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Critical assessment of Co-Cu phase diagram from first-principles calculations
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Using first-principles alloy theory, we perform a systematic study of the Co-Cu phase diagram. Calculations
are carried out for ferromagnetic and paramagnetic Co;_,Cu, solid solutions with face-centered-cubic (fcc) crys-
tal structure. We find that the equilibrium volumes and magnetic states are crucial for a quantitative description
of the thermodynamics of the Co-Cu system at temperatures up to 1400 K. In particular, the paramagnetic state
of Cu-rich alloys with persisting local magnetic moments is shown to be responsible for the solubility of a small
amount of Co in fcc Cu whereas the excess entropy in the ferromagnetic Co-rich region critically depends on
the adopted lattice parameters. None of the common local or semilocal density functional theory approximations
have the necessary accuracy for the lattice parameters when compared to the experimental data. The predicted
ab initio Co-Cu phase diagram is in good agreement with the measurements and CALPHAD data, making it
possible to gain a deep insight into the various contributions to the Gibbs free energy. The present study provides
an atomic-level description of the thermodynamic quantities controlling the limited mutual solubility of Co and
Cu and highlights the importance of high-temperature magnetism.

DOLI: 10.1103/PhysRevB.102.184428

I. INTRODUCTION

A fundamental factor in applying first-principles methods
to material design is the accurate description of the thermo-
mechanics [1-3]. Although computations based on density
functional theory (DFT) have been widely used to calcu-
late properties such as equilibrium volume, elastic moduli,
and formation enthalpy at static (0 K) state [4-7], using
first-principles methods to capture high-temperature proper-
ties of materials is very challenging [8]. That is primarily
due to the difficulties in the descriptions of various types
of excitations including phonons and magnons. Therefore,
first-principles calculations are often used to establish the
equilibrium phase diagram at static condition via the calcu-
lations of the phase stability for various structures or phases.
Such calculations provide important information missing in
the experimental phase diagrams at the low-temperature part.
Beyond experiments, phase diagrams are often calculated by
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computational thermodynamics, e.g., CALPHAD (CALcula-
tion of PHAse Diagrams) [9,10], a semiempirical method to
compute multicomponent phase diagrams by modeling the
Gibbs free energy of individual phases with model param-
eters fitted to the experimental data on phase equilibrium
and thermochemical properties of binary and ternary sys-
tems. We notice that Miedema’s model has also been used
to estimate the heat of mixing of binary solution phases over
their whole composition ranges when no experimental data
was available [11,12]. Tools based on the thermodynamic ap-
proach, such as Thermo-Calc [13-15], are able to predict the
thermodynamic properties of alloys with acceptable accuracy
providing that reliable experimental data has been taken into
account in the development of the database [16,17]. There are
recent efforts to include ab initio results into the database
for CALPHAD calculations [18-21], aiming at enhancing
the predicting power of these methods at low temperatures.
Therefore, a direct comparison of the thermodynamic proper-
ties derived from first-principles and Thermo-Calc approaches
provides insight into the atomistic mechanisms behind the
observed behavior and ensures the high accuracy for efficient
material design.

The Co-Cu alloys, as an important system for the produc-
tion of electrothermal materials, have been widely studied
in experiments and theoretical modelings [22-28]. The cal-
culated phase diagram of Co-Cu, shown in Fig. 1, exhibits
magnetic and structural phase transitions as a function of
concentration. It is apparent that Co and Cu become miscible
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FIG. 1. Calculated phase diagram for Co-Cu system using the
Thermo-Calc software. These thermodynamic data were exclusively
derived from experimental data over the entire composition range
[24]. The dashed line is the experimental Curie temperature.

in each other only at elevated temperature, with almost 100%
miscibility gap below 800 K. In pure Co, a phase transition
from hexagonal close-packed (hcp) to face-centered cubic
(fcc) phase occurs at 695 K [29]. Since Co remains fer-
romagnetic up to ~1400 K, the proper description of the
magnetic state for fcc Co-Cu alloys is essential for accurate
free energies at elevated temperatures. In recent years, the
magnetic properties of the Co-Cu system attracted some in-
terest. Mashimo er al. [30] studied the magnetic properties
of Co-Cu alloys prepared by mechanical alloying and found
that the Co-rich region is ferromagnetic, while the Cu-rich
region is paramagnetic at room temperature. It is clear that one
should pay special attention to the role of magnetism when
discussing the energetics of the Co-Cu binary system.

The purpose of this work is to assess the phase diagram
of the Co-Cu binary system from first-principles quantum
mechanical calculations. To this end, we compute the ther-
mophysical parameters of the fcc Co-Cu alloys in order to
estimate the thermodynamic stability at temperatures between
0-1400 K. In practice, we establish all important terms in the
Gibbs free energy using our ab initio thermophysical parame-
ters. In accordance with the experimental [30] and the present
theoretical magnetic phase diagrams, we consider ferromag-
netic (FM) state in the Co-rich region and paramagnetic (PM)
state in the Cu-rich region. The theoretical ab initio phase
diagram is compared to the one obtained by Thermo-Calc.
The impact of the individual terms is discussed. The present
theoretical results give a solid basis for the thermodynam-
ics of the Co-Cu system and emphasize the importance of
magnetism at elevated temperatures. Furthermore, we point
out that highly accurate equations of state for the alloys and
end members are required for a quantitative description of the
entropy especially in the Co-rich region. The rest of the paper
is arranged as follows. We present the computational details
and methodologies for calculating thermophysical properties
in Sec. II. The obtained lattice parameters, Curie temperature,

and elastic properties are presented in Secs. III A, III B, and
IIT C. The results for the enthalpy, entropy, and free energy
are introduced and discussed in Secs. III D, IIIE, and IIIF.
Finally, the main findings and conclusions are summarized in
Sec. IV.

