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Bipartite quantum and thermal entanglement is quantified within pure and mixed states of a mixed spin-
(1/2, 1) Heisenberg dimer with the help of negativity. It is shown that the negativity, which may serve as a
measure of the bipartite entanglement at zero as well as nonzero temperatures, strongly depends on intrinsic
parameters—for instance, exchange and uniaxial single-ion anisotropy—in addition to extrinsic parameters
such as temperature and magnetic field. It turns out that a rising magnetic field unexpectedly reinforces the
bipartite entanglement due to the Zeeman splitting of energy levels, which lifts the twofold degeneracy of the
quantum ferrimagnetic ground state. The maximal bipartite entanglement is thus reached within a quantum
ferrimagnetic phase at sufficiently low but nonzero magnetic fields under the assumption that the gyromagnetic
g factors of the spin-1/2 and spin-1 magnetic ions are equal and the uniaxial single-ion anisotropy is half of
the exchange constant. It is suggested that the heterodinuclear complex [Ni(dpt)(H2O)Cu(pba)] · 2H2O [pba =
1,3-propylenebis(oxamato) and dpt = bis-(3-aminopropyl)amine], which affords an experimental realization of
the mixed spin-(1/2, 1) Heisenberg dimer, remains strongly entangled up to relatively high temperatures (about
115 K) and magnetic fields (about 140 T) that are comparable with the relevant exchange constant.
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I. INTRODUCTION

Molecular magnetic materials [1–4] are among the promi-
nent solid-state resources for quantum computation and
quantum information processing [5], because they can be used
to build extremely dense and efficient memory devices im-
plementing Grover’s algorithm [6]. Grover’s search algorithm
requires a superposition of “single-particle” quantum states,
whereas spin states of a single magnetic molecule with a suf-
ficiently long relaxation time provide an available platform for
the molecule’s technological implementation on the grounds
of single-molecule magnets [7–9]. Some quantum algorithms,
such as Shor’s factoring algorithm [10], however, require both
superposition and entanglement of “many-particle” quantum
states, which naturally occur in many-particle quantum spin
systems forming basic building blocks of molecular-based
magnetic materials.

Many-particle quantum spin systems have been extensively
investigated in the context of quantum information processing
due to the possibility of creation and distribution of quantum
entanglement between specific spin units acting as qubits [11]
as well as the speed-up of quantum computation and com-
munication [12]. It is noteworthy that entanglement measures
such as negativity [13–15] or concurrence [16] can be related
via certain witnesses to thermodynamic quantities [17,18],
which additionally offer an intriguing possibility for exper-
imental testing [19–26]. Some quantum protocols such as a
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quantum teleportation of information cannot be even realized
without many-particle entangled states [27–30].

Bearing all this in mind, it appears worthwhile to investi-
gate how a degree of entanglement in quantum spin systems
is affected by extrinsic parameters such as temperature and
external magnetic field. From the viewpoint of possible tech-
nological applications, it is especially important to find out
whether a quantum entanglement emergent at absolute zero
temperature may persists as a thermal entanglement at suf-
ficiently high temperatures. The quantity concurrence has
been widely used in order to capture the strength of the
bipartite thermal entanglement in several spin-1/2 quantum
systems: dimer [12,31,32], trimer [33,34], tetramer [34–36],
chain [37,38], ladder [38–40], tube [41,42], tetrahedral chain
[43,44], trimerized chain [45], diamond chain [46–51], pen-
tagonal chain [52], and branched chain [53,54].

On the other hand, one may take advantage of the nega-
tivity [15] as a quantitative measure of the Peres-Horodecki
criterion [13,14] in order to capture the bipartite thermal
entanglement of quantum spin systems involving carriers
with higher spin angular momentum, which, to date, have
been much less comprehensively investigated in comparison
with spin-1/2 quantum systems. Although the rising spin
magnitude generally suppresses the strength of the quantum
entanglement, it surprisingly turns out that the thermal entan-
glement of the mixed spin-(1/2, S) quantum systems survives
up to a higher threshold temperature as the spin magnitude
S increases [55,56]. A reasonable choice of constituent spins
may accordingly ensure an optimization of the thermal entan-
glement, which would be concurrently sufficiently strong and
resistant with respect to rising temperature.
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Owing to this fact, mixed spin-(1/2, 1) quantum
systems may provide a prospective platform for reaching
sufficiently strong and thermally resistant entanglement.
Up to now, the concept of negativity has been adapted
to measure the strength of the thermal entanglement of
the mixed spin-(1/2, 1) Heisenberg chain [57–61], the
mixed spin-(1/2, 1) Heisenberg dimer [62–66], the mixed
spin-(1/2, 1) XY dimer [67,68], as well as the mixed
spin-(1/2, 1) Ising-Heisenberg diamond chain [69]. The
external magnetic field turns out to be another significant
control parameter, which may eventually cause strengthening
of the thermal entanglement [57,62–67]. In agreement with
common expectations, the threshold temperature, above
which the thermal entanglement vanishes, is not elevated
by a uniform magnetic field [57], whereas it may be just
slightly enhanced when applying a nonuniform magnetic field
[63,64]. A more noticeable enhancement of the threshold
temperature can be achieved, however, by implementing
various types of the magnetic anisotropy such as the exchange
anisotropy [59,62,64,67], the uniaxial single-ion anisotropy
[60,61], or the Dzyaloshinskii-Moriya anisotropy [66].

