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We study random dense packings of Heisenberg dipoles by numerical simulation. The dipoles are at the
centers of identical spheres that occupy fixed random positions in space and fill a fraction � of the spatial
volume. The parameter � ranges from rather low values, typical of amorphous ensembles, to the maximum
� = 0.64 that occurs in the random-close-packed limit. We assume that the dipoles can freely rotate and have
no local anisotropies. As well as the usual thermodynamical variables, the physics of such systems depends
on �. Concretely, we explore the magnetic ordering of these systems in order to depict the phase diagram in
the temperature-� plane. For � � 0.49 we find quasi-long-range ferromagnetic order coexisting with strong
long-range spin-glass order. For � � 0.49 the ferromagnetic order disappears giving way to a spin-glass phase
similar to the ones found for Ising dipolar systems with strong frozen disorder.
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I. INTRODUCTION

The problem of identifying the magnetic ordering induced
by a dipolar interaction has been attracting a renewed in-
terest [1,2]. This is due to the surge of innovative materials
built by assembling magnetic nanoparticles (NP) into dense
packings. The interest of such materials lies in the perspective
of a plethora of applications that they may offer, in particular
in nanomedicine, nanofluids, or in data storage [3–5].

NP are synthesized with cobalt, iron, or iron oxides, then
coated with layers of nonmagnetic material, and finally laid
into monodisperse systems [6]. NP a few tens of nanometers
wide behave like permanent magnets with magnetic moments
ranging between 103 and 105 Bohr magnetons. These NP
often exhibit anisotropy energy barriers Ea that trigger the
ordering along local easy axes [7]. However, the dipolar inter-
action energies Edd can become quite large in dense packings,
even larger than Ea. When this occurs, dipolar induced mag-
netic order is observed at temperatures that are low but still
above the blocking temperature kBTb � Ea/30, where kB is the
Boltzmann constant. This is in contrast to the superparamag-
netism that is observed in not very dense systems [8].

Luttinger and Tisza showed that freely rotating dipoles
placed in face-centered cubic (FCC) or body-centered cubic
(BCC) networks possess ground states with ferromagnetic
(FM) order. When they are placed on a simple cubic (SC)
lattice, antiferromagnetic (AF) order is found instead [9].
These results are supported by numerical Monte Carlo (MC)
simulations [10,11]. Recently the necessary technology for
synthesizing NP has been developed allowing us to obtain
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crystalline orderings of NP, thus opening the possibility of
investigating by empirical means the FM and AF orders in
such supercrystals [12,13].

However, a certain structural disorder, be it positional or
orientational, is often present in dense systems. The magnetic
order strongly depends on the relative positions of the NP and,
due to the specific anisotropy in the dipolar interaction, on the
relative orientations of the easy axes existing in the presence
of local anisotropies. Both types of disorder can spoil the
large-order behavior giving rise to spin-glass (SG) behavior.
This phenomenon has been experimentally observed in frozen
ferrofluids [14,15] and in random dense packings (RDP) of
dipolar spheres with volume fractions � ≈ 0.64 obtained by
pressing powders [16,17].

The role played by the degree of orientational disorder,
called texturation, in the magnetic order has been studied by
MC simulations both in FCC lattices and in RDP [18–20]. In
particular, the phase diagram of nontextured FCC systems has
been obtained as a function of Ea/Edd [21], where the ratio
Ea/Edd is an estimate of the degree of disorder in such non-
textured lattices. On the other hand, the relevance of positional
disorder is a controversial issue, far from being completely
understood. This is the subject of the present paper.

Although strictly speaking there cannot be single domains
of NP without local anisotropy, we study the effect of the
positional disorder on the magnetic ordering in the limiting
case of Heisenberg dipoles free of anisotropy. This is because
we wish to understand the consequences of pure positional
disorder, without interferences from the anisotropy disorder.
Numerical simulations show that dipolar spheres moving in
a nonfrozen fluid exhibit long-range nematic order even for
volume fractions as low as � = 0.42 [22,23]. Such systems
develop spatial correlations at low temperatures that do not ex-
ist in the case of frozen ferrofluids. Long-range order has been
observed for the former. Then, the key question is: Can long-
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FIG. 1. Radial distribution function g(r) for disordered dense
packings of N = 8000 particles obtained with the LS algorithm for
several values of the disorder parameter �. The positions of the
peaks of the double horn in the curve for RCP coincide precisely
with r/d = √

3 and 2, the third and fourth nearest neighbor distances
in FCC lattices, respectively (

√
2d in FCC is the lateral size of

the face-centered cubes). A lingering signature of the double peak
persists at � = 0.55. The absence of peaks at r/d = √

2 and
√

5
indicates that there is not crystalline order in the packings [29].

range order appear in systems with frozen positional disorder
without fine tuned positional correlations? MC simulations of
freely rotating dipoles (i.e., Heisenberg dipoles with Ea = 0)
in fluidlike amorphous frozen configurations with � = 0.42
show no trace of strong FM order in the thermodynamic
limit. They showed only signatures of orientational freezing
at low temperature [24,25]. Zhang and Widom considered a
mean-field approximation for systems of frozen dipolar hard
spheres randomly distributed occupying a fraction � of the
volume. By using the approximation g(r) = 1 for the radial
distribution function regardless of the value of �, they found
long-range FM order for � � 0.295 in contrast to the results
from simulations [26]. Recently, numerical evidence of SG or-
der has been found in strongly diluted systems of Heisenberg
dipoles in SC lattices [27,28].