II. METHODOLOGY

A. Total energy method

The total-energy calculations were performed using
density functional theory (DFT) [31] as formulated in
the exact muffin-tin orbitals (EMTO) method [32], using
the Green function and full charge density techniques. The
self-consistent calculations were carried out based on the
generalized gradient approximation via the Perdew-Burke-
Ernzerholf (PBE) [33] approximation and the quasi-non-
uniform approximation (QNA) [34-36] for describing the
exchange-correlation interactions. Alternative approximations
such as PBEsol [37] and AMOS5 [38] were also tested, but
since the results are similar to those obtained by the PBE and
QNA approximations those results are not explicitly shown
here. We adopted the coherent potential approximation (CPA)
[39,40] to describe the compositional and magnetic disorder.
The magnetic disorder in the PM state was accounted for by
using the disordered local moment (DLM) model [41]. The
EMTO method formulates an efficient and accurate approach
for solving the Kohn-Sham equations [42,43]. By using large
overlapping potential spheres, it describes more accurately
the exact crystal potential compared with the conventional
muffin-tin or nonoverlapping approaches [44,45]. The EMTO
method has been successfully applied in a number of first-
principles calculations of the ground state properties of alloys
[46—48]. In addition to the EMTO-CPA calculations, we also
carried out supercell calculations where we went beyond the
single-site CPA and could take into account the local lat-
tice relaxation and chemical ordering effects. In the supercell
calculations, we employed the special quasirandom structure
(SQS) approach [49,50] in combination with the grid-based
projector augmented-wave (GPAW) code [51-53] and the
PBE approximation.

B. Thermodynamic modeling

The CALPHAD calculation was performed by using
Thermo-Calc version 2020b and the accompanying free
database TCBIN [15], which includes the thermodynamic
description of the Co-Cu system from Kubistal and Vrestal
[24]. Thermo-Calc provides a user friendly graphic interface
and users can access the TCBIN database via the BINARY
module. After selecting the elements Co and Cu, users can
choose to calculate either the phase diagram of the Co-Cu
system or the thermodynamic properties of any phase at any
temperature in this binary system. The calculation results are
automatically shown as graphs and can be tabulated.

C. Elastic properties

In a cubic lattice, there are three independent single-
crystal elastic constants, ¢y, ci2, and c44. Usually, ¢;; and
cyp are derived from the bulk modulus B = (c¢i; + 2¢12)/3
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and the tetragonal shear modulus ¢’ = (¢1; — ¢12)/2. In the
present case, the bulk modulus (B) was calculated as a
function of Wigner-Seitz radius (w) using the Morse func-
tion fitted to the total energies computed as a function
of volume per atom, V =4x w3 /3. The two cubic shear
elastic constants ¢’ and c4q were computed as a function
of Wigner-Seitz radius using orthorhombic and monoclinic
distortions as described in Ref. [43]. On a large scale, poly-
crystalline materials can be considered as quasi-isotropic or
isotropic and an isotropic system is completely described by
B and the shear modulus G. Here, we adopted the arithmetic
Hill average to obtain the polycrystalline shear modulus,
viz., G = (Gg + Gy )/2, where the Reuss and Voigt bounds
are giVCH by GR = 5(6‘11 — C12)C44(4C44 + 36‘11 — 36‘12)_1 and
Gy = (c11 — c12 + 3ca4)/5, respectively. The Young modulus
(E) and Poisson ratio (v) are connected to B and G by the re-
lations E = 9BG/(3B + G) and v = (3B — 2G)/(6B + 2G).
The average sound velocity is given by 3v,° = UL_3 + 2v, 3,
where the longitudinal velocity is pv? = B +4G/3 and the
transversal velocity is pv2 = G with p being the average den-
sity. The Debye temperature (®) for a polycrystalline material
is described as ® = h/(2mkg)(67%/V)'/3v,,, where h and kg
are the Planck and Boltzmann constants, respectively [54,55].
In the above expression, both the mean sound velocity and
the volume V are temperature dependent. For the temperature
dependence, we adopted the quasiharmonic approximation.
Namely we computed all elastic parameters including the
Debye temperature as a function of volume and connected the
volume to temperature via the thermal expansion. The thermal
expansion coefficient for different concentrations in turn was
estimated by a linear relationship based on the experimental
thermal expansion coefficients of pure Co and pure Cu [56].

D. Gibbs free energy

The Gibbs free energy G(x, T) is expressed as a function
of concentration (x) and temperature (7') using the following
approximation

G()C, T) = Eint(xv T) - T[Sconf(x) + Svib(xs T)
+Smag(x’ T)] + Evib(xa T) + AFele(xv T) (1)

Here Ei, is the internal energy calculated for concentra-
tion x and volume corresponding to temperature 7'; Scont,
Syib, and Sy, are the entropy contribution due to the con-
figurational, vibrational, and magnetic degrees of freedom,
respectively. According to, e.g., Refs. [8,54,57], the vibra-
tional energy Eyin(x,T) = 9/8kg® + 3kgTD(®/T), where
the Debye function is D(x) = 3/x° fg 3/(e' — 1) dt. AFye =
Fee — Eiy 1s the free energy contribution due to finite temper-
ature electronic excitations, where F. is the internal energy
computed with the Fermi-Dirac distribution. All energy and
entropy terms are expressed per atom.