In the present paper, we will examine the strength of
the quantum and thermal entanglement within pure and
mixed states of a mixed spin-(1/2, 1) Heisenberg dimer
with the exchange and uniaxial single-ion anisotropies in
presence of the nonuniform magnetic field, which takes
into consideration different values of the gyromagnetic g
factors of the spin-1/2 and spin-1 magnetic ions. The
present theoretical study is motivated by the molecular-
based compound [Ni(dpt)(H2O)Cu(pba)] · 2H2O [pba = 1,3-
propylenebis(oxamato) and dpt = bis-(3-aminopropyl)amine]
[70], which could be classified as a heterodinuclear com-
plex of the exchange-coupled spin-1/2 Cu2+ and spin-1 Ni2+

magnetic ions, henceforth abbreviated as the CuNi com-
pound. In this regard, the present paper provides a missing
link between theoretical findings for the mixed spin-(1/2, 1)
quantum Heisenberg dimer and its real-world representative
afforded by the CuNi compound [70].

The organization of this paper is as follows. An ex-
act calculation for the negativity of the mixed spin-(1/2, 1)
Heisenberg dimer in a magnetic field is presented in Sec. II.
The most interesting results for the quantum and thermal
entanglement of the mixed spin-(1/2, 1) Heisenberg dimer
will be presented in Sec. III as functions of the exchange
anisotropy, the uniaxial single-ion anisotropy, and the mag-
netic field together with the relevant theoretical prediction for
the CuNi complex. A brief summary of the most important
scientific achievements is presented in Sec. IV along with
future outlooks and perspectives.

II. MODEL AND METHOD

In the present paper, we will investigate in detail the quan-
tum and thermal entanglement of the mixed spin-(1/2, 1)
Heisenberg dimer defined by the Hamiltonian

Ĥ = J[�(Ŝxμ̂x + Ŝyμ̂y) + Ŝzμ̂z] + D(μ̂z )2

− g1μBBŜz − g2μBBμ̂z, (1)

where Ŝα and μ̂α (α = x, y, z) denote spatial components of
the spin-1/2 and spin-1 operators, respectively. The coupling
constant J determines the Heisenberg exchange interaction
between the spin-1/2 and spin-1 magnetic ions, the parameter
� determines the XXZ exchange anisotropy in this exchange
interaction, and the parameter D is a uniaxial single-ion
anisotropy acting on the spin-1 magnetic ions only. Finally,
the parameter B denotes a static external magnetic field, μB is
the Bohr magneton, while g1 and g2 are Landé g factors of the
spin-1/2 and spin-1 magnetic ions, respectively.

A matrix representation of the Hamiltonian (1)
in the standard basis formed by the eigenvectors
|ϕi〉 ∈ {| 1

2 , 1〉, | 1
2 , 0〉, | 1

2 ,−1〉, |− 1
2 , 1〉, |− 1

2 , 0〉, |− 1
2 ,−1〉} of

z-components of the constituting spin-1/2 and spin-1 entities
reads as follows:

〈ϕ j |Ĥ|ϕi〉 =

⎛
⎜⎜⎜⎜⎜⎝

H11 0 0 0 0 0
0 H22 0 H24 0 0
0 0 H33 0 H35 0
0 H42 0 H44 0 0
0 0 H53 0 H55 0
0 0 0 0 0 H66

⎞
⎟⎟⎟⎟⎟⎠, (2)

whereas six diagonal elements are defined by

H11 = 1

2
[J + 2D − (h1 + 2h2)],

H22 = −h1

2
,

H33 = −1

2
[J − 2D + (h1 − 2h2)],

H44 = −1

2
[J − 2D − (h1 − 2h2)], (3)

H55 = h1

2
,

H66 = 1

2
[J + 2D + (h1 + 2h2)],

and four off-diagonal elements are equal to

H24 = H42 = H35 = H53 = J�√
2
. (4)