In this paper we study by MC simulations the magnetic
order in RDP made up of Heisenberg NP with � ranging from
low values to the maximum � = 0.64 (this is the number
taken by this parameter when the system is a random-close-
packed (RCP) ensemble) [29]. The dipoles will be free to
rotate, but their positions, albeit randomly distributed, will
be regarded as fixed. Precisely, the only allowed structural
disorder will be this randomness in the NP positions. We want
to study if this disorder is able to spoil the FM arrangement to
produce a SG phase. Concretely, we will investigate whether
short range spatial correlations in RDP (see Fig. 1), can allow
some type of FM order for 0.42 < � � 0.64. The occupied
fraction � of the volume will be used to rate the degree of
disorder, and in fact we will obtain a phase diagram showing
the distribution of equilibrium phases in the temperature-�
plane. We will also analyze the nature of the several phases,
by using data taken from measurements of the magnetization,
the SG overlap parameter [30], and related fluctuations.

The paper is organized as follows. In Sec. II we will in-
troduce the model, describe the MC algorithm, and list the
definitions of the several observables that shall be measured.
We will present and discuss the outputs of those measure-
ments in Sec. III. In Sec. III we also analyze the degree of
disorder as a function of �. A summary of the results obtained
in the paper will be given in Sec. IV, together with a few
concluding remarks.

II. MODEL AND SIMULATION DETAILS

A. Model

We will consider RDP composed by N identical NP that
behave as single magnetic Heisenberg dipoles. The NP will
be labeled with an index i = 1, . . . , N . Each NP is a sphere
of diameter d . The magnetic moment of the ith NP will be
denoted by �μi = μσ̂i, where σ̂i is a unit norm direction. We
will be concerned only with the dipole-dipole interactions
between NP. Moreover, no local anisotropy will be assumed
in such a way that each magnetic moment can rotate freely.

The Hamiltonian reads

H =
∑
〈i, j〉

εd

(
d

ri j

)3(
σ̂i · σ̂ j − 3(σ̂i · �ri j )(σ̂ j · �ri j )

r2
i j

)
, (1)

where εd = μ0μ
2/(4πd3) is an energy and μ0 the magnetic

permeability in vacuum. �ri j is the vector position of dipole
j viewed from dipole i, and ri j = ‖�ri j‖. The summation runs
over all pairs i, j of different NP. The positions of the spherical
NPs are frozen.

Such arrangements can be obtained with the Lubachevsky-
Stillinger (LS) algorithm [31,32]. It consists of the following
steps. Firstly, N very small spheres are placed at random by
trial and error in a cube of edge L. Secondly, the spheres are
allowed to move and collide as hard spheres while growing
in size. During all this process, periodic boundary conditions
are assumed. Furthermore, the growing rate is chosen to be
sufficiently large in order to permit the sample to get even-
tually stuck in a RCP structure at the maximum possible
volume fraction � = 0.64 before reaching any equilibrium
configuration [29,32]. Configurations with smaller values of
� can be achieved by using the same recipe and stopping
when the desired value of � has been attained within a 2%
precision. Note that when the LS procedure stops, the spheres
have reached a diameter d = L(6�/Nπ )1/3.

The out-of-equilibrium random packings of spheres pro-
duced by the LS method mimic empirical packings, namely
they are similar to the samples obtained by raw compression
of powders of NPs, or to those achieved by suddenly freezing
colloidal suspensions of NP’s. For densities below the freez-
ing point (� = 0.49) [33], we find that our radial distribution
function g(r) is very close to that of the hard sphere fluid at
equilibrium. For � � 0.49, on the other hand, the LS method
provides configurations that do not show significant crystal
nucleation and are near to the metastable branch whose ending
point is the RCP limit [29]. Note that, contrary to the case of
ferrofluids, here there are no spatial correlations other than
those due to steric constraints.

In Fig. 1 we plot the radial distribution function for four
values of � in ensembles with N = 8000 obtained with the
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LS method. The double horn shape found in the RCP case
indicates the existence well-tuned short-range spatial correla-
tions. Our aim is to investigate whether such random packings
may develop some kind of dipolar FM order for dense enough
systems as it is the case for dipolar fluids or for systems of
dipoles placed on the sites of FCC lattices for which strong
long-range FM order is known to appear. In what follows,
distances and temperatures T will be given in units of d and
εd/kB, respectively.

B. Method

Since a certain SG-like behavior is expected to show up,
at least for small values of �, we will employ familiar SG
notations. Concretely, any system of NP with a specific re-
alization of randomness �, with the positions of all NP fixed,
will be called sample and denoted by J . In Figs. 2(a) and 2(d)
two samples are shown, one for � = 0.5 and the other for
� = 0.426. The positions of the N NPs are fixed and only
the magnetic moments σ̂i participate in the dynamics. We will
call configuration any list of N unit vectors {σ̂i}i=1,...,N in any
given sample.

For a given temperature T and a given sample J , the
MC simulation provides a set of thermally distributed con-
figurations. The average of any physical quantity calculated
for each element of this set and averaged over all the set,
gives an estimate of that quantity. Nevertheless, in order to
get physical results ready to be compared with experimental
measurements, a second average, this time over Ns indepen-
dent samples at the same temperature T , is performed. The
need of this second average is particularly important for small
�, where large sample-to-sample fluctuations are expected to
occur. The numbers of samples Ns for the values of N and �

used in our simulations are shown in Table I. From this table
it is evident that we do not make Ns ∝ 1/N for small values
of �, due the well-known non-self-averaging property of SG
systems.

