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Berezinskii-Kosterlitz-Thouless transition effects on spin current:
The normal-metal–insulating-ferromagnet junction case
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We investigate the temperature effects on the spin current through an interface between a normal metal and
a quasi-two-dimensional ferromagnetic insulator. Conductive electrons are reflected at the interface absorbing
or emitting magnons. The interaction process depends on the temperature, and we are interested in finding out
how the transport of spin current is affected close to the Berezinskii-Kosterlitz-Thouless (BKT) transition. That
is an important open question. While the thermodynamics of spin currents in the usual normal-metal–insulating-
ferromagnet interfaces are known, the results of a BKT transition are still unknown. As it is well documented,
the BKT transition is associated with the unbinding of vortex-antivortex pairs in two-dimensional models with
an O(2) symmetry. In our work, the ferromagnet is a layered quasi-two-dimensional material, and in the limit of
weak interplane coupling, a BKT transition is expected. Using the self-consistent harmonic approximation), we
have obtained the BKT transition temperature (TBKT) and the spin current as a function of the temperature. The
spin current behavior at low temperatures is similar to those obtained from theoretical and experimental systems.
At TBKT, the spin current shows a discontinuous jump associated with vortex dissociation.

DOI: 10.1103/PhysRevB.102.184422

I. INTRODUCTION

Spintronics has emerged as an exciting field in the last
years [1–3]. Instead of ordinary electric current, spintronics
mainly deals with spin current, characterized by a net flux of
spin. Spin currents propagate in both insulating or conducting
materials, each one being magnetic or nonmagnetic, which
diversify technological application. In nonmagnetic conduc-
tors, such as platinum, a spin current can be generated, for
example, by conductive electrons moving in opposite direc-
tions according to their spin (the spin-up electron direction
usually defines the spin current direction). This is the so-called
pure spin current since there is no effective charge current. In
a magnetic conductor, the charge current is also a spin current
since the conductive electrons spins are naturally oriented. In
insulators, the spin current is necessarily driven by spin waves,
magnons in the quantum formalism, and it can be observed in
ferromagnetic (FMI) [4–7], antiferromagnetic (AFI) [8–13] or
even in paramagnetic (PMI) [13–17] insulators. Semiconduc-
tor materials have also played an important role in spintronics
[18–21]. In particular, semiconductor-based spintronic de-
vices have the potential of revolutionizing the technological
industry, for a review see Ref. [20].

Spin currents can be generated and manipulated through
the separation of up and down spins electrons in the charge
current by means of spin-orbit coupling (the spin Hall ef-
fect, SHE) [22–26], temperature gradient (the spin Seebeck
effect) [27,28] or by spin pumping using ferromagnetic
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resonance [5,29,30]. Conversely, one can detect spin current
by converting it into charge current, which can be measured
using conventional methods. In this case, usually, the process
involves the inverse spin Hall effect [31–33], but it can also
occur by the inverse Rashba-Edelstein effect [34] or spin-
transfer torque [30,35,36]. Since magnon spin current has
no energetic losses by Joule effect, magnetic insulators have
often been used to generate and detect spin currents. Yttrium
iron garnet, for example, is a widely used ferromagnetic insu-
lator for spin current experiments [37].

A spin current injection at the interface between a normal
metal (NM), also considered nonmagnetic, and a ferromag-
netic insulator can occur in both directions. At equilibrium,
spin current from the NM to FMI is equal in magnitude to
the spin current in the opposite direction and, therefore, no
spin current flows across the interface. One can create an
effective spin current providing a nonequilibrium situation
that favors the current in a specific direction. For example, in
the spin-transfer torque process [30,38–40], a splitting chem-
ical potential �μe = μ↑ − μ↓ between up and down spin
arises for the conduction electrons in the NM [6] close to
the interface and, once free electrons are not able to penetrate
into insulator, they reflect at the interface with inverted spins.
In the case where �μ > 0, the creation of down spins is
favored, and therefore spin-up electrons are annihilated when
they reflect at the interface. Effectively, integer spin angular
momentum is transmitted to the FMI, and the angular mo-
mentum conservation in the spin-flip scattering requires the
appearance of a quantum of spin wave, a magnon, that bears
spin-1. Whether the magnon has an up or down integer spin
will depend on the ferromagnetic ground state orientation;
however, an spin-up magnon has the same effect as a spin-
down magnon moving in the opposite direction. In both cases,

2469-9950/2020/102(18)/184422(9) 184422-1 ©2020 American Physical Society

https://orcid.org/0000-0003-0559-9211
https://orcid.org/0000-0001-8571-7016
https://orcid.org/0000-0003-3027-6852
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.102.184422&domain=pdf&date_stamp=2020-11-19
https://doi.org/10.1103/PhysRevB.102.184422


LOPES, MOURA, AND MOURA-MELO PHYSICAL REVIEW B 102, 184422 (2020)

the spin current flows from the NM to the FMI. A similar
process occurs when �μ < 0; however, in this case, the spin
current direction is opposite to the latter one.