The configurational and magnetic entropies are com-
puted within the mean-field approximation, namely, Scons =
—kp > xIn(x;), where x; is the concentration of alloy
components (in our case x; =x and x; =1 —x), Spae =
—kp Y x;In(1 + w;), where ; is the local magnetic moment
of alloy component i calculated for the corresponding volume.
The local magnetic moment is expressed in Bohr magneton.
Magnetic entropy was taken into account for the PM state,

whereas for the FM state it was assumed to be zero. Ob-
viously, neglecting the magnetic excitations in the FM state
especially close to the Curie point introduces some errors in
the Gibbs energy due to the missing magnetic free energy
contribution. This error is expected to be the largest near
the solubility limit around 1400 K. The vibrational entropy
is computed from the temperature dependent Debye temper-
ature using the expression Sy, = 3kp{4/3D(®/T) — In[1 —
exp(—®/T)]}, which reduces to Syi, = kg[4 + 3In(T/O)] in
the high-temperature limit (see Ref. [41]). We notice that Co
and Cu are miscible in each other only at elevated tempera-
tures (see Fig. 1) where such a high temperature expression
holds to a very good approximation.

E. Computational details

The EMTO Green function was calculated for 16 complex
energy points distributed exponentially on a semicircular con-
tour including the valence states. In the basis set we included
s, p, d, and f orbitals (/,x = 4), and for the full charge
density we used the [ cutoff I, = 8. The electrostatic correc-
tion to the single-site approximation was described using the
screened impurity model with a screening parameter of 0.6
[58]. To ensure the numerical accuracy the integration over
the Brillouin zone was done using a 37 x 37 x 37 uniform
grid of k points for equation of state calculations, whereas
it was increased to 45 x 45 x 45 for the calculations of the
elastic constants. The Co-rich alloys were described in the
FM state at temperatures ranging between 0 K and 1400 K
(that is below the Curie temperature of Co, TCCO = 1394 K).
According to the experimental phase diagram of Co-Cu alloys
[23,29,59], we simulated the Cu-rich alloys within the PM
state using the DLM scheme. We should recall that Co at
temperatures below 695 K has the hcp structure, which is not
considered here due to the very small solubility of Cu in hcp
Co. We mention, however, that the hcp-fcc phase transition in
Co was recently successfully described using ab initio tools
by Lizarraga et al. [60].

In the GPAW-SQS calculations, we used a 32-atom unit
cell, which was constructed from eight primitive fcc unit
cells in 2 x 2 x 2 shape [61]. The k-point mesh was set as
8 x 8 x 8 using the Monkhorst-Pack scheme [62]. The plane-
wave expansion cutoff energy was adopted to 700 eV and the
relaxations were deemed finished when all forces and stresses
were below 0.05 eV/A. For the Brillouin zone integration,
we used Fermi-Dirac statistics and the smearing width was
chosen to be 0.01 eV. Short-range order calculations were
performed by generating a set of 32-atom structures with
varying degree of short-range order, which was quantified by
the Warren-Cowley short-range order parameters «; [63]. The
structures were generated using the methodology presented in
Ref. [64].

III. RESULTS AND DISCUSSION

A. Lattice parameter

For pure Co and Cu, the EMTO method has the accuracy
of the most accurate full-potential methods [35,60]. For fcc
Co;_,Cu, random alloys, a careful survey of the available
experimental data for the equilibrium lattice parameter is
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FIG. 2. The calculated lattice constants of fcc Co-Cu random
alloys as a function of Cu concentration (x) for ferromagnetic (FM,
open symbols) and paramagnetic (PM, solid symbols) states. The
EMTO calculations were done using the PBE (square symbols)
and QNA (circle symbols) exchange-correlation approximation. The
GPAW results (triangle symbols) with and without lattice relax-
ation were obtained using the PBE approximation. Three sets of
experimental data (Refs. [23,29,30]) are plotted for comparison. The
deviations from Vegard’s law for all calculated results in the FM state
and all experimental data are plotted together in the inset figure. Note
that all theoretical lattice constants are computed at static conditions
and the experimental data are measured at room temperature.

collected in Fig. 2 [23,29,30]. The present EMTO (PBE and
QNA) results for the equilibrium (static conditions) lattice
constants obtained for the FM and PM states are also plotted,
as well as the GPAW-PBE results with and without lattice
relaxation. For a more quantitative comparison, in the inset
of Fig. 2 we show the deviations relative to Vegard’s law as a
function of x.

For both FM and PM states, the PBE lattice parameters
show a significantly larger slope as a function of Cu content
compared to the experimental data. This is primarily due to the
fact that PBE underestimates (overestimates) the equilibrium
volume of Co (Cu), which is a well-known effect [35,65].
For the FM state, the QNA lattice constants are in line with
Vegard’s law. Recalling the fact that QNA by construction is
practically exact for pure elements, the nearly composition
independent shift relative to the linear rule of mixture can
be ascribed to the neglected thermal effects. For Cu, the FM
and PM results agree with each other (both of them corre-
spond to the nonmagnetic solution). For Co, the PM volume
is much smaller than the FM one, which is due to the loss
of the magnetic pressure present primarily in the FM state.
As a result, the lattice constants in the PM state have a clear
negative curvature as a function of Cu concentration. We ob-
serve that the experimental lattice constants show a significant
positive deviation compared to the Vegard’s line. Indeed, the
Aa(x) = a(x) —x x a(Cu) — (1 — x) x a(Co) data plotted in
the inset show that all experimental lattice constants deviate
strongly from the linear behavior, while the theoretical (FM)
results are rather close to a linear trend. Comparing the PBE

and QNA values, we find that the QNA lattice constants have
a better agreement with the experimental data in line with
Refs. [63,66]. We recall that the theoretical results in Fig. 2
correspond to static conditions whereas the experimental data
to room-temperature and thus smaller theoretical values are
expected for all concentrations. It should be noted that the
EMTO results are very close to GPAW values obtained for
the FM state and PBE approximation.