The samples are expected to exhibit strong frustration and
rough free energy landscapes, at least for small values of �.
In principle this property can heavily slow down the simula-
tion. Then, with the purpose of obtaining truly thermalized
sets of configurations in reasonable computer times, we re-
sorted to the tempered Monte Carlo (TMC) algorithm [34].
It consists of running in parallel n identical replicas of each
sample at slightly different temperatures within an interval
[Tmin, Tmax]. The n temperatures are separated by an amount
�, so they are Tmin, Tmin + �, Tmin + 2�, ...Tmin + (n − 2)�,
Tmin + (n − 1)� ≡ Tmax. Each of these values and its neigh-
bor are called neighbor temperatures. Every replica is let to
evolve independently by 10 MC sweeps of the usual heat-bath
(HB) algorithm [35]. Then, the HB algorithm is stopped to al-
low the replicas from neighbor temperatures to be exchanged
while respecting detailed balance [34]. Once all permitted
exchanges have been performed, the process is reinitiated with
another 10 sweeps of HB. The values of � are selected in such
a way that roughly 30% of the exchanges are accepted. The
TMC parameters are given in the caption of Table I.

Periodic boundary conditions were used in the simula-
tions. Any dipole i interacts with the dipoles within a cube
L × L × L centered at i. The long-range dipolar-dipolar inter-

0 1-1

(a)

(b)

(c)

(d)

(e)

(f)

Φ = 0.426Φ = 0.5

(f)

0 1

FIG. 2. Pictures (a) and (b) show two independent configurations
of a given sample with N = 512 particles with � = 0.5 at tem-
perature T = 0.1. The position of the spheres are frozen. The hue
assigned to each sphere i gives a measure of the degree of correlation
σ̂

(A)
i · λ̂ where A = a, b, between the magnetic moment σ̂i and the

nematic director vector λ̂ of the configuration. Picture (c) represents
the overlap between the configurations (a) and (b). In this case the
color of spheres give an idea of the parallelism defined by the prod-
uct σ̂

(a)
i · σ̂

(b)
i . The analogous pictures (d), (e), (f) exhibit the same

properties for two configurations of a sample at � = 0.426. The
color scale in the bottom exhibits the correspondence between hue
and degree of alignment between the vectors in the scalar products
(from +1 when they are parallel to −1 when they are antiparallel).

action was treated by Ewald’s sums [36,37]. In these sums we
split the computation of the dipolar fields into a real space
sum with a cutoff rc = L/2 and a sum in the reciprocal space
with a cutoff kc by screening each dipole with a distribution
with standard deviation α. We have used α = 4/L and kc =
10(2π/L) [37]. Given that we focus the study on the search of
FM order, any possible shape dependent demagnetizing effect
was avoided by using the so-called conductive external condi-
tions (i.e., using a surrounding permeability μ′ = ∞) [22,38].
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TABLE I. The parameters utilized in the TMC simulations. �

is the volume fraction, N the number of dipoles, Ns the number of
samples. We used a step � = 0.025 for temperatures T � 0.6 and
� = 0.05 for T > 0.6. The highest temperature was Tmax = 1.1. The
lowest temperatures for � � 0.426 was Tmin = 0.1 for N � 512 and
Tmin = 0.175 for N = 1000, while for � = 0.31 it was Tmin = 0.05
for N � 216 and Tmin = 0.1 for N = 512. The number t0 of initial
MC sweeps for equilibration was at least t0 = 106, and the measure-
ments were taken within the interval [t0, 2t0].

� = 0.64 (RCP)

N 64 125 216 512 1000
Ns 4500 3500 2000 1000 1000

� = 0.55

N 64 125 216 512 1000
Ns 8000 3500 2000 2000 1600

� = 0.5

N 64 125 216 512
Ns 8000 8000 7500 4000

� = 0.465

N 64 125 216 512
Ns 8000 6000 6000 5000

� = 0.426

N 64 125 216 512
Ns 8000 8000 7800 7000

� = 0.31

N 64 125 216 512
Ns 8000 8000 8300 7000

The thermal equilibration times t0 were estimated after ex-
amining the plateaux for large time t of the overlap parameter
q (see next section) starting from different initial configura-
tions as described at length in Refs. [18,39]. We also verify
the symmetry in the thermal distributions of magnetization
and the SG overlap parameter under the global inversion
{σ̂i} → {−σ̂i} as an additional check that all samples are well
equilibrated [18]. We used the first t0 MC sweeps to equili-
brate the samples and all thermal averages were extracted in
the interval [t0, 2t0]. As mentioned above, a second average
over Ns samples is performed in order to obtain physical
results. These double average will be indicated by angular
brackets 〈· · · 〉.

C. Observables

Our aim is to investigate the nature of the low temperature
ordered phases and determine the transition temperature be-
tween theses phases and the high temperature paramagnetic
(PM) phase as a function of the volume fraction �. In this
subsection we introduce the physical quantities that we have
deemed adequate for that purpose.

To explore the possible existence of nematic order we
have extracted the eigenvector with largest eigenvalue P2 of
the tensor Q ≡ 1

2N

∑
i(3σ̂i ⊗ σ̂i − I). Once normalized, this

eigenvector is called nematic director λ̂ [22,38]. P2 is in fact

the nematic order parameter

P2 ≡ 1

2N

∑
i

[3(σ̂i · λ̂)2 − 1] . (2)

The double average of this quantity gives the degree of global
alignment of all dipoles along the director λ̂.

