main text can be recast into a dimen-
sionless form:

d�

dt
= 1 + η sin (� − ωt ) + η sin (� + ωt ), (A1)

where time is measured in units of ω−1
0 = (1 + α2)/γ Hz and

η ≡ ω1/ω0 = απHy/(4Hz ) is a dimensionless number. The
resultant dimensionless equation is characterized by the two
parameters η > 0 and ω > 0. The second equation without
the last term is called the Adler equation, which was used for
the study about the injection locking of a nonlinear oscillator
coupled to a resistance-inductor-capacitor circuit [16].

In the phase-locked regime, � = ωt + δ� with 〈δ�̇〉 = 0.
In terms of δ�, the equation reads

δω + dδ�

dt
= η sin(δ�) + η sin(δ� + 2ωt ), (A2)

where δω ≡ ω − 1. If there was no last term, there would be
a steady-state solution with the constant sin(δ�0) = δω/η.
Then the phase locking-to-unlocking transition would occur
when |sin(δ�)| = 1, and thus |δω| = η. However, the last
term on the right-hand side in Eq. (A2), which does not
appear in the standard Adler equation, gives rise to the os-
cillatory terms in δ� of order of η, which decreases the
phase locking-to-unlocking frequencies as follows. By work-
ing on the regime where η � 1, let us represent the solution
δ� = δ�0 + A sin(2ωt ) + B cos(2ωt ) with the assumption
|A|, |B| � 1 and expand the equation to linear order
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in them:

δω + 2Aω cos (2ωt ) − 2Bω sin (2ωt ) = η{sin (δ�0) + A cos (δ�0) sin (2ωt ) + B cos (δ�0) cos (2ωt )}
+ η sin (2ωt ){cos (δ�0) − A sin (δ�0) sin (2ωt ) − B sin (δ�0) cos (2ωt )}
+ η cos (2ωt ){sin (δ�0) + A cos (δ�0) sin (2ωt ) + B cos (δ�0) cos (2ωt )}. (A3)

By matching the Fourier coefficients, we obtain

δω = η
{

sin (δ�0) − A

2
sin (δ�0) + B

2
cos (δ�0)

}
, (A4)

2Aω = η{B cos (δ�0) + sin (δ�0)}, (A5)

−2Bω = η{A cos (δ�0) + cos (δ�0)}. (A6)

From the last two,(
A
B

)
= − η

8ω2 + 2η2cos2(δ�0)

×
( −2ω sin (δ�0) + ηcos2(δ�0)

η cos (δ�0) sin (δ�0) + 2ω cos (δ�0)

)
, (A7)

leading to

δω = η

(
sin (δ�0) − ηω

4ω2 + η2cos2(δ�0)

)
. (A8)

If we neglect the last term in Eq. (A2), the phase locking-
to-unlocking transition occurs at sin(δ�0) = sgn(δω) which
can serve as the zeroth-order solution to the critical frequency.
By replacing δ�0 by sgn(δω)π/2, we obtain

ωu
c ≈ 1 + η − η

4ωu
c

, (A9)

ωl
c ≈ 1 − η − η

4ωl
c

, (A10)

where ωu
c and ωl

c are the upper and the lower critical frequen-
cies, respectively. The solutions to these quadratic equations
are given by

ωu
c = 1 + η + √

1 + 2η

2
, ωl

c = 1 − η + √
1 − 2η

2
. (A11)

In the limit of η � 1, these solutions satisfy ωu
c → 1 + η

and ωl
c → 1 − η.

[1] A. Kosevich, B. Ivanov, and A. Kovalev, Phys. Rep. 194, 117
(1990).

[2] D. A. Allwood, G. Xiong, C. C. Faulkner, D. Atkinson, D. Petit,
and R. P. Cowburn, Science 309, 1688 (2005).

[3] S. S. P. Parkin, M. Hayashi, and L. Thomas, Science 320, 190
(2008).

[4] N. L. Schryer and L. R. Walker, J. Appl. Phys. 45, 5406 (1974).
[5] S. Lepadatu, O. Wessely, A. Vanhaverbeke, R. Allenspach, A.

Potenza, H. Marchetto, T. R. Charlton, S. Langridge, S. S.
Dhesi, and C. H. Marrows. Phys. Rev. B 81, 060402(R) (2010).

[6] M. R. Hajiali, M. Hamdi, S. E. Roozmeh, and S. M. Mohseni,
Phys. Rev. B 96, 144406 (2017).