It is well-known that temperature has a main role in the
spin current transmission. For example, there is no magnon
excitation at zero temperature, and the spin conductivity van-
ishes. Besides, at zero temperature, all down electron states
below μ↓ are occupied, and it is impossible to occur the re-
flection of an up electron to a state with spin-down. Therefore,
finite temperature effects are a necessary condition for spin
current injection in the junction. In turn, FMI can present a
topological phase transition at finite temperature, the so-called
Berezinskii-Kosterlitz-Thouless (BKT) transition, which oc-
curs in two-dimensional magnets bearing a continuous O(2)
symmetry [41–45]. Instead of a spontaneous symmetry break-
ing, the BKT transition is associated with vortex-antivortex
pairs unbinding. Below TBKT, the vortex-antivortex pairs are
confined to stay together, leading to a quasi-long-range order.
Vortex-antivortex unbinding occurs above TBKT, yielding to
an exponential decay for the spin-spin correlation function, in
place of the power-law decay for T < TBKT. Here, we model
the FMI as composed of weakly coupled layers, which ensures
the BKT transition [46–51].

In this work, we are interested in the effects of the BKT
transition on the injection of spin current from a normal metal
to a ferromagnetic insulator. We also determine the effects of
the interplane interaction and the easy-plane anisotropy on the
spin current injection. For determining the phase transition
and its effects, we use the self-consistent harmonic approx-
imation (SCHA). SCHA considers renormalized parameters
that take into account higher orders in the operator expan-
sion for the magnetic part. The magnon Green’s function
and the statistical average of spin operators are evaluated.
As standard procedures, we apply linear response theory to
find the spin current through the interface. The results show
a discontinuous jump at TBKT for spin current resistance. The
low-temperature behavior agrees with that already reported in
the literature.

II. THE MODEL

Following recent works [6,14], we divided the Hamilto-
nian into three parts: normal metal, magnetic insulator, and
interaction interface term. The normal metal is considered
as a free electron model with different chemical potentials
μ↑,↓ for up and down electrons. In the second quantization
formalism, the electronic Hamiltonian is written as Ĥe =∑

kσ (εk − μσ )c†
kσ

ckσ , where ckσ is the fermionic operator that
annihilates an electron of momentum k and spin σ . At finite
temperature, the electron propagation is given by the retarded
Green’s function ih̄Gret

kσ (t ) = θ (t )〈{ckσ (t ), c†
kσ

(0)}〉 [52].
We considered a magnetic material composed of two-

dimensional layers connected by an interplane coupling Jz.
The Hamiltonian is given by

Hm = −J
∑
〈i j〉

(
Sx

i Sx
j + Sy

i Sy
j + λxySz

i Sz
j

) − Jz
∑
〈i j〉

(
Sx

i Sx
j

+ Sy
i Sy

j + λzS
z
i Sz

j

) − gμBBs

∑
i

Sx
i , (1)

where the first sum is performed over intraplane neighbors
(coupling constant J), while the second sum is over interplane
neighbors (coupling Jz), 0 � λxy < 1 and 0 � λz � 1 are easy
plane anisotropies that favor the spins to align parallel to the
XY plane to minimize the energy. As usual for many rele-
vant materials [53–56], we consider a large interplane lattice
parameter compared with intraplane sites, which lead us to
Jz � J . Also, we will only consider the axial anisotropy λxy

for the intraplane interactions. Finally, the Zeeman energy is
associated with a uniform static magnetic field �B = Bsx̂ and
will be used to probe the spin of the magnon excitations.

There are many methods to obtain the spin propagator in
the magnetic material. Takahashi et al. [6] used the ladder
operators S±

i to define the magnon Green’s function in an
ordered FM model. It is also possible, for phases with broken
symmetry, to represent the spin operators as bosonic operators
using, for example, the Holstein-Primakoff (HP) formalism.
However, HP bosons do not apply to disordered phases.
Okamoto [14] adopted the Schwinger formalism to describe
the spin current in the AF/FM in both ordered and disordered
phases. In this case, the spin propagator is defined in terms of
spinon (neutral collective modes with half-integer spin) opera-
tors. Although Schwinger formalism may be used to study the
BKT transition, such a method is not the most appropriate,
being necessary the addition of an auxiliary Abelian gauge
field for the correct description of the BKT transition, as well
shown in Refs. [57,58]. In order to obtain the BKT transition,
we used the SCHA, described in Appendix A. Through the
SCHA, we can write a quadratic Hamiltonian with renormal-
ized parameters that take into account high order interactions.
We also show that our calculations have a better agreement
with experimental results than previous works.