The magnetization vector is defined as �m ≡ (1/N )
∑

i σ̂i.
Instead of ‖ �m‖ we use as FM order parameter the projection
of �m

mλ ≡ 1

N

∑
i

(σ̂i · λ̂) (3)

along λ̂. Nonetheless, according to our simulations both quan-
tities provide qualitatively the same results.

We have also computed the moments mp = 〈|mλ|p〉 for
p = 1, 2, 4. These moments allow us to calculate the magnetic
susceptibility

χm ≡ N

kBT

(
m2 − m2

1

)
(4)

and the Binder cumulant

Bm ≡ 1

2

(
3 − m4

m2
2

)
. (5)

The dimensionless quantity Bm will turn out useful for locat-
ing the PM-FM transition temperature. The specific heat cv is
obtained from the fluctuations of the energy e ≡ 〈H〉/N .

For investigating the SG order we use the overlap parame-
ter between replicas (1) and (2) of a given sample

q≡
1

N

∑
i

σ̂
(1)
i · σ̂

(2)
i , (6)

instead of the more familiar tensorial quantities

q3d ≡
3∑

α,β=1

|qαβ |2, with qαβ ≡ 1

N

∑
i

σ
(1)
iα σ

(2)
iβ , (7)

often used when dealing with Heisenberg spins. σ
(A)
iα in (6)

is the α component of the unit vector σ̂
(A)
i of the Ath replica

(A = 1, 2). The reason why we decline using q3d is that q3d is
invariant under global rotations of all dipoles in the configura-
tion, while we prefer to keep track of any possible rotation
experienced by the nematic director during the simulation.
Similarly to the FM case, we compute the moments qp ≡
〈|q|p〉 for p = 1, 2, 4 and calculate the Binder parameter

Bq ≡ 1

2

(
3 − q4

q2
2

)
. (8)

In order to facilitate the identification of the PM-SG
transition line we also use the so-called SG correlation
length [40,41], given by

ξ 2
L ≡ 1

4 sin2(k/2)

(
q2

〈|q(�k)|2〉 − 1

)
, (9)

where q(�k) is

q(�k) ≡ 1

N

∑
i

ψi ei�k·�ri , (10)

184423-4



MAGNETIC ORDERING OF RANDOM DENSE PACKINGS OF … PHYSICAL REVIEW B 102, 184423 (2020)

with ψi = σ̂
(1)
i · σ̂

(2)
i , �ri the position of dipole i, �k =

(2π/L, 0, 0), and k = ‖�k‖. In the PM phase, 〈ψrψ0〉 decays in
the thermodynamic limit as exp(−r/ξ∞) where ξ∞ is the cor-
relation length. At high temperatures, ξL in Eq. (9) provides a
good approximation of ξ∞ [41]. We also compute the thermal
probability distributions p(mλ) and p(q), averaged over all
samples.

The errors in the measurements of all averaged quanti-
ties were assessed with the mean squared deviations of the
sample-to-sample fluctuations. In order to minimize these
errors, we have enlarged Ns as much as possible within the
CPU-time resources available. The larger the positional dis-
order is (i.e., the smaller � is), the wilder these fluctuations
appear. Also the relaxation times increase with diminishing
�. It is for this reason that (i) we were obliged to limit the
system sizes for small � to be no larger than N = 512 and
(ii) systems at temperatures much less than half the transition
temperature were not explored.

III. RESULTS

A rough estimate of the kind of magnetic order at a given
volume fraction � can be grasped by examining equilibrium
configurations at very low temperature for a single sample.
Figures 2(a) and 2(b) show two independent configurations,
called (a) and (b), for a sample at � = 0.5. The hue with
which each nanoparticle has been colored represents the de-
gree (σ̂ (A)

i · λ̂) of alignment between the dipole associated
with the particle and the nematic director (A = a, b). Both
configurations exhibit a large magnetic domain with the pres-
ence of some non-negligible disorder. However, the significant
overlap between both configurations [see Fig. 2(c), where now
the hue represents (σ̂ (a)

i · σ̂
(b)
i )], indicates that disorder is in

reality due to the presence of SG order. This suggests the
existence of partial FM order together with stronger SG order
at the same time. Configurations with larger � show a similar
behavior.

All that is in sharp contrast with the behavior encountered
for � = 0.426. In the configurations of Figs. 2(d) and 2(e)
magnetic domains with opposite signs are seen coexisting.
However the overlap between the two configurations [see
Fig. 2(f)] is still sizable. This fact indicates that SG order
dominates any FM order and suggests the existence of a ferro-
magnetic cluster-spin-glass phase. Plots of the nematic order
parameter P2 vs T for different sizes supply additional infor-
mation about the nature of the phases. A direct comparison
between Figs. 3(a) and 3(b) reveal a qualitative behavior that
differs in the cases of FCC and of RCP (i.e., with � = 0.64.)
For FCC P2 is clearly different from zero and independent
of the size at low T , as it was to be expected for a dipolar
ferromagnet. Instead, for � = 0.64 P2 decreases when N in-
creases for all T . Plots of P2 vs N (not shown) indicate that
this trend is algebraic at low temperatures. Finally, the plots
corresponding to � = 0.426 [see Fig. 3(c)] evidence absence
of nematic order in the thermodynamic limit.

Figures 4(a) and 4(b) exhibit plots of the specific heat cv vs
T for several lattice sizes for the cases FCC and RCP. The
prominent peaks in cv for both cases hint at the existence
of singularities, which is an expected feature in second order
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FIG. 3. (a) Plots of the nematic order parameter P2 versus T for
the FCC lattice and several numbers N of dipoles. (b) Same as in
(a) for RCP configurations (� = 0.64). (c) Same as in (b) for � =
0.426. Lines in all panels are guides to the eye.