For abbreviation purposes, we have introduced above two new
parameters, h1 = g1μBB and h2 = g2μBB, related to “local”
Zeeman terms (magnetic fields) acting on the spin-1/2 and
spin-1 magnetic particles, which may be different due to
difference of the gyromagnetic g factors g1 �= g2. A relatively
simple (sparse) structure of the Hamiltonian matrix (2)
allows us to obtain a complete set of eigenvalues by an exact
analytical diagonalization,

E1,2 = 1
2 [J + 2D ∓ (h1 + 2h2)], (5)

E3,4 = − 1
4 (J − 2D + 2h2)

∓ 1
4

√
[J − 2D − 2(h1 − h2)]2 + 8(J�)2, (6)

E5,6 = − 1
4 (J − 2D − 2h2)

∓ 1
4

√
[J − 2D + 2(h1 − h2)]2 + 8(J�)2, (7)
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whereas the corresponding eigenvectors read

|ψ1〉 = ∣∣ 1
2 , 1

〉
, (8)

|ψ2〉 = ∣∣− 1
2 ,−1

〉
, (9)

|ψ3,4〉 = c∓
1

∣∣ 1
2 , 0

〉 ∓ c±
1

∣∣− 1
2 , 1

〉
, (10)

|ψ5,6〉 = c±
2

∣∣ 1
2 ,−1

〉 ∓ c∓
2

∣∣− 1
2 , 0

〉
. (11)

The last four eigenvectors (10) and (11) are defined through
the probability amplitudes

c±
1 = 1√

2

√
1 ± J − 2D − 2(h1 − h2)√

[J − 2D − 2(h1 − h2)]2 + 8(J�)2
,

(12)

c±
2 = 1√

2

√
1 ± J − 2D + 2(h1 − h2)√

[J − 2D + 2(h1 − h2)]2 + 8(J�)2
.

To explore a degree of quantum and thermal entanglement in
pure and mixed states of the mixed spin-(1/2, 1) Heisenberg
dimer, one may employ the quantity negativity [15] serving
as a measure of the pairwise entanglement according to
Peres-Horodecki separability criterion [13,14]

N =
6∑

i=1

|λi| − λi

2
, (13)

which is defined through eigenvalues λi of a partially
transposed density matrix ρT1/2 derived from the overall
density matrix ρ upon a partial transposition T1/2 with respect
to one subsystem. In this particular case T1/2 denotes a
partial transposition with respect to states of the spin-1/2
magnetic ion. According to the Peres-Horodecki separability
criterion [13,14], invented for partially transposed density
matrices, the negativity becomes zero (N = 0) for separable
(factorizable) states, while it becomes nonzero (N �= 0) for
entangled (nonseparable) states. Consequently, the necessary
and sufficient prerequisite for detecting a quantum or thermal
entanglement within pure or mixed states of the mixed
spin-(1/2, 1) Heisenberg dimer is at least one negative
eigenvalue λi of the partially transposed density matrix ρT1/2 .

The density operator ρ̂ of the mixed spin-(1/2, 1) Heisen-
berg dimer can be easily calculated from the eigenvalues
(5)–(7) and the respective eigenvectors (8)–(11) according to
the formula

ρ̂ = 1

Z

6∑
i=1

exp(−βEi )|ψi〉〈ψi|, (14)

which is expressed in terms of the partition function Z =∑6
i=1 exp(−βEi ), giving the following explicit form:

Z = 2

{
e− β

2 (J+2D) cosh

[
β

2
(h1 + 2h2)

]
+ e

β

4 (J−2D)

×
[

e
βh2

2 cosh

(
β

4

√
[J − 2D − 2(h1 − h2)]2 + 8(J�)2

)

+ e− βh2
2 cosh

(
β

4

√
[J−2D+2(h1 − h2)]2+8(J�)2

)]}
.

(15)

Of course, the density matrix corresponding to the density
operator (14) has a matrix structure similar to the Hamiltonian
matrix (2),

ρ =

⎛
⎜⎜⎜⎜⎜⎝

ρ11 0 0 0 0 0
0 ρ22 0 ρ24 0 0
0 0 ρ33 0 ρ35 0
0 ρ42 0 ρ44 0 0
0 0 ρ53 0 ρ55 0
0 0 0 0 0 ρ66

⎞
⎟⎟⎟⎟⎟⎠, (16)

whereas individual elements ρi j of the density matrix are,
for the sake of brevity, explicitly given in Appendix A. A
partial transposition T1/2 with respect to states of the spin-1/2
magnetic ion gives the partially transposed density matrix