As we have seen, the present ab initio calculations are not
able to reproduce the trend of the experimental lattice con-
stants, especially the significant positive deviation compared
to the Vegard’s line. Exceptions are the results obtained for the
PM state, but we completely rule out those data for the entire
compositional interval since Co-rich alloys were found to be
ferromagnetic [29]. The lack of the positive deviation in the
theoretical results could potentially be caused by the single-
site CPA, if either local relaxations or short ranged chemical
ordering, or both, were an important factor. However, as Fig. 2
shows, both the relaxed and unrelaxed GPAW-PBE lattice
constants exhibit weak positive curvature, so local relaxations
do not seem to be the cause behind the observed deviation
between theory and experiment. Furthermore, by comparing
the unrelaxed supercell and CPA results, we find that the
mean-field description of the solid solution as compared to
the more precise supercell model does not introduce any sub-
stantial error either.

We have also investigated the possible impact of the short-
range order by calculating a set of structures with varying
degree of short-range order for x = 0.5 alloys. Short-range
order in these structures was measured by the Warren-Cowley
parameters «;, which describe the pair correlation between
different types of atoms on the ith nearest neighbor shell. The
most important parameter is «;, which for fcc structure is zero
for fully random structures and —1/3 for fully ordered L1
and L1, structures. Here we focus on the first three nearest
neighbor shells and neglect the rest. In order to explore a range
of different short-range order situations, we have calculated
eight different structures in the range —0.15 < «; < 0, where
for one half a, and a3 are decided by the minimum entropy
condition (maximize || and |w3|) and for the other half
by the maximum entropy condition (minimize |a,| and |o3|)
[63]. Local relaxations and cell optimization were taken into
account in all of these supercell calculations. The result is that
short-range order can positively increase the lattice constant
of the alloys up to ~0.005 A compared to Vegard’s rule. This
increase induced by local ordering effects explains about 30%
of the positive deviation that is seen in the experimental data.
Based on these findings, we conclude that the positive devia-
tion relative to the linear trend observed in the experimental
data cannot be captured by regular DFT calculations and ef-
fects beyond DFT, further thermal effects (thermomagnetic or
long-range order effects), or alloy preparation could be behind
this trend. In particular, we notice that mechanical alloying
was reported to introduce a certain amount of N and O into the
lattice which could eventually explain the observed substantial
positive deviation in the lattice parameters relative to a linear
trend [23]. As we will see later, this positive deviation from
Vegard’s law is critical for a quantitative description of the
excess entropy and thus we call for further in-depth analysis
to reveal the exact origin of this phenomenon. In the following
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FIG. 3. The calculated magnetic moments and Curie tempera-
ture using the experimental volumes for Co-Cu random alloys in
the Co-rich (0 < x < 0.2) and Cu-rich (0.8 < x < 1) regions. Panel
(a) shows the calculated magnetic moments for Co (i , square sym-
bols) and Cu (i, circle symbols) for the FM (open symbols) and
PM (solid symbols) states, as well as total magnetic moment ({4oa1,
blue symbols). Panel (b) presents the theoretical Curie temperature
(T¢) for the fcc Co-Cu alloys calculated using the room-temperature
volumes. For comparison, the experiment measured data (Ref. [70])
are also plotted, as well as two previous theoretical 7c values for
Co (Refs. [67,71]). The inset in panel (b) shows the variations of
the theoretical Curie temperature and magnetic moments ({4c,, blue
line) for pure Co with respect to the lattice parameters corresponding
to temperatures from 0 K to 1400 K. The separate point around
3.528 A (TF"™™) is the result obtained using the theoretical equi-
librium (static) total energies for both FM and PM states.

ab initio theoretical study, we will adopt the experimental
lattice parameters [23] and use the thermal expansion to get
the volume at each temperature. For comparison, we will also
show results obtained adopting the static theoretical volume
(and scaled with the thermal expansion coefficient to get the
theoretical volume as a function of temperature) to highlight
the importance of the correct volume used in the ab initio
calculations. All remaining calculations will be carried out
based on the PBE approximation for describing the exchange-
correlation interactions.

B. Magnetic structure

In the Co-Cu binary system, the Co-rich region shows
ferromagnetic order, while the Cu-rich region is paramagnetic
with very low ordering temperature. We plot the variation
of the total magnetic moments ({ti) calculated using the
experimental volumes for the FM and PM states in Fig. 3(a),
together with the local moments for Co and Cu components.
The present calculated magnetic moments of pure Co (x =
0) is 1.68 ug, which agrees well with the previous values

[30,67,68]. In the Co-rich region, the total magnetic moment
gradually decreases with increasing Cu concentration. The
local magnetic moments of Co and Cu remain basically sta-
ble with composition. In the Cu-rich side, the total magnetic
moment is zero due to the PM state. However, even in the
Cu-rich dilute PM alloys, the Co atoms possess sizable local
magnetic moments. However, as we will see it below the cou-
pling between these local Co moments is not strong enough to
maintain a long-range magnetic order at finite temperatures.
We notice that freezing the Co moments to zero (i.e., ne-
glecting the spin polarization in the Cu-rich end of the phase
diagram) increases the FM (PM) total energy of the system
by 1.2-2.2 mRy/atom. These results were obtained by CPA
which may not properly capture the physics of dilute magnetic
moments. Because of that, we also checked the local magnetic
moments in the FM state as predicted by CPA and SQS in
the Cu-rich region. They turn out to be 1.50 up and 1.54 usg,
respectively, showing that the survival of the local magnetic
moments on Co atoms embedded in a Cu matrix is not an
artifact of the mean-field approximation.