PM-FM transitions in dipolar crystals. Both curves are com-
patible with a logarithmic divergence. Instead, the plot at � =
0.426 [see Fig. 4(c)] shows a smooth curve with apparently
no sign of singularity. This is the expected behavior in PM-SG
transitions when there is strong frozen disorder [18,42].

Equilibrium distributions for the x and y components of the
normalized magnetization vector m̂ ≡ �m/‖ �m‖ and nematic
director λ̂ at low temperature offer a more precise picture of
the type of order. They are shown in Fig. 5. Panels (a) and
(d) concern FCC systems and show that m̂ and λ̂ are oriented
along the four directions of the crystal, (±1,±1,+1) in such
a way that during the MC simulation, the entire configuration
continuously flips between these directions.

On the contrary, all samples for the system at � = 0.64,
each represented with a different color in the figure, have
only a single sample-dependent direction for both vectors that
fluctuate around them, see panels (b) and (e). Only upon aver-
aging over hundreds of samples can we recover the expected
isotropy for those disordered systems. This behavior is remi-
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FIG. 4. (a) Plots of the specific heat cv versus T for the FCC
lattice and the number of dipoles N indicated in the figure. (b) Same
as in (a) for RCP configurations (� = 0.64). (c) Same as in (b) for
� = 0.426. Solid lines in all panels are guides to the eye.
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FIG. 5. Upper row: Thermal distribution of the x and y com-
ponents of the normalized magnetization vector m̂ (provided that
mz � 0). The samples are distinguished by the colors. (a) has been
obtained in a FCC lattice; (b) and (c) at � = 0.64 and 0.426, respec-
tively. Lower row: thermal distribution of the nematic director λ̂ (on
the condition that λz � 0). (d) stands for the FCC lattice; (e) and (f)
for � = 0.64 and 0.426, respectively. All the distributions are for
samples with N = 512 particles at temperature T = 0.1.

niscent of the one encountered in the systems of Ising dipoles
which have a fixed nematic director for each sample [19,20].

For small � we observe that the nematic director has no
definite direction in many samples and that the direction of m̂
is not strongly coupled with that of λ̂. Panels (c) and (f) of
Fig. 5 show the distribution of the components of m̂ and λ̂ for
several samples at � = 0.426.

A. FM order

The presence of strong long-range FM order is associ-
ated with a nonvanishing magnetization in the thermodynamic
limit. Figure 6(a) contains curves of m1 vs temperature at
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FIG. 6. (a) Plots of the magnetization m1 vs T for the FCC lattice
and the number of dipoles N indicated in the legend. (b) Same as in
(a) for RCP configurations (� = 0.64). (c) Same as in (b) but for
� = 0.426. Lines in all panels are guides to the eye.
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FIG. 7. (a) Plots of the log of the magnetic susceptibility χm

vs T on the FCC lattice and the number of dipoles N indicated in
the legend. (b) Same as in (a) for RCP configurations (� = 0.64).
(c) Same as in (b) but for � = 0.426. Solid lines in all panels are
guides to the eye.

various N in a FCC crystal. They show that this is the case
indeed: m1 is clearly independent of N at low T and tends to
1 for T → 0.

That conclusion differs for random packings with large �,
as shown by Fig. 6(b) in the RCP limit. In this circumstance
m1 does not saturate and clearly diminishes when N grows for
every T . Similar results are obtained for � � 0.5. The decay
of m1 is more obvious for less dense systems, and this makes
evident the lack of any type of FM order, as shown in Fig. 6(c)
for � = 0.426. This last finding agrees with the simulations of
Refs. [24,25] for � = 0.42 in which it was inferred that FM
order is not present for all RDP.

Our results for � � 0.5 point to a different interpretation.
This is illustrated with the plots of the magnetic susceptibility
χm vs T of Fig. 7. Panels (a) and (b) correspond to FCC and
RCP, respectively, and both exhibit a peak at a precise tem-
perature Tc that becomes sharper as N grows, as it is expected
for PM-FM phase transitions of second order. In fact, our data
is consistent in both cases with a power-law divergence of χm

with N . Even more appealing is that χm diverge for all T � Tc

in the RCP case, in contrast with the FCC case. This character
of the plots for RCP is found throughout the region � � 0.5
and seems to indicate the existence of quasi-long-range (QLR)
order at T � Tc. The position of the peak of χm provides an
estimate of Tc for different values of �. We shall return to this
when we will analyze the results for Bm.

The panel (c) in Fig. 7 refers to data taken at � = 0.462.
In this case we find no peak in spite of the fact that χm diverge
at low temperatures. Both facts are typical signatures of SG
phases.

To confirm the existence of QLR FM order for � � 0.5 we
studied the dependence of m2 in the number N of dipoles. In
Fig. 8(a) log-log plots of m2 vs N at various temperatures are
shown for � = 0.55. The transition temperature inferred from
the position of the peak of χm is in this case Tc = 0.39(4).
Data from the figure for T � Tc are consistent (at least for
N � 216) with a power-law decay of m2 with N−p where p
is T dependent. The lattice sizes used in our work are not
large enough to draw conclusions about the exponent p. For
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FIG. 8. (a) Log-log plots of m2 vs N for � = 0.55. From top
to bottom, ◦,�, �, • and � stand for T = 0.175, 0.275, 0.35, 0.4,
and 0.475. (b) The same as in (a) for q2. The thick solid lines in
both panels show the power-law decay for the lowest temperature,
T = 0.175. The dashed line in panel (a) is the N−1 decay expected
for a PM phase. Lines connecting the data points are guides to the
eye.

temperatures slightly larger, the decay tends to be of the form
1/N which corresponds to a PM phase.