[7] G. Tatara, Appl. Phys. Lett. 86, 232504 (2005).
[8] K. Pan, L. Xing, H. Y. Yuan, and W. Wang, Phys. Rev. B 97,

184418 (2018).
[9] W. H. Li, Z. Y. Chen, D. L. Wen, D. Y. Chen, Z. Fan, M. Zeng,

X. B. Lu, X. S. Gao, and M. H. Qin, J. Magn. Magn. Mater.
497, 166051 (2019).

[10] A. Thiaville, J. M. Garcia, and J. Miltat, J. Magn. Magn. Mater.
242–245, 1061 (2002).

[11] O. A. Tretiakov, D. Clarke, G.-W. Chern, Y. B. Bazaliy, and
O. Tchernyshyov, Phys. Rev. Lett. 100, 127204 (2008).

[12] Y. Nakatani, A. Thiaville, and J. Miltat, Nat. Mater. 2, 521
(2003).

[13] J.-Y. Lee, K.-S. Lee, and S.-K. Kim, Appl. Phys. Lett. 91,
122513 (2007).

[14] M. Yan, C. Andreas, A. Kákay, F. García-Sánchez, and R.
Hertel, Appl. Phys. Lett. 99, 122505 (2011).

[15] M. Yan, C. Andreas, A. Kákay, F. García-Sánchez, and R.
Hertel, Appl. Phys. Lett. 100, 252401 (2012).

[16] R. Adler, Proc. IRE 34, 351 (1946).

[17] H. Wang, J. Finley, P. Zhang, J. Han, J. T. Hou, and L. Liu,
Phys. Rev. Appl. 11, 044070 (2019).

[18] L. D. Landau and E. M. Lifshitz, Sov. Phys. 8, 153 (1935).
[19] T. Gilbert, IEEE Trans. Magn. 40, 3443 (2004).
[20] W. H. Rippard, M. R. Pufall, S. Kaka, T. J. Silva, S. E. Russek,

and J. A. Katine, Phys. Rev. Lett. 95, 067203 (2005).
[21] B. Georges, J. Grollier, M. Darques, V. Cros, C. Deranlot, B.

Marcilhac, G. Faini, and A. Fert, Phys. Rev. Lett. 101, 017201
(2008).

[22] S. Urazhdin, P. Tabor, V. Tiberkevich, and A. Slavin, Phys. Rev.
Lett. 105, 104101 (2010).

[23] P. J. Metaxas, J. P. Jamet, A. Mougin, M. Cormier, J. Ferre,
V. Baltz, B. Rodmacq, B. Dieny, and R. L. Stamps, Phys. Rev.
Lett. 99, 217208 (2007).

[24] K.-S. Ryu, L. Thomas, S.-H. Yang, and S. Parkin, Nat.
Nanotechnol. 8, 527 (2013).

[25] K.-J. Kim, S. K. Kim, Y. Hirata, S.-H. Oh, T. Tono, D.-H. Kim,
T. Okuno, W. S. Ham, S. Kim, G. Go, Y. Tserkovnyak, A.
Tsukamoto, T. Moriyama, K.-J. Lee, and T. Ono, Nat. Mater.
16, 1187 (2017).

[26] D.-H. Kim, D.-Y. Kim, S.-C. Yoo, B.-C. Min, and S.-B. Choe,
Phys. Rev. B 99, 134401 (2019).

[27] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.102.184430 for the field-driven domain-
wall motion in low magnetic damping, and Refs. [39–46].

[28] L. Berger, Phys. Rev. B 54, 9353 (1996).
[29] J. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996).
[30] I. M. Miron, K. Garello, G. Gaudin, P.-J. Zermatten, M.