We calculated the Curie temperature (7¢) for fcc Co-Cu
alloys and compare it with the experimental data in Fig. 3(b).
Here the Curie temperature was estimated using the mean-
field approximation [69], 3kpTc = 2(EPM — EEM)/(1 — x),
where (EPM — EFM) i the difference between the total en-
ergies of the PM and FM states and x is the concentration of
nonmagnetic element (Cu). For comparison, the experiment
data [70] as well as previous theoretical results [67,71] are
also shown in the figure. In the Co-rich region, the calculated
Tc gradually decreased with increasing Cu concentration,
whereas in the Cu-rich region 7¢ approaches 0 K. In general,
the calculated T¢ is in good agreement with the measurements.
The present theoretical predictions for the magnetic ordering
temperature fully support the magnetic phase diagram shown
in Fig. 1 and give a theoretical support behind the FM and
PM states employed for the Co-rich and Cu-rich regions,
respectively. We notice that a more advanced spin dynam-
ics modeling based on magnetic Hamiltonian (not shown)
leads to very similar magnetic transition temperatures as those
shown in Fig. 3(b).

We emphasize that the adopted lattice constant is impor-
tant when estimating the Curie temperature since different
volumes yield different mean-field 7 values. To illustrate this
effect, in the inset of Fig. 3, we plot the calculated 7¢ and mag-
netic moments (ic,) for pure Co with respect to the lattice
parameter. It is found that the calculated 7¢ and pc, increase
as the lattice parameter used in the total energy calculations
increases. We find that the larger local magnetic moment
with increasing volume stabilizes the FM state with respect
to the PM one which leads to the increase in the Curie tem-
perature. The predicted T¢ using the theoretical equilibrium
volumes of the FM and PM states (corresponding to zero pres-
sure in both magnetic states) is TCE quilibrivm_ 4 349 K, which
agrees well with previous mean-field results (1270 K [67] and
1360 K [71] for Co). The theoretical T¢ for fcc Co using the
room-temperature volume (for both the FM and PM states) is
TRoomemperae _ 1456 K, which agrees reasonably well with
the experimental Curie temperature of Co (T¢c = 1388 K). We
note that almost the same value (TCOK = 1429 K) is predicted
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FIG. 4. Calculated elastic parameters and Debye temperatures of
random fcc Co-Cu alloys as a function of Cu concentration x. The
squares and triangles are results obtained for the FM state using
theoretical (static) and experimental (room-temperature) volumes,
respectively. The stars are computed for the PM state using the
experimental volumes.

when using the experimental volume extrapolated to 0 K.
However, adopting the volume at 1400 K leads to substantially
larger T¢ (close to 1600 K).

C. Elastic properties

Using the theoretical equilibrium (static conditions) and
the experimental (room-temperature) lattice constants, we cal-
culated the single and polycrystalline elastic parameters as
well as the polycrystalline Debye temperature of Co-Cu ran-
dom alloys. The results are plotted in Fig. 4 as a function of
Cu concentration. We notice that the difference between the
two sets of ab initio elastic constants does not fully reflect
the effect of temperature (within the quasiharmonic approx-
imation) when going from 0 K to room temperature since
the theoretical equilibrium volumes and the estimated 0 K
experimental volumes slightly differ (see, e.g., inset in Fig. 3).
We will come back to this question later.

The single-crystal elastic constants calculated using the
theoretical lattice parameters follow a nearly linear trend,
whereas those calculated using the experimental lattice
constants show a noticeable nonlinear behavior. For the
polycrystalline elastic moduli and Debye temperature, the
trends obtained when using the theoretical and experimental
lattice parameters are similar to those found for the single-
crystal elastic constants, and the results calculated using the
experimental volumes show again a clear nonlinear trend.
Furthermore, comparing the elastic constants and Debye tem-
peratures obtained for the FM and PM states (using the
experimental volumes), we find that the values and trends
in these two sets of theoretical data are relatively close to
each other suggesting that the direct magnetic contributions
in these parameters are small.

In order to reveal the deviations relative to the linear trends,
we introduce the following quantity [72]:

AC(x) = C(x) — (1 — x)C(0) — xC(1), 2)

where C(x) stands for a certain equilibrium property cal-
culated for alloy with concentration x. By separating the
nonlinear contribution AC(x), we can have a closer look and
a more detailed investigation of the alloying effects.

The obtained nonlinear contribution for the elastic parame-
ters are plotted in Fig. 5. All single-crystal elastic constants in
Fig. 5 (left panels) strongly deviate from the linear behavior.
The Ac;; and AB calculated using the experimental volume
follow a parabolic trend with the minimum appearing at 40—
60% Cu and dropping by about 5-23 GPa. In the calculations
using the static theoretical volume, Acys and Acy, also show
complex trends which differ from the parabolic trends of Acy;
and AB. Namely, Acsq and Acy, change sign at 60% and 30%
Cu, respectively, while Acs4 has a blurred local maximum
around 90% Cu concentration. Due to the nonlinear behav-
iors of the single-crystal elastic constants, the deviation of
the polycrystalline elastic constants and Debye temperature
shown in Fig. 5 (right panels) are expected to show also
nonlinear behavior. Basically, the smooth curves similar to
a parabolic trend are maintained for AG and AE calculated
using the theoretical and experimental volumes. However, the
Poisson ratio Av displays a complex curve with a maximum
at 10% Cu. We notice that the complex composition depen-
dences of ¢y, and c44 show good correlation with the trend of
the adopted lattice parameters. Considering a regular volume
dependence (i.e., elastic constant decreases with increasing
volume), one finds that the trends of Acj, and Acyy for both
experimental and theoretical volumes reflect well the trends
of the corresponding lattice parameters in the inset of Fig. 2.
In the case of ¢, the deviation compared to the linear trend is
much larger than those obtained for ¢}, and c44 and resembles
the one followed by B.