Figure 9(a) shows the analogous data for � = 0.426. Now
the curves of m2 vs N for all T bend downwards with a slope
that grows with N and tends to the limit 1/N . This is a clear
signal of the absence of FM order.

We can obtain additional information from the normalized
distribution pr ≡ m1 p(mλ/m1) at low T . If a marginal behav-
ior exists for � � 0.5 when T � Tc, then pr is convenient
because of its independence of the size of the system, a typical
trait near critical points [43]. Figures 10(a)–10(c) show pr for
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FIG. 9. (a) Log-log plots of m2 vs N for � = 0.426. From top
to bottom, ◦, �, •, �, and � stand for T = 0.1, 0.15, 0.2, 0.25, and
0.3. (b) The same as in (a) for q2. The thick solid lines shows the
power-law decay for the lowest temperatures shown, T = 0.1 and
0.15. The dashed line in both panels correspond to the N−1 decay
expected in a PM phase.
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FIG. 10. (a) Plots of the scaled probability distribution
m1 p(mλ/m1) for the FCC lattice, temperature T = 0.175, and
the number of dipoles N indicated in the legend. (b) The same
scaled distribution for systems with � = 0.55 and temperature
T = 0.175. (c) The same distribution for systems with � = 0.426
and temperature T = 0.1. The dotted-dashed line stands for the
Gaussian distribution of the PM phase in the N → ∞ limit.

a handful of values of N and for the FCC, � = 0.55 and 0.426
cases. All distributions correspond to very low temperatures.
For FCC the distribution becomes more peaked and narrower
as N grows, as it must be for a strong FM phase with non-
vanishing m1. For � = 0.55 the curves tend to coalesce as N
grows, another typical trait of criticality. All that indicates the
presence of QLR FM order.

We end this description by interpreting the results for
� = 0.426. The related curves do not scale but broaden when
N grows. Only for sizes larger than those available in our
simulations [i.e., as long as the sizes of the magnetic domains
shown in Figs. 2(e) and 2(d) are less than the size of the
system], and in the presence of FM order, these curves should
tend to the Gaussian distribution shown in the figure. Thus,
our results are consistent with the complete absence of FM
order.

B. The PM-FM transition line

The transition temperature Tc can be extracted from the
positions of the peaks in the plots for cv and χm, and also
from analyzing the Binder parameter Bm. The point is that,
since the latter is scale invariant, the determination of Tc from
Bm is more precise. When there is long range strong order the
value of Bm tends to 1 when T � Tc. However, the magnetic
order in the PM phase is short range and by the law of large
numbers, we expect Bm → 0 when N → ∞. Again, since Bm

is scale free, it is independent of N at the transition. Therefore,
the plots of Bm vs T for various N must cross at Tc if the
transition is of second order. This is how the plots of the
Binder cumulant allow us to establish the value of Tc.

The results from the previous section point to the existence
of a phase with QLR magnetic order for low T when � � 0.5.
That being so, Bm should be independent of N all over that
phase and without reaching the value 1 when N → ∞. Instead
of crossing, the plots of Bm vs T should end up on top of each
other forming one single curve for T � Tc, at least for large
enough N [41].
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FIG. 11. (a) Plots of the Binder cumulant Bm vs T for the RCP
case (� = 0.64) and the number of dipoles N indicated in the legend.
(b) Same as in (a) for � = 0.55. (c) Same as in (b) for � = 0.426.
Solid lines in all panels are guides to the eye.

In Figs. 11(a) and 11(b) we show the plots of Bm vs T
for � = 0.64 and 0.55. Although not shown, similar results
follow for � = 0.5. Then, we note that the curves cross when
N � 216 in a rather precise point allowing a reasonable deter-
mination of Tc. This fact emphasizes the convenience of using
the Binder cumulant for determining the � dependence of Tc

and drawing the frontier between the PM and FM phases in
the phase diagram, see Fig. 16. A more precise determination
Tc and the associated critical exponents based on scaling plots
of Bm vs T is far beyond the scope of this paper given the
small sizes available in our simulations.

The existence of such neat crossings may appear in contra-
diction with the possible existence of a marginal phase with
QLR FM order. To clear up all doubts, later we will verify
that the Binder cumulant Bm does not reach the value 1 at low
temperatures in the thermodynamic limit.

The results for � < 0.5 are qualitatively very different. We
show in Fig. 11(c) the plots Bm vs T for � = 0.426. The
value of Bm diminishes as N grows for all T , revealing that
there is no PM-FM transition. This suggests that no FM order
exists for low values of �. This hypothesis could be clinched
if we were able to prove that Bm → 0 as N → ∞ even at low
T . This test has been done in Fig. 12 where the behavior of
1 − Bm vs N is studied at the lowest temperature we have
simulated, T = 0.175, and for varying �. All that is compared
with data from FCC. In this latter case we observe a clear
Bm → 1 limit when N → ∞, while for RDP with � � 0.5
we see that Bm tends to a value less than 1. This behavior is
in accord with the existence of the above-mentioned marginal
phase. On the contrary, for � < 0.5 we observe that Bm tends
to zero very slowly as N grows. This indicates the absence of
FM order.