The electrons of the magnetic insulator and normal metal
interact by an sd-type exchange Hamiltonian [6,59] (an in-
teraction between localized d-type electrons and conduction
s-type electrons)

Ĥsd = Jsd

∑
qkk′

[
Sz

q(c†
k↑ck′↑ − c†

k↓ck′↓)

+ S−
q c†

k↑ck′↓ + S+
q c†

k↓ck′↑
]
, (2)

where Jsd is the exchange coupling between conductor elec-
trons and magnetic sites. The sum over the momenta q, k,
and k′ is made independently considering a rough interface
and, therefore, the transverse component of momentum is
not conserved. Here we adopted dimensionless spin operators
with the h̄ absorbed in the couplings Jsd , J , and Jz.

The spin current operator is defined as the time derivative
Îs = (d/dt )

∑
kσ h̄σc†

kσ
ckσ and, using the Heisenberg equa-

tion of motion, we obtain

Îs = iJsd

∑
qkk′

(S−
q c†

k↑ck′↓ − S+
q c†

k↓ck′↑). (3)

As one can note, when �μ > 0, spin-up electrons are de-
stroyed while spin-down electrons are created in the spin-flip
process. The same spin current operator can be obtained if
we define the spin current in the FMI side of the interface as
Îs = (d/dt )

∑
qσ h̄σa†

qaq, where aq is the magnon annihilation
operator.
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yFMINM
FIG. 1. Schematic example of a possible spin-flip process at the

interface and the injection of magnons on the FMI side. An up spin
electron with momentum k is reflected at the interface with down
spin and momentum k′ at the NM side. A magnon with up spin and
momentum q is injected at the FMI side. Bs is a static magnetic field
applied along the x direction, and Is is the total spin current injected.

III. SPIN CURRENT

Using linear response theory [6], we obtain the expectation
value of Îs, defined in Eq. (3), as

Is = 1

ih̄

∫ ∞

−∞
dtθ (t )〈[Îs(t ), Ĥsd(0)]〉, (4)

where the time evolution of the operators is obtained from
the interaction picture. We define the operator ı h̄Û (t ) =
θ (t )[Â(t ), Â†(0)], which provides the retarded Green’s
function

ı h̄Uret (t ) = θ (t )〈[Â(t ), Â†(0)]〉, (5)

where Â(t ) = ∑
qkk′ S−

q (t )c†
k↑(t )ck′↓(t ). The Û operator can

be written as Û = Û ′ + iÛ ′′, where Û ′ gives the real part
of Uret, while Û ′′ provides the imaginary one. It is easy to
verify that Û ′(0) = 0, and consequently Re[Uret(t )] vanishes
for any t . To create a nonequilibrium situation that provides a
spin current injection through the NM/FMI interface (Fig. 1),
we introduce a spin-dependent chemical potential μσ in the
NM part, where �μ = μ↑ − μ↓ 
= 0. After a straightforward
procedure, the spin current is written as

Is(�μ) = −2J2
sdImUret (�μ), (6)

with the Fourier transform Uret (�μ) = ∫
dteı�μtUret (t ).

From the Lehmann representation, we obtain Is(�μ) =
2πJ2

sd

∑
mn Pmnδ(Km − Kn + �μ), with the transition

probabilities given by

Pmn = (e−βKm − e−βKn )

e−β

|〈m|A|n〉|2, (7)

where Km is the eigenvalue of the operator K̂ = ∑
kσ (εk −

μσ ). Therefore, one notes that Is = 0 in the limit of �μ = 0.
As expected, if the up and spin-down electrons have the same
chemical potential, then there is no effective spin inversion at
the interface reflection, and Is = 0.

As usual, since it is simpler to work with imaginary time
τ = it than real time t , we adopted the Matsubara formalism
to express the Green’s function as

h̄U (ı
m) = −
∫ β h̄

0
dτeı
mτ 〈Tτ Â(τ )Â†(0)〉, (8)

where 
m = 2πm/β h̄, m ∈ Z, are the Matsubara frequencies
and, Tτ is the imaginary time ordering operator. The retarded
Green’s function Uret(�μ) is recovered adopting the analytic
continuation i
m → �μ + iε, where ε > 0 is an infinitesimal
parameter. Applying Wick’s theorem, Eq. (8) is simplified to

U (ı
m) = −h̄2
∑
qkk′

∫ β h̄

0
dτei
mτGk↑(−τ )Gk′↓(τ )Dq(−τ ).