The calculated Debye temperature exhibits a similar trend
as that of AG and AE. The minimum of AG, AE, and
Debye temperature are close to 40% Cu, and that of Av
to 80%. We notice that the strong negative deviation of the
Debye temperature relative to the linear trend is critical for a
positive excess entropy. This is because at high temperature
the entropy is proportional to Sy, = kg[4 + 3In(T/©)] [73],
meaning that for instance for the equiatomic alloy ®(0.5)
should be below /Oc,B¢, in order to yield positive ASyip.
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FIG. 5. Deviations from the linear behavior of the calculated
elastic parameters and Debye temperature of random fcc Co-Cu
alloys as a function of Cu concentration x. The squares and triangles
are results in the FM state using theoretical (static) and experimental
(room-temperature) volumes, respectively. The stars are computed
adopting the PM state and the experimental (room-temperature) vol-
umes. The thin dashed line marks A (5" O%)).

In Fig. 5, we indicate the critical values A(O(,*OF,) by a
thin dashed line. Notice that when ®(x) is below this critical
value, the excess vibrational entropy is positive. Comparing
the present theoretical trends to the critical Debye tempera-
tures as defined above indicates that the vibrational entropy
contributions will have different signs when computed using
the theoretical and experimental lattice parameters. We will
return to this question when discussing the excess entropy.

As described above, the elastic parameters derived using
the experimental (room-temperature) volumes in the FM and
PM states always follow a similar trend. However, the FM
results show a significant difference when considering the
theoretical and the experimental volumes. Therefore, we con-
clude that the effect of volume on elastic properties of random
fcc Co-Cu alloys is significant whereas the effect of the mag-
netic state in the Cu-rich alloys is minor.

Sl L AR
a) IcC Lo
L H‘Z:::::::::§"F‘-C—]~l~ ( ) J
_ool T oo |::|::|::| 4
5 _ c
C | Rimmmiiocpoig
2 x “'&“::E‘EEEEE.“: == :E‘
U'N"]OO— 44 N
200 ———————+—+——F+——
Mg (b) fee Cu
a
150 | ®m-—"0P80gag < ]
- S TTme ] I:::::=::.“.--I -
5 G0Q0Q000VQ00--¢.%12 n-E--m
S Y S - 8agg 1
= | AEA_AA:AE :A:i::‘:::#é: =7 &= =
50 | ]
0 L | L | L ! : L * . ! :
200 400 600 800 1000 1200 1400

Temperature (K)

FIG. 6. Single elastic constants (c;;) for fcc Co and Cu as a
function of temperature. The solid symbols are the calculated elastic
constants using the theoretical (blue) and experimental (pink) vol-
umes as a function of temperature. The theoretical calculated ¢y, c12,
and c44 are plotted as solid square, circle, and triangle, respectively.
The available experimental data [74—76] (open symbols) are plotted
for comparison.

So far we introduced results obtained for the theoretical
(static) and experimental (room-temperature) volumes. How-
ever, for the phase diagram we need to have access to the
temperature-dependent elastic parameters, i.e., we need to
know the full ¢;;(T, x) functions. In Fig. 6, we present the
calculated single elastic constants for pure Co and Cu as a
function of temperature, together with the available experi-
mental data [74-76]. The two sets of theoretical results were
obtained using the theoretical volumes (theoretical equilib-
rium volumes scaled with the thermal expansion coefficient)
and the experimental volumes (room-temperature experimen-
tal volumes scaled with the thermal expansion coefficient),
respectively. Since we could not find experimental data for
the alloys, the temperature dependence of the elastic con-
stants for the alloys is not explicitly shown and discussed
here. The theoretical (measured) c;;, c12, and c44 are plotted
as solid (open) square, circle, and triangle, respectively. In
the case of fcc Co, the calculated elastic constants are in
good agreement with the experimental values corresponding
to room-temperature and 710 K. For fcc Cu, theory slightly
overestimates c¢;; and ¢y, at low temperatures. In the case of
cu4, the predicted temperature dependence follows closely the
experimental trend. We also notice that the ¢;;(T, x) curves
obtained for the theoretical and experimental volumes are very
similar, although they are slightly shifted relative to each other
due to the small differences between the theoretical and exper-
imental volumes. In general, for the pure end members, the
theoretical temperature factors reproduce the observed trends
with high accuracy. Because the present theory is not limited
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FIG. 7. Relaxation energy (E;) as a function of the Cu
concentration (x) for the Co-Cu alloys calculated using the
GPAW-SQS method. The circles are the difference between
the unrelaxed and relaxed energies for concentrations x =
0.125,0.25, 0.375, 0.625, 0.75, 0.875. The dashed line is a polyno-
mial fit of the E; versus x dataset. Results are shown both in J/mol
and mRy/atom units.

to the pure elements and there is no a priori reason why it
should perform less accurately for solid solutions than for the
elemental metals, we assume a similar level of accuracy for
alloys as the one shown in Fig. 6. In the following, we use the
so computed temperature and composition dependent elastic
parameters to evaluate the thermodynamic quantities entering
the Gibbs energy (1).