V. Costache, S. Auffret, S. Bandiera, B. Rodmacq, A.
Schuhl, and P. Gambardella, Nature (London) 476, 189
(2011).

184430-8

https://doi.org/10.1016/0370-1573(90)90130-T
https://doi.org/10.1126/science.1108813
https://doi.org/10.1126/science.1145799
https://doi.org/10.1063/1.1663252
https://doi.org/10.1103/PhysRevB.81.060402
https://doi.org/10.1103/PhysRevB.96.144406
https://doi.org/10.1063/1.1944902
https://doi.org/10.1103/PhysRevB.97.184418
https://doi.org/10.1016/j.jmmm.2019.166051
https://doi.org/10.1016/S0304-8853(01)01353-1
https://doi.org/10.1103/PhysRevLett.100.127204
https://doi.org/10.1038/nmat931
https://doi.org/10.1063/1.2789176
https://doi.org/10.1063/1.3643037
https://doi.org/10.1063/1.4727909
https://doi.org/10.1109/JRPROC.1946.229930
https://doi.org/10.1103/PhysRevApplied.11.044070
https://doi.org/10.1109/TMAG.2004.836740
https://doi.org/10.1103/PhysRevLett.95.067203
https://doi.org/10.1103/PhysRevLett.101.017201
https://doi.org/10.1103/PhysRevLett.105.104101
https://doi.org/10.1103/PhysRevLett.99.217208
https://doi.org/10.1038/nnano.2013.102
https://doi.org/10.1038/nmat4990
https://doi.org/10.1103/PhysRevB.99.134401
http://link.aps.org/supplemental/10.1103/PhysRevB.102.184430
https://doi.org/10.1103/PhysRevB.54.9353
https://doi.org/10.1016/0304-8853(96)00062-5
https://doi.org/10.1038/nature10309


MAGNETIC SOLITON RECTIFIER VIA PHASE … PHYSICAL REVIEW B 102, 184430 (2020)

[31] L. Liu, C.-F. Pai, Y. Li, H. W. Tseng, D. C. Ralph, and R. A.
Buhrman, Science 336, 555 (2012).

[32] S. Emori, U. Bauer, S.-M. Ahn, E. Martinez, and G. S. D.
Beach, Nat. Mater. 12, 611 (2013).

[33] J. Yoon, S.-W. Lee, J. H. Kwon, J. M. Lee, J. Son, X. Qiu, K.-J.
Lee, and H. Yang, Sci. Adv. 3, e1603099 (2017).

[34] J. Park, G. E. Rowlands, O. J. Lee, D. C. Ralph,
and R. A. Buhrman, Appl. Phys. Lett. 105, 102404
(2014).

[35] W. Legrand, R. Ramaswamy, R. Mishra, and H. Yang, Phys.
Rev. Appl. 3, 064012 (2015).

[36] T. Taniguchi, S. Mitani, and M. Hayashi, Phys. Rev. B 92,
024428 (2015).

[37] S. Selzer, U. Atxitia, U. Ritzmann, D. Hinzke, and U. Nowak,
Phys. Rev. Lett. 117, 107201 (2016).

[38] O. Gomonay, T. Jungwirth, and J. Sinova, Phys. Rev. Lett. 117,
017202 (2016).

[39] M. J. Donahue and D. G. Porter, OOMMF user’s guide, version
1.0, National Institute of Standards and Technology Report No.
NISTIR 6376, http://math.nist.gov/oommf (1999).

[40] G. S. D. Beach, C. Nistor, C. Knutson, M. Tsoi, and J. L.
Erskine, Nat. Mater. 4, 741 (2005).

[41] M. Fähnle and H. Kronmuller, Micromagnetism and the Mi-
crostructure of Ferromagnetic Solids (Cambridge University
Press, Cambridge, UK, 2003).

[42] J. E. Miltat and M. J. Donahue, in Handbook of Magnetism and
Advanced Magnetic Materials (Wiley, New York, 2007).

[43] falstad.com/circuit/circuitjs.html.
[44] A. M. Sahadevan, K. Gopinadhan, C. S. Bhatia, and H. Yang,

Appl. Phys. Lett. 101, 162404 (2012).
[45] M. Guyot and A. Globus, Phys. Status Solidi 59, 447 (1973).
[46] S. Vélez, J. Schaab, M. S. Wörnle, M. Müller, E. Gradauskaite,

P. Welter, C. Gutgsell, C. Nistor, C. L. Degen, M. Trassin, M.
Fiebig, and P. Gambardella, Nat. Commun. 10, 4750 (2019).

184430-9

https://doi.org/10.1126/science.1218197
https://doi.org/10.1038/nmat3675
https://doi.org/10.1126/sciadv.1603099
https://doi.org/10.1063/1.4895581
https://doi.org/10.1103/PhysRevApplied.3.064012
https://doi.org/10.1103/PhysRevB.92.024428
https://doi.org/10.1103/PhysRevLett.117.107201
https://doi.org/10.1103/PhysRevLett.117.017202
http://math.nist.gov/oommf
https://doi.org/10.1038/nmat1477
http://falstad.com/circuit/circuitjs.html
https://doi.org/10.1063/1.4760279
https://doi.org/10.1002/pssb.2220590209
https://doi.org/10.1038/s41467-019-12676-7