(9)

The Matsubara Green’s function of the electron is given by

h̄Gkσ (τ ) = −〈Tτ ckσ (τ )c†
kσ

(0)〉

= 1

β

∑
νn

e−iνnτ

ih̄νn − ξkσ

= eξkσ τ [ f (ξkσ )θ (τ ) − (1 − f (ξkσ )θ (−τ ))], (10)

where νn = (2n + 1)π/β h̄, with n ∈ Z, are the Matsubara
frequencies for fermionic operators and, ξkσ = εk − μσ is the
electron energy relative to the chemical potential μσ . Here,
we are considering a normal conducting state; however, a
superconducting phase, for example, would be implemented
by considering the phonon-electron interaction and adopting
a coherent ground state in order to allow electrons to bind
in Cooper pairs. The magnon Matsubara Green’s function,
defined by h̄Dq(τ ) = −〈Tτ S−

−q(τ )S+
q (0)〉, was developed in

Appendix B.
After replacing the Green’s functions and evaluating the

sum over the Matsubara frequencies, Eq. (9) yields

Is = 2πJ2
sd

∑
qkk′

[
cosh2 θq[n(ωq)( f (ξk↑) − 1) f (ξk′↓)]

δ(−ξk↑ + ξk′↓ + ωq + �μ)

n(−ξk↑ + ξk′↓ + ωq)

− sinh2 θq[(1 + n(ωq))( f (ξk↑) − 1) f (ξk′↓)]
δ(−ξk↑ + ξk′↓ − ωq + �μ)

n(−ξk↑ + ξk′↓ − ωq)

]
,

Is = 2πJ2
sd

n(−�μ)

∑
qk

[cosh2 θq(n(ωq)( f (ξk↑) − 1) f (ξk↑ − ωq − �μ)) + .

− sinh2 θq((1 + n(ωq))( f (ξk↑) − 1) f (ξk↑ + ωq − �μ))]. (11)
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Considering typical energy scales (εF ∼ 10 eV, ξk �
10−2 eV and h̄ωq, μq,�μ < ξk), we can assume a continuous
limit and integrate the Fermi-Dirac functions to obtain

∑
k

( f (ξk↑) − 1) f (ξk↑ ± ωq − �μ) � V

4

(
2me

βπ h̄2

)3/2

× Li1/2(−eβδ± ), (12)

where V is the NM volume, me is the electron mass, δ± =
εF − (−3�μ ± h̄ωq)/2 and Lis(x) is the polylogarithm (also
known as Jonquière’s function) of order s. Moreover, finally
replacing the result from Eq. (12) in Eq. (11), we obtain the
final expression for the spin current:

Is = gsT 3/2

n(−�μ)

∑
q

[cosh2(θq)n(h̄ωq)Li1/2(−eβδ− )

+ sinh2(θq)(1 + n(h̄ωq))Li1/2(−eβδ+ )], (13)

in which we defined the constant,

gs = V

4

(
2mekB

π h̄2

)3/2(
2πJ2

sd

)
.

It is important to note that for high temperatures (T >

TBKT), the result should be interpreted with care. The SCHA
method provides reliable results for temperatures T < TBKT.
However, above the BKT temperature, the self-consistent
parameters vanish as well as the energy h̄ωq for all mo-
mentum. As a consequence, the spin current defined by
Eq. (13) provides an infinite spin current for temperatures
above the BKT transition. A detailed analysis reveals that
the problem arises in the Green’s function of the a op-
erators. Indeed, since ωq → 0 in the BKT transition, the
aq and a†

q operators do not present time evolution, and
any spin operator should be time independent. In particular,
S−

q (t ) = S−
q (0) and the magnon Green’s function h̄Dret

q (t ) =
(−ih̄)−1θ (t )〈[S−

q , S+
q ]〉 = 2(−ih̄)−1θ (t )〈Sz

q〉 = 0 because Hφ
q

tends to zero when T → TBKT. Therefore, at the transition
temperature, we expect there will be no magnon propagation,
and the spin current abruptly vanishes at T = TBKT.

This different behavior, where the spin current vanishes
after undergoing a BKT transition differs from that observed
by Okamoto [14], which even after the system undergoes a
phase transition, it still presents a finite propagation of the spin
current. Actually, in Ref. [14] the transition from an FMI or
AFI ordered system (T < Tcritical) to a disordered PMI system
(T > Tcritical) is realized. This usual paramagnetic phase is
generally composed of domains and the correlation length is
finite (diverging only at the temperature where phase transi-
tion occurs). Regarding the BKT transition, for both T < TBKT

and T > TBKT, the system has no ordering at all [60]. It is
disordered for any finite temperature. However, for 0 < T <