C. SG order

We have found no long-range strong FM order in RDP for
any value of �. In this section we want to elucidate whether
this lack of FM order may give rise to SG order. An exami-
nation of the configurations shown in Fig. 2 for � = 0.5 and
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FIG. 12. (a) Log-log plots of 1 − Bm vs N for temperature T =
0.175 and the values of � indicated in the figure. As stressed by
the lines connecting the data points, Bm does not saturate to 1 in the
thermodynamic limit for any random packing considered, in contrast
with the FCC case.

0.426 reveals that the overlap between different configurations
of a single sample covers regions that are larger than the
magnetic domains. This fact leads us to suspect that the SG
order is stronger than the FM order in both cases. To study
the order of the SG phase, we analyze the overlap q1 and the
related quantities Bq and ξL/L.

Figure 13 shows plots of q1 vs T for several N . The panels
(a), (b), and (c) correspond to the FCC, � = 0.64, and 0.426
cases, respectively. It is illuminating to compare this figure
with its counterpart for m1 in Fig. 6. For FCC we find that
q1 does not go down as N grows for low temperatures. This
is expected as neither does m1 go down in this circumstance.
We also note that q1 → 1/2 when T → 0 in spite of the fact
that m1 → 1. Recall that the vector �m in FCC points equally
in all crystalline directions (±1,±1,+1), in such a way that
the TMC evolution jumps very easily from one to another. The
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FIG. 13. (a) Plots of the scalar spin-glass overlap parameter q1

versus T for the RCP case (� = 0.64) and varying number of dipoles
N , as indicated in the legend. (b) Same as in (a) for � = 0.55.
(c) Same as in (b) for � = 0.426. Solid lines in all panels are guides
to the eye. Dashed lines are extrapolations for T → 0.
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overlap q is influenced by these global rotations and as a result
its value is 1/2.

For � = 0.64 we found that neither does q1 become
smaller as N grows, like it occurs in the FCC case. Actually
this trend can be observed for all � � 0.5. What now happens
is that q1 → 1 for T → 0, which tells that the nematic order
in each sample takes one single direction, in contrast to FCC.
It is interesting to compare the plots in Fig. 13(b) with those
in Fig. 6(b), in which m1 goes down with N for all temper-
atures. The different qualitative behaviors of the overlap and
the magnetization are more clearly seen in Fig. 8 where the
panels (a) and (b) show log-log plots of m2 and q2 vs N for
a set of temperatures at � = 0.55. At low temperatures the
plots of q2 vs N glaringly differ from a power-law decay and
bend upwards, hence q2 does not vanish in the thermodynamic
limit. On the contrary, the plots for m2 show the algebraic
decay already noticed in the previous section. Finally, for
T � Tc we find that q2 and m2 go to zero if N → ∞, as it
should occur in a PM phase. Summing up, for � � 0.5 we
find a low temperature phase with QLR FM order and also
strong SG order with q �= 0.

The behavior of the model is qualitatively different from
what we have just explained if � < 0.5. The plots in
Fig. 13(c) for � = 0.426 show that for all temperatures q1

decreases significantly as N grows. To discover whether the
overlap q1 vanishes for N → ∞ we constructed the log-
log plots of q2 vs N in Fig. 9(b). The results for low T
are consistent with a q2 ∼ 1/N p functional form with a T -
dependent exponent p. Recall that the decay of m2 was
faster than a power law and shows a tendency to a 1/N
for large N [see Fig. 9(a)], as it would be expected for
short-range FM order. All that is showing that there is a
low temperature SG phase for � < 0.5 with short-range FM
order. Our results also point to the existence of marginal
behavior. Note, however, that the system sizes available are
relatively modest to draw a definitive conclusion on this
point.

D. The PM-SG transition line

Next we wish to determine the temperature Tsg at which
the PM behavior yields a SG phase. To this purpose we have
measured the adimensional quantity ξL/L [40,41]. We stress
that in a PM phase (for which ξL is a good approximation
of the correlation length in SG), ξL/L drops as 1/L. Instead,
when there is strong long-range SG order, that is when q �= 0,
ξL/L diverges as [42] L3/2. Finally, for T = Tsg the quantity
ξL/L becomes scale free and does not depend on N . We expect
that the plots of ξL/L vs T for various N cross at Tsg with a
neat splay out of the curves above and below Tsg. In the case
of QLR SG order for T < Tsg the several curves must coalesce
for large enough N , since in this case ξL/L does not diverge in
the thermodynamic limit.

In Figs. 14(a) and 14(b) we present the above-described
plots for � = 0.64 and 0.55. We see that the plots for N �
216 cross at a precise value Tsg of the temperature. This value
defines the frontier between the regions where SG and the PM
orders dominate. Within errors we find Tsg equal to the Curie
temperature Tc obtained in the previous section from the plots
for Bm. Equivalent results follow from the plots of Bq vs T
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FIG. 14. (a) Plots of the SG correlation length ξL/L vs T for the
RCP case (� = 0.64) and varying number of dipoles N , as indicated
in the legend. (b) Same as in (a) for � = 0.55. (c) Same as in (b) for
� = 0.426. The lines in all panels are guides to the eye.

apart from the fact that the crossing point for � = 0.64 occurs
in a region characterized by a dip that makes the determination
of the transition temperature more difficult [18,44].