ρT1/2 =

⎛
⎜⎜⎜⎜⎜⎝

ρ11 0 0 0 ρ24 0
0 ρ22 0 0 0 ρ35

0 0 ρ33 0 0 0
0 0 0 ρ44 0 0

ρ24 0 0 0 ρ55 0
0 ρ35 0 0 0 ρ66

⎞
⎟⎟⎟⎟⎟⎠, (17)

which has the following spectrum of eigenvalues:

λ1 = ρ33, (18)

λ2 = ρ44, (19)

λ3,4 = ρ22 + ρ66

2
± 1

2

√
(ρ22 − ρ66)2 + 4ρ2

35, (20)

λ5,6 = ρ11 + ρ55

2
± 1

2

√
(ρ55 − ρ11)2 + 4ρ2

24. (21)

It is quite clear that the eigenvalues λ4 and λ6 with neg-
ative sign before a square root may become, under certain
conditions, negative, which according to the definition (13)
is a necessary prerequisite of nonzero negativity (bipartite
entanglement). In the following part we will investigate in
detail manifestation of quantum and thermal entanglement
of the mixed spin-(1/2, 1) Heisenberg dimer depending on
temperature, magnetic field, and magnetic anisotropy.

III. RESULTS AND DISCUSSION

It is worthwhile to recall that suitable experimental re-
alizations of the mixed spin-(1/2, 1) Heisenberg dimer are
offered by heterobimetallic complexes such as the CuNi com-
pound [70], which is composed of exchange coupled spin-1/2
Cu2+ and spin-1 Ni2+ magnetic ions. Note furthermore that
transition-metal ions, for instance Cu2+ and Ni2+, usually
have gyromagnetic g factors quite close to the spin-only value
g = 2 due to an almost full quenching of their orbital mo-
mentum [1–3]. In this regard, we will consider hereafter three
different combinations of Landé g factors: (i) g1 = g2 = 2.0,
(ii) g1 = 2.2, g2 = 2.0, and (iii) g1 = 2.0, g2 = 2.2. The first
case bears a close relation to the ideal case with equal gyro-
magnetic factors with the spin-only value g = 2, while in the
second and third cases the gyromagnetic factor of the spin-1/2
magnetic ion Cu2+ slightly exceeds the one of the spin-1
magnetic ion Ni2+ or vice versa. For simplicity, the size of
the antiferromagnetic exchange interaction J > 0 may serve
as an energy unit when defining a set of dimensionless
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quantities measuring a relative strength of the uniaxial single-
ion anisotropy D/J , magnetic field μBB/J , and temperature
kBT/J .

A. Quantum entanglement

First, we pay attention to a comprehensive analysis of a
bipartite quantum entanglement of the mixed spin-(1/2, 1)
Heisenberg dimer at zero temperature and magnetic field
depending on two intrinsic model parameters, � and D/J , de-
termining the exchange and uniaxial single-ion anisotropies,
respectively. The zero-field ground state of the mixed spin-
(1/2, 1) Heisenberg dimer could be classified as a twofold
degenerate quantum ferrimagnetic state given by the eigen-
vectors

|QFI±〉 =
{

c+
0 | − 1/2, 1〉 − c−

0 |1/2, 0〉,
c+

0 |1/2,−1〉 − c−
0 | − 1/2, 0〉, (22)

where the probability amplitudes c±
0 unambiguously deter-

mine the relevant quantum superposition of the microstates
|∓1/2, 1〉 and |±1/2, 0〉 are given by

c±
0 = 1√

2

⎛
⎜⎝

√√√√1 ± 1 − 2 D
J√(

1 − 2 D
J

)2 + 8�2

⎞
⎟⎠. (23)

Using the respective density operator ρ̂ = (|QFI+〉〈QFI+| +
|QFI−〉〈QFI−|)/2, one gets the following zero-temperature
value of the negativity that characterizes the bipartite entan-
glement within a twofold degenerate quantum ferrimagnetic
ground state (22) at zero magnetic field:

N =
√(

1 − 2 D
J

)2 + 8�2 − (
1 − 2 D

J

)
4
√(

1 − 2 D
J

)2 + 8�2

×

⎡
⎢⎣
√√√√√5

√(
1 − 2 D

J

)2 + 8�2 + 3
(
1 − 2 D

J

)
√(

1 − 2 D
J

)2 + 8�2 − (
1 − 2 D

J

) − 1

⎤
⎥⎦. (24)