TBKT, the correlation function follows a power law and the
correlation length is infinite [41–43], that is, the system is
critical at the whole temperature range, a feature which essen-
tially differs our from that considered by Okamoto [14], where
the system is critical only at the transition temperature. This
regime is often called quasiordered and is characterized by
the presence of bound vortices that contribute for disordering
the system. These vortices also work like scattering potentials
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FIG. 2. Spin current vs T at different �μ (represented by differ-
ent colors), for a number of Bs (represented by different line styles).
We have fixed η = 10−3 and λXY = 0.99. The inset shows the linear
behavior of Is at a very low temperature. (The magenta line has a
unity slope, and it only serves as a guide to the eyes). The curves
above show the abruptly vanishing of spin current at BKT transition,
as well as its reduction with the applied static field.

for magnons, as shown by Pereira et al. in Refs. [61,62].
For T > TBKT, vortex-pair dissociation and proliferation com-
pletely disorders the system. In this paramagnetic regime,
characterized by the excess of free vortices, the successive
scattering experienced by the injected magnons in the system
is enough to disorder the magnon propagation, breaking down
any coherence in the spin current transport, consequently nul-
lifying it.

IV. RESULTS

For temperatures below TBKT, the spin current presents a
similar behavior when compared with references [6,7,14]. It
increases with temperature and vanishes at T = 0. This comes
about for thermal fluctuations increase the magnon popula-
tion. At T = 0, there is no magnon excitation, so that the
spin-flip process is prohibited, yielding that the spin current
vanishes. Considering the classical magnon dispersion rela-
tion (ωq ∝ q2), it is easy to obtain Is ∝ T 3/2 from Eq. (13).
This result is in accordance to previous theoretical [6] and
experimental [7] results, even though our model is closer to
the two-dimensional (2D) case. At very low temperatures,
T → 0, we also recover the theoretical result from [6], where
Is ∝ T .

In Fig. 2, we can also notice the expected reduction of the
spin current with the increasing static magnetic field applied
and the abruptly vanishing of the spin current at the BKT
transition, as previously discussed. This behavior could be
used as both an indirect signature for BKT transition and on
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FIG. 3. Spin current vs the chemical potential for different tem-
peratures and applied fields, showing the saturation of spin current
for large �μ values, in addition to the expected linear behavior for
small �μ. We have used η = 10−3 and λXY = 0.99.

pure spin current valve devices [63], which represent a crucial
component to spintronics development. Finally, we can also
see that, for small �μ values, the injected spin current swiftly
saturates with the temperature.

Another important result is how the spin current varies with
�μ at fixed temperatures. For low �μ values, we recover the
expected linear behavior [6,14], as shown in Fig. 3.

Besides the linear behavior, we also note that spin current
injection saturates at larger �μ values. This comes about for
thermal fluctuations increases magnon population so that at a
lower temperature, fewer magnons are created, which limits
the possible spin-flip processes at the interface and conse-
quently, the maximum spin current injected through FMI. In
contrast, a higher (static) magnetic field decreases the magnon
population, since the coupling between the magnetic field and
the magnetic moments restricts their fluctuations.

According to Eq. (13), spin current jump �Is =
limT →T −

BKT
Is(T ) not only depend on temperature, but also

interaction parameters, chemical potential, and applied field.
This nontrivial behavior is shown in Fig. 4. Despite the slight
variation in �Is, some expected behaviors can be observed.
On the one hand, even for small interplane couplings, for fixed
λXY values, increasing η leads to lower �Is since, at higher
η values, the system approaches a 3D isotropic Heisenberg
model, which is disordered and presents no BKT transition.
On the other hand, for fixed η values, lower λXY values
(regime close to the XY model) yields higher �Is values. In
addition to BKT transition influence on the system, these two
behaviors for η and λXY , also highlight the importance of
planar spin configurations to increase the magnon injection
on the FMI side.
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FIG. 4. Spin current jump, �Is, at the TBKT, with η and λXY

varying. �μ = 10−2J and gμBBs = 10−2J . Similar behavior occurs
for different �μ and Bs values. Lower η and λXY values, in addition
to favor a BKT transition, lead to higher �Is values, showing the
importance of planar configurations to increase the magnon injection
on the FMI.

V. CONCLUSIONS

In this work, we have studied the spin current injection
through the interface between a normal metal and a quasi-2D
ferromagnetic insulator. We have assumed a splitting chemical
potential �μ for the up and down electrons in the NM. These
electrons reflect at the NM/FMI interface, and due to spin-flip
processes, they emit (or absorb) magnons in the FMI side.
Results for spin current injection in magnetic materials are
known, but our work presents characteristics not yet observed
in 3D systems. Here, we have considered a layered FMI whose
layers are weakly coupled. Therefore, it is reasonable to take
into account the BKT phase transition and its effects on the
spin current.