D. Enthalpy of formation

The enthalpy of formation of an alloy is an excess energy
due to the additional interaction present in the alloy compared
to the end members. Therefore all effects which are present
in the alloy but missing in the pure components are critical
for a quantitative estimation of the formation enthalpy. When
combining elements with sizable differences in atomic vol-
umes a significant local lattice distortion can develop. Since
no atomic forces can be computed using the EMTO method,
the local relaxation around individual atoms cannot be ac-
counted for by this approach. Previous studies demonstrated
that the relaxation energy within the EMTO-CPA scheme is in
reasonable agreement with the one obtained in the PAW-SQS
study. With the EMTO-CPA scheme, one can estimate the
relaxation effect on the formation enthalpy using the effective
tetrahedron approach developed by Ruban et al. [77]. This ap-
proach was found to perform well for a Cu-Au binary system
[7]. Here we follow a different route and address the local
lattice relaxation and the associated relaxation energy (E;) in
fcc Co-Cu alloys by using the GPAW method. As described in
Sec. ITE, all atomic relaxation energies for Cu concentrations
x were calculated in the FM state using the SQS scheme.
All GPAW-SQS calculations were based on the corresponding
theoretical equilibrium volume which are very close to those
computed using the EMTO-CPA approach (see Fig. 2). The
results are presented in Fig. 7. We find that the energy change
due to the local lattice relaxation increases with Cu content,
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FIG. 8. Comparison between ab initio (unrelaxed and relaxed),
Thermo-Calc, and experimental formation enthalpies for the Co-Cu
system as a function of Cu concentration. All shown data correspond
to room temperature, and the ab initio calculations were carried out
using the room-temperature experimental volumes and for the FM
state. The unrelaxed results are derived from the EMTO-CPA total
energies, whereas the relaxed results take into account the relaxation
energy shown in Fig. 7.

reaches a maximum of about 1172 J/mol around 55% Cu,
and decreases in the Cu-rich side of the binary system. We fit
the individual energies by a third-order polynomial function
which will be used to correct the total energy and enthalpy
obtained within the mean-field approximation. We notice that
the same relaxation energy obtained for the FM state will be
adopted for both FM and PM CPA results, i.e., we assume that
in the Cu-rich end of the phase diagram the relaxation energy
weakly depends on the magnetic state. One argument behind
this assumption is that we see a relatively weak magnetic
state dependence of the elastic properties in the Cu-rich alloys
(Figs. 4 and 5).

The present ab initio results for the room-temperature
formation enthalpy are shown in Fig. 8 as a function
of Cu concentration. For comparison, we also show the
Thermo-Calc results at room temperature and the available
experimental data. All theoretical results correspond to the
room-temperature volumes and to the FM state. It can be seen
that the Thermo-Calc formation enthalpy is in good agreement
with the experimental values [23], and the maximum value
is around 12 kJ/mol. Both for the theoretical and experi-
mental volumes, the calculated formation enthalpy without
the local relaxation is higher than the Thermo-Calc and ex-
perimental data. However, when the local relaxation energy
is included, the so-called relaxed formation enthalpy values
are significantly reduced and come in an excellent agree-
ment with the Thermo-Calc values, especially in Co-rich and
Cu-rich regions. In general, comparing the results with and
without relaxation, it can be concluded that the local relax-
ations are important for calculating the formation enthalpy of
Co-Cu alloys.

Before ending this section, we notice that ordering could
further affect the formation enthalpy of the binary alloy. Using
the quasiordered structures considered for assessing the effect
of short-range order on the lattice parameter, we estimated the
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temperature where no sizable short-range order develops. We
find that at temperatures above ~1300 K, the short-range or-
der effects can safely be dropped. At temperatures around and
higher than 1300 K, the configurational entropy term removes
all ordering effects and the alloy is close to a fully random
state. Therefore the theoretical formation enthalpy in Fig. 8
and in the following sections corresponds to fully random
solid solutions. We notice that according to our calculations,
below ~1300 K, short-range order effects could lower the
Gibbs free energies and thus slightly affect the theoretical
phase diagram. However, considering the experimental phase
diagram these effects are expected to be minor.

E. Entropy

Within the present approximation, the vibrational and mag-
netic entropy contributions are decoupled and therefore they
are computed separately. To compare the ab initio excess
entropy to the Thermo-Calc value, we consider the sum of
all entropies except the configuration entropy. We notice that
the contribution of electronic entropy has been taken into
account in electronic free energy (AFg) as shown in Eq. (1).
Moreover, electronic entropy is rather small for the present
binary system so one can safely ignore its effect in the excess
entropy. Accordingly, in the FM state, the excess entropy is
expressed as the vibrational entropy, AST™™ = AS.;,, while
in the PM state it consists of the vibrational and magnetic
entropies, AStM = ASyip + ASmag. The calculated excess and
total entropies corresponding to the room-temperature ex-
perimental volumes are plotted in Fig. 9 as a function of
Cu concentration. For comparison, the entropy calculated by
the Thermo-Calc software is also presented as well as the
ab initio FM results obtained using the room-temperature
theoretical volumes.

We notice that the present ab initio excess and total en-
tropies using the experimental volume are in good agreement
with the Thermo-Calc results. It is very important to observe
that the agreement in the Cu-rich part is substantially im-
proved when the PM state is considered and one accounts
for the entropy due to the disordered magnetic state. The
peculiar feature of the Thermo-Calc (in fact experimental)
total entropy near 80% Cu can only be captured when one
properly accounts for the magnetic state of Cu-rich alloys.
This is because the magnetism of Cu-rich region of the Co-Cu
alloys is correctly modeled as the paramagnetic state. Hence,
the contribution of magnetic entropy in the Cu-rich region is
not negligible and as we will see it below this term is the
reason for the finite solubility of Co in fcc Cu at elevated
temperatures. Compared to the PM results, the excess entropy
calculated using the experimental volume and FM state in the
Cu-rich region differs greatly from the experimental value.
Finally we observe that calculations performed using the
room-temperature theoretical volume lead to negative excess
entropy within the Cu-rich region. It is mainly related to the
calculated Debye temperature, which strongly depends on the
adopted lattice parameters.