Figure 14(c) shows the curves of ξL vs T for � = 0.426.
Actually we obtain qualitatively similar results for all � <

0.5. Curves corresponding to different N cross. However, their
splay out lessens as N grows in the region T < Tsg. This
makes the determination of Tsg less accurate. The plots for Bq

vs T show a clear coincidence of all curves for T < Tsg at all
the sizes that we have analyzed (not shown). This scenario is
consistent with the presence of QLR SG order. The values of
Tsg are shown in the phase diagram of Fig. 16. They define the
region where the SG rules at � < 0.5. Our results indicate that
Tsg ∝ � for dilute systems and that this phase extends until
� → 0. These conclusions are in agreement with the results
found for diluted systems of dipoles [27,28].
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FIG. 15. (a) Plots of the scaled probability distribution p(q/q1)
for � = 0.55 and temperature T = 0.175 and the number of dipoles
N indicated in the legend. (b) The same distribution for � = 0.426
and temperature T = 0.1.
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FIG. 16. Phase diagram on the T − � plane for the dipolar
Heisenberg model. The symbols delineate the PM-FM transition
for � � 0.49 (from Bm vs T plots.) stand for the FCC case.
Quasi-long-range FM order with strong SG order has been found
in the gray region. Symbols define the PM-SG transition (from ξL

vs T plots.) ◦ are FM-SG transition points (from Bm vs � plots). The
continuous line is the mean-field calculation of the FM-PM transition
line. Dashed lines are guides to the eye. The inset contains plots of
Bm vs � for T = 0.25 and the number of dipoles N indicated in the
legend.

To sustain the evidence in favor of a strong SG order phase
for � � 0.5 and a marginal SG phase for � < 0.5 we have
examined the thermal distribution p(q/q1) at low temperature
in a similar fashion as it was done for p(mλ/m1) in Sec. III A.
In Figs. 15(a) and 15(b) we present the normalized distri-
bution pr ≡ q1 p(q/q1) at various values of N for � = 0.55
and 0.426. This is a scaling function at criticality. In the first
case we observe that the distribution becomes sharp as N
grows, as it corresponds to a strong SG order with q �= 0,
see Fig. 15(a). It is worth noting that we find pr → 0 in the
thermodynamic limit for small q/q1, a fact that is in line
with the droplet-model scenario for SG [45,46]. On the other
hand, for � < 0.5 we find that the plots at different N tend
to coincide, in agreement with the above-mentioned marginal
behavior.

In conclusion, the data for � � 0.5 suggests the existence
of strong SG order in the phase where we found QLR FM
order. The results for � < 0.5 indicate a SG phase for T <

Tsg(�) where FM order is absent and point to the existence
of QLR SG order. This SG phase is similar to the one found
in systems of Ising dipoles with strong structural disorder. In
particular, these type of phases have been seen in textured
systems with strong dilution [39,42], as well as in dense
nontextured systems, that is with high disorder in the frozen
directions of the Ising dipoles [18–20].

E. The FM-SG transition

With the data gathered so far we can find the contours of
several FM and SG phases. To this end, we show plots of
Bm vs � for various N along the isothermals with T below
the PM boundary. We must not forget that Bm goes down

when N increases in the SG phase, while for the marginal
FM phase Bm increases with N with a limiting value less than
1. For that reason we suppose that the plots of Bm vs � will
cross at a transition point �tr (T ). This is indeed the case, as
shown in the inset of Fig. 16 for T = 0.25. The transition
points obtained in this way are shown in the main picture of
Fig. 16. The accuracy is poor since we have few available
values of � and the lattice sizes are not very large. Within
these limitations, we find that this boundary line is vertical
and placed at � = 0.49(1). We find no signs of reentrances.

IV. CONCLUSIONS

We have studied by Monte Carlo simulations the role
played by positional frozen disorder in the collective behavior
of disordered dense packings of identical magnetic nanoparti-
cles (NP) that behave as Heisenberg dipoles. These dipoles are
free to rotate and deprived of local anisotropies. The amount
of structural disorder has been assessed by the volume occu-
pancy fraction �.

Although actual single domain NP cannot be free of local
anisotropies, the present study is relevant for the field of
NP because it shows the effect of the structural disorder on
the phase diagram of systems of NP in the small anisotropy
limit. It must be interpreted in the same way as dipolar Ising
models can be used to model the several facets of the strong
anisotropy limit.

The results allow us to obtain the phase diagram on
the temperature-� plane (see Fig. 16). Concretely we have
studied the magnetization mλ, the scalar spin-glass overlap
parameter q, and related fluctuations. The Binder parameters
for mλ and q and the SG correlation length offer the oppor-
tunity of determining the extent of the regions with ordered
low-temperature phases.

For random dense packings with � � 0.49 (including the
limiting random-close-packed case) we find a well defined
second order transition line that separates a ferromagnetic
(FM) phase from a high-temperature paramagnetic (PM)
phase. In contrast with the strong FM order found for face-
centered cubic (FCC) lattices, the FM phase for random dense
packings exhibit signatures of quasi-long-range FM order and,
at the same time, signatures of strong long-range spin-glass
(SG) order with a nonvanishing overlap parameter q in the
thermodynamic limit. A similar phase has been found for
the random anisotropy Heisenberg magnet with short-ranged
interactions [47] and for nontextured FCC systems of dipoles
with low but not negligible anisotropy [21]. This is also in
striking contrast with the strong FM order observed in random
dense packings of strongly textured Ising-like dipoles. Note
that in this case all dipoles were constrained to point up or
down along a common direction and could not accommodate
their orientations as in the present model [19].

For � � 0.49, the marginal FM order disappears giving
rise to a dipolar SG phase with signatures of quasi-long-range
order. This SG phase is qualitatively similar to the one found
in several systems of Ising dipoles with strong structural
disorder. Our results for relatively small � suggest that the
SG phase extends to � → 0 with a transition temperature
Tsg ∝ �.
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