We have used the SCHA method, which considers ther-
mal renormalized parameters in order to include high order
contributions, to express the magnon Green’s function. The
SCHA is a suitable formalism since the transition temper-
atures evaluated are in good agreement with experimental
data. For potassium tetrafluorocuprate [53–55,64], for ex-
ample, through the spin stiffness obtained from SCHA, the
error between the BKT transition temperature obtained by
us and the experimental result is less than 3%. Using linear
response theory, we have obtained a spin current as a function
of temperature, splitting chemical potential, static magnetic
field, and coupling constants. Even though our model is closer
to the 2D case, we have been able to retrieve the expected
theoretical [6] and experimental [7] results for the spin cur-
rent dependence on temperature (Is ∝ T 3/2), including the
theoretical result [6] for very low temperatures (Is ∝ T ). We
also recovered the expected linear dependence [6,14] of spin
current for small �μ values (Is ∝ �μ).

However, when the BKT transition occurs, due to the vor-
tices dissociation and proliferation, the spin stiffness suffers
a discontinuity and the injected magnons are successively
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scattered by the free vortices, disordering the magnon prop-
agation and breaking down any coherence in the spin current
transport, which induces an abrupt vanishing of the spin cur-
rent. This result has not been described in the literature so
far, and could be applied both to the indirect detection of
a BKT transition and to application on pure spin current
valve devices [63]. We have also verified the existence of an
injection saturation for the spin current for large �μ values.
The value of saturation current varies with both temperature
(higher temperature leads to higher saturation current), and
static magnetic field applied (higher magnetic fields yields to
lower saturation current).
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APPENDIX A: SCHA

Conventional bosonic representations, like Schwinger
[65–67], Holstein-Primakoff [68], and Dyson-Maleev [69–72]
are not practical to treat BKT transition, we depart to adopt the
SCHA [73–77]. The SCHA replaces the Hamiltonian given
by Eq. (1) by a quadratic Hamiltonian with renormalized
parameters that take into account higher-order contributions.
Using the Villain representation [73], the ladder operators S+
and S− are represented by the ϕ and Sz operators as

S+
i = eiϕi

√
S(S + 1) − Sz

i

(
Sz

i + 1
)
, (A1)

S−
i =

√
S(S + 1) − Sz

i

(
Sz

i + 1
)
e−iϕ. (A2)

Classically, ϕ and Sz fields obey Poisson brackets
{ϕi, Sz

j} = δi j and, from quantum point of view, ϕ and Sz turn
out to be canonically conjugate operators, i.e.[ϕi, Sz

j] = iδi j .
Considering a smooth spin field, we expanded the Hamilto-
nian (1) in powers of Sz

i and ϕi up to 2nd-order and, after a
Fourier transform, we obtained

H = J
∑

q

(
Hϕ

q ϕqϕ−q + Hz
q Sz

qSz
−q

)
, (A3)

where we defined the coefficients Hϕ
q = 4S̃2ρ(1 −

γq) + 2(Jz/J )S̃2ρz(1 − γ z
q ) + (μBgBS̃/J )ζ and Hz

q =
4(1 − λxyγq) + 2(Jz/J )(1 − λzγ

z
q ) + (μBgB/(JS̃)). Here,

S̃2 = S(S + 1), γq = (cos qx + cos qy)/2 and γ z
q = cos qz are

structure factors for a quasi-2D square lattice. The intra-
and interplane spin stiffness, ρ and ρz, respectively, and
the ζ parameter are added to take into account higher order
terms in the harmonic approximation, being determined
by the Bogoliubov variational principle. Defining F as the
Helmholtz free energy for the original Hamiltonian and F0

as the free energy for the quadratic Hamiltonian then, ρ,
ρ ′, and ζ should be chosen in order to satisfy the inequality
F � F0 + 〈H − H0〉, where the mean value is evaluated using

the harmonic Hamiltonian. Such a condition provides three
self-consistent equations

ρ =
(

1 −
〈(

Sz
i

)2〉
S̃2

)
e− 1

2 〈�ϕ2〉, (A4)

ρz =
(

1 −
〈(

Sz
i

)2〉
S̃2

)
e− 1

2 〈�ϕ2
z 〉, (A5)

ζ =
(

1 −
〈(

Sz
i

)2〉
2S̃2

)
e− 1

2 〈ϕ2〉. (A6)

The statistical averages 〈�ϕ2〉 and 〈�ϕ2
z 〉 are evaluated

between the four intraplane neighbors and the two interplane
neighbors, respectively. Expressing ϕq and Sz

q in terms of the
new bosonic operator aq, defined by

ϕq = 1√
2

(
Hz

q

Hϕ
q

)1/4

(a†
q + a−q ), (A7)