F. Free energy

First we present the ab initio free energies calculated
using theoretical and experimental volumes at different
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FIG. 9. Comparison between experimental (Thermo-Calc) and
theoretical (present study) excess (ASys) and total (AS,,) entropies
for Co-Cu alloys plotted as a function of Cu concentration. In the
upper panel, we also show the vibrational entropy (ASyp, A) and
magnetic entropy (ASy., V) obtained by using the experimental
volumes in the PM state for reference. The shown data correspond
to room temperature. For comparison we also give the theoretical
results obtained for the FM state using the room-temperature theo-
retical volumes.

temperatures for fcc Co-Cu alloys within Co-rich and Cu-rich
regions in Fig. 10. All shown results assume fully random
solid solutions. For comparison, the Thermo-Calc free ener-
gies are also plotted as a function of Cu concentration x. For
the Co-rich region in the FM state, the ab initio free energy has
a reasonable agreement with the Thermo-Calc results. On the
other hand, the calculated free energy of the Cu-rich region in
the PM state is somewhat higher than the Thermo-Calc value,
which is related to the slight underestimation (overestimation)
of the total entropy (enthalpy) in this region, as shown in Fig. 9
(Fig. 8). Comparing the ab initio free energy using theoretical
and experimental volumes, we find that the calculated free
energy using experimental volumes have a better agreement
with Thermo-Calc values. Based on the calculated free ener-
gies, the energy curves in Co-rich and Cu-rich regions at a
given temperature share a common tangent line to obtain two
concentration values, which define the phase boundaries in the
calculation of phase diagram.

The so obtained results are collected and shown as circle
and star symbols in Fig. 11. With increasing temperature, the
free energy both of the Co-rich and Cu-rich region presents
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temperatures. The star (circle) symbols are the calculated Gibbs free
energies using the experimental (theoretical) volumes as a function

of Cu concentration x. We also show the FM results in the Cu-rich
region for reference.

a more pronounced parabolic trend. The free energy trend in
the Co-rich region (Cu concentration x from 0 to 0.2) is similar
to the calculated phase diagram, and thus the phase diagram
in this region is close to the Thermo-Calc result. However,
in the Cu-rich region (Cu concentration x from 0.8 to 1), the
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FIG. 11. Theoretical ab initio phase diagram (circles and stars)
in comparison with the Thermo-Calc (solid lines) phase diagram,
as well as the experimental values (cross symbols) [29,78-81]. The
star (circle) symbols are the phase diagram predicted using the ex-
perimental (theoretical) volumes. The solid (open) symbols are the
results in the PM (FM) state.

ab initio phase boundary somewhat deviates from the Thermo-
Calc phase boundary but the trends are still very similar. For
comparison, we also show the results in the FM state for using
the experimental and theoretical volumes. It indicates that
omitting the magnetic entropy removes the solubility in the
Cu-rich side. In general, the phase diagram of Cu-Co alloys
predicted using first-principles approach basically agrees with
the Thermo-Calc results.

We briefly discuss the larger disagreement obtained for the
Cu-rich alloys compared to the Co-rich alloys. As mentioned
above, the deviation in the Gibbs free energies in Fig. 10 can
primarily be ascribed to the smaller ab initio excess entropy
than the Thermo-Calc value (Fig. 9). One could associate
the missing excess entropy to clustering effects due to the
different electronic structure of Co and Cu. However, since
the difference between the ab initio and Thermo-Calc Gibbs
energies for Cu-rich alloys in Fig. 10 is weakly temperature
dependent, it is unlikely that this has a chemical ordering
origin. Furthermore, according to our study, the chemical
short-range order effects become negligible above 1300 K.
Therefore, we rule out that clustering/ordering is the origin
of the observed disagreement in Cu-rich alloys. Since the
present magnetic entropy is a mean-field value (representing
the upper limit of the paramagnetic entropy), we do not ex-
pect additional magnetic entropy effects either. Furthermore,
we notice that the present theoretical vibrational entropy is
based on the Debye model, which is known to have limited
accuracy at temperatures far above the Debye temperature.
Although our linear thermal expansion coefficient computed
for Cu (not shown) follows closely the experimental trend
even at the highest temperatures considered here [82,83], we
cannot completely rule out that the vibrational entropy of
Cu-rich alloys has reduced accuracy at high temperatures.
On the other hand, we observe that the entropy for the Cu-
rich alloys also depends on volume. Adopting theoretical or
different sets of experimental volumes yields different excess
entropy values for the Cu-rich alloys. Although this volume
sensitivity seems a plausible explanation, further investiga-
tions are needed to find the exact origin of the obtained
deviations.

IV. CONCLUSIONS

In the present work, we performed ab initio calculations in
combination with alloy theory formulated within the EMTO-
CPA approach to assess the phase diagram of Co-Cu alloys
at temperatures 0—1400 K. Atomic relaxation was determined
by a full-potential ab initio approach and was included in
all calculations. The theoretical lattice constant results show
a linear or even negative deviation compared to Vegard’s
law which is in sharp contrast to the experimental values
having a clear positive deviation. This difference becomes
critical in the calculations of the elastic parameters and de-
rived thermophysical properties. The estimation of the Curie
temperature indicates persisting magnetism in the Co-rich al-
loys and paramagnetism in the Cu-rich region. We calculated
the vibrational entropy as a function of concentration using the
theoretical and experimental volumes. The predicted excess
entropy in Cu-rich region based on the theoretical volumes is
negative, opposite to the Thermo-Calc value. When using the
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experimental volume, the theoretical trends come in registry
with the experimental trends. We show that the contribution
of magnetic entropy to the free energy in the Co-Cu system
is not negligible, which becomes evident by comparing the
excess entropies of the Cu-rich region obtained for the FM and
PM states and the one computed using the Thermo-Calc soft-
ware. Basically, the phase diagram of Co-Cu alloys predicted
by the present first-principles method has a good agreement
with the thermodynamic and experimental data. The present
systematic study of Co-Cu alloys not only provides an atomic-
level understanding for predicting the phase diagram of Co-Cu
system but also highlights the importance of high-temperature
magnetism. Nevertheless, the positive deviation of the ex-
perimental data for the equilibrium volume compared to

Vegard’s law remains an open question which calls for further
investigations.
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