It appears worthwhile to examine in somewhat more detail a
degree of the bipartite quantum entanglement of the mixed
spin-(1/2, 1) Heisenberg dimer in zero magnetic field de-
pending on a relative strength of the exchange and uniaxial
single-ion anisotropy. To this end, the negativity is plotted
in Fig. 1 against the uniaxial single-ion anisotropy for three
representative values of the exchange anisotropy, namely,
the fully isotropic case (� = 1.0) and the particular cases
with easy-axis (� = 0.5) and easy-plane (� = 2.0) exchange
anisotropies. It is evident from Fig. 1 that the negativity shows
a relatively broad maximum at N = 1/3, whose position de-
pends on a specific choice of the exchange anisotropy. For
instance, the mixed spin-(1/2, 1) Heisenberg dimer with a
perfectly isotropic exchange interaction � = 1 exhibits the
strongest bipartite quantum entanglement under the assump-
tion that the uniaxial single-ion anisotropy is also absent
D/J = 0, i.e., it does not possess any form of the magnetic
anisotropy. On the other hand, the easy-axis (easy-plane) ex-
change anisotropy � < 1 (� > 1) shifts the local maximum
of the negativity towards the uniaxial single-ion anisotropy
with an easy-plane (easy-axis) character D/J > 0 (D/J < 0)

-1 0 1 2
0

0.1

0.2

0.3

0.4

FIG. 1. The negativity as a function of the uniaxial single-ion
anisotropy D/J for three different values of the exchange anisotropy,
� = 0.5, 1.0, and 2.0, at zero magnetic field.

competing with the exchange anisotropy. It is also worthwhile
to note that a relative strength of the bipartite quantum entan-
glement becomes, according to Eq. (24), independent of the
exchange anisotropy for the particular value of the uniaxial
single-ion anisotropy D/J = 1/2, for which the negativity ac-
quires half of the golden-ratio conjugate N = (

√
5 − 1)/4 ≈

0.309 regardless of the anisotropy parameter � (see the cross-
ing point in Fig. 1).

Next, let us investigate in detail a strength of the bipartite
quantum entanglement of the mixed spin-(1/2, 1) Heisenberg
dimer at zero temperature for three considered settings of
Landé g factors in the presence of an external magnetic field.
For this purpose, we have plotted first in Fig. 2 the ground-
state phase diagrams of the mixed spin-(1/2, 1) Heisenberg
dimer in the D/J-μBB/J plane for three different values of
the exchange anisotropy, � = 0.5, 1.0, and 2.0. Of course,
a sufficiently strong magnetic field gives rise to the classi-
cal ferromagnetic state |FM〉 = |1/2, 1〉, which is naturally

-1 -0.5 0 0.5 1

0.5

1

1.5

FIG. 2. The ground-state phase diagram in the D/J-μBB/J
plane for three selected values of the exchange anisotropy, � =
0.5, 1.0, 2.0, and three different sets of the Landé g factors indicated
in the legend. A thin vertical line at D/J = 1/2 determines a special
value of the uniaxial single-ion anisotropy, at which the respective
transition field becomes independent of the difference |g1 − g2|.
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without any quantum entanglement as evidenced by a zero
value of the negativity, N = 0. On the other hand, the twofold
degeneracy of the quantum ferrimagnetic ground state (22)
is lifted by the external magnetic field due to the Zeeman
splitting of energy levels, which stabilizes at sufficiently low
but nonzero magnetic fields the unique quantum ferrimagnetic
ground state:

|QFI+〉 = c+
1 |−1/2, 1〉 − c−

1 |1/2, 0〉. (25)

The unique quantum ferrimagnetic ground state (25) is char-
acterized by a quantum superposition of the microstates
|−1/2, 1〉 and |1/2, 0〉 unambiguously given by the following
probability amplitudes:

c±
1 = 1√

2

√√√√√1 ± 1 − 2 D
J − 2 μBB

J (g1 − g2)√[
1 − 2 D

J − 2 μBB
J (g1 − g2)

]2 + 8�2

.

(26)
The respective zero-temperature asymptotic value of the neg-
ativity for the nondegenerate quantum ferrimagnetic ground
state |QFI+〉 given by Eq. (25) can be acquired by making use
of the density operator ρ̂ = |QFI+〉〈QFI+|:

N =
√

2�√[
1 − 2 D

J − 2(g1 − g2)μBB
J

]2 + 8�2

. (27)

At fixed values of the model parameters, the specific value
of the negativity (27) pertinent to the nondegenerate quan-
tum ferrimagnetic ground state |QFI+〉 is surprisingly much
greater at nonzero magnetic fields than the zero-field value
(24) inherent to the twofold degenerate quantum ferrimagnetic
phase |QFI±〉 forming the respective ground