Sz
q = i√

2

(
Hϕ

q

Hz
q

)1/4

(a†
q − a−q), (A8)

we obtain the harmonic Hamiltonian

H0 =
∑

q

h̄ωq

(
a†

qaq + 1

2

)
, (A9)

with the magnon energy h̄ωq = 2J
√

Hϕ
q Hz

q . Considering

small both the axial anisotropy and the interplane interaction,
a straightforward expansion to second order provides the char-
acteristic quadratic magnon dispersion for FM in the absence
of magnetic fields

ωq ≈ 2JS̃
√

ρ(1 − λxy)

h̄

(
q2

x + q2
y + κ2q2

z

)
, (A10)

where the z-axis anisotropy κ is defined as

κ =
√

Jzρ + Jz(1 − λxy)ρz

2Jρ(1 − λxy)
. (A11)

By virtue of small interplane coupling, ωq has a weak depen-
dence with qz and the magnon dispersion is almost constant
along the z axis, parallel to NM/FMI interface. For λxy = 0
and Jz = J , κ = 1 and we recover the 3D isotropic dispersion
ωq = (2JS̃

√
ρ/h̄)q2.

Using Eq. (A7), the following averages are determined in
the thermodynamic limit:

〈(
Sz

i

)2〉 = 1

2

∫
d3q

(2π )3

√
Hϕ

q

Hz
q

coth

(
h̄ωq

2T

)
, (A12)

〈
ϕ2

i

〉 = 1

2

∫
d3q

(2π )3

√
Hz

q

Hϕ
q

coth

(
h̄ωq

2T

)
, (A13)

〈�ϕ2〉 =
∫

d3q

(2π )3
(1 − γq)

√
Hz

q

Hϕ
q

coth

(
h̄ωq

2T

)
, (A14)

〈
�ϕ2

z

〉 =
∫

d3q

(2π )3

(
1 − γ z

q

)√ Hz
q

Hϕ
q

coth

(
h̄ωq

2T

)
. (A15)

It is well known that the spin stiffness exhibits a uni-
versal jump at TBKT associated with vortex proliferation
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[41–43,75,76]. The spin stiffness vanishes for T > TBKT while
ρJS̃2/T tends to 2/π when T → T −

BKT. Therefore, ϕ should
be split into two parts: ϕ = ϕs + ϕv , where ϕs describes the
spin wave fluctuation, while ϕv is the vortex field. Unfortu-
nately, the stiffness ρ obtained from SCHA takes into account
only the spin wave contribution, neglecting any vortex ef-
fect. However, we can obtain the BKT temperature through
the crossing between ρ(T ), obtained from the SCHA, and
2T/πJS̃2. In order to verify our equations, we determined the
BKT temperature for potassium tetrafluorocuprate (K2CuF4),
a well known layered ferromagnetic material with S = 1/2
[53–55,64]. Using J = 23.86 K, J ′ = 0.016 K and Ja =
0.18 K, the SCHA provides TBKT = 5.35 K, in accordance
with the experimental measure TBKT = 5.5 K [54], and a better
agreement than Irkhin [78] (TBKT = 11.4 K) and Sachs [53]
(TBKT = 7.9 K).

APPENDIX B: THE MAGNON GREEN’S FUNCTION

The retarded magnon Green’s function is defined by

ı h̄Dret
q (t ) = θ (t )〈[S+

q (t ), S−
−q(0)]〉0, (B1)

where we have considered mean values evaluated through
the quadratic Hamiltonian from the SCHA. Using the Villain
representation after the expansion of the ladder operators up
to second order in ϕ and Sz, we obtain the mean value in
momentum space

〈[S+
q (t ), S−

−q(0)]〉0 = 1

N

∑
�r

〈[S+
i (t ), S−

i+�r (0)]〉0eiq�r

= sinh2 θq〈[a†
q(t ), aq(0)]〉0

+ cosh2 θq〈[aq(t ), a†
q(0)]〉0

= 〈[aq(t ), a†
q(0)]〉0 , (B2)

where we define a new bosonic operator given by aq =
sinh θqa†

q + cosh θqaq, with

sinh θq =
√√√√J

(
Hϕ

q + 4S̃4Hz
q

4S̃2 h̄ωq

)
− 1

2
, (B3a)

cosh θq =
√√√√J

(
Hϕ

q + 4S̃4Hz
q

4S̃2 h̄ωq

)
+ 1

2
. (B3b)

The retarded magnon Green’s function then takes the form:

ı h̄Dret
q (t ) = θ (t )〈[aq(t ), a†

q(0)]〉0 , (B4)

which is similar to that obtained from the Holstein-Primakoff
formalism [68], which defines the ladder operators in terms
of bosonic operators bq as S+

q = √
2Sbq and S−

q = √
2Sb†

q
(note that, in this case, the spin field is aligned along the z
direction). By the definition of Dret

q , we interpret a†
q as an

operator that creates a magnon with spin along the z axis
as well as b†

q in Holstein-Primakoff representation. However,
there is a difference in the spin orientation of the excited
states obtained from our representation and the HP one. Since

the ground state presents magnetization along the x direction,
due to the static magnetic field, the lowest energy excitations
should be long-wavelength spin waves with spin aligned along
the magnetization direction. Therefore, aq operators create
magnons states with spin along the x direction, different
from aq or bq operators. Provided that the Hamiltonian given
by Eq. (A9) is diagonalized by the aq operators, we obtain
aq(t ) = e−iωqt aq(0), whereas the states created by a†

q, which
are not eigenstates of H , present a more complicated time
evolution. As a consequence, the number operator a†a does
not commute with the Hamiltonian, as it is clear from the
definition of a. Indeed, in the stationary state of the preces-
sion magnetization, the x component of the spin is conserved
while the z component oscillates with a frequency defined by
the energy eigenvalues. For that reason, the Green’s function
given by Eq. (B4) is composed of the linear combination
of eigenstates of H0 (at least for the case where the lad-
der operators are given by an expansion up to second order
in ϕ and Sz). In the frequency space, the Green’s function
becomes

h̄Dret
q (ω) = cosh2 θq

ω − ωq + ıε
− sinh2 θq

ω + ωq + ıε
, (B5)

in which, as usual, we introduced an infinitesimal
factor ıε to ensure the convergence in the limit
t → ∞. The spectral function Rq(ω) = −2 Im Dret

q (ω) =
−2π h̄−1[sinh2 θqδ(ω + ωq) − cosh2 θqδ(ω − ωq)] provides
two excitations, whose energies are given by E = ±h̄ωq. The
negative energy excitation is associated with a magnon with
inverse spin moving in the opposite direction, and therefore
both modes contribute to the positive spin current.

FIG. 5. The magnon spin in the Brillouin zone. Due to the
adopted approximations, the spin is slightly larger than unity in some
regions of the BZ but an average over the whole zone provides an
according result. The inset shows the spin over the diagonal line.
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TABLE I. The average spin 〈Sm〉 and the standard deviation σ

of the excitation obtained from SCHA. The values are in accordance
with the expected value of the magnon spin.

Jz/J λXY gμBBs/J 〈Sm〉 σ

10−2 0.90 10−1 0.970 0.008
10−2 0.90 10−2 1.012 0.015
10−2 0.99 10−1 0.987 0.015
10−2 0.99 10−2 0.939 0.010
10−3 0.90 10−1 0.982 0.011
10−3 0.90 10−2 0.984 0.016
10−3 0.99 10−1 1.000 0.017
10−3 0.99 10−2 0.992 0.016

For finite temperature, it is useful to consider the Matsub-
ara Green’s function

h̄Dq(ωm) = cosh2 θq

ıωm − ωq
− sinh2 θq

ıωm + ωq
, (B6)

with the bosonic frequencies ωm = 2πm/β h̄, m ∈ Z.
After summing over the Matsubara frequencies, we
have

Dq(τ ) = cosh2 θqϒq(τ ) + sinh2 θqϒq(−τ ) , (B7)

where

h̄ϒq(τ ) = −〈Tτ aq(τ )a†
q(0)〉 = −e−ωqτ [nq + θ (τ )] (B8)

represents the Matsubara Green’s function for the aq mode.
In order to probe the spin of the excitations described by

the a operators, we evaluated the energy increase due to mag-
netic fields and associated it with the energy spin fluctuations.
We can define the magnon spin 〈Sm〉 by the energy difference:
gμBBs〈Sm〉 = 〈h̄ωq(Bs) − h̄ωq(0)〉, where the mean value is
obtained over the first Brillouin zone. In Fig. 5, we show
the result for gμBBs = 0.01J , Jz = 10−3J , λXY = 0.99 and
S = 1/2 (other combinations of Jz, λXY and Bs provide similar
graphs). Since the propagators are evaluated considering a
quadratic expansion in Sz and φ, the results are not exact;
however, except for some regions of the first Brillouin zone,
the spin value is only slightly larger than unity. The average
over the Brillouin zone in Fig. 5 gives 〈Sm〉 = 0.992(16).
For S = 1/2, we also found the average 〈Sm〉 and the stan-
dard deviation σ for many combinations of the interactions
parameters and the static magnetic field Bs. As shown in
Table I, the results are in agreement with the integer magnon
spin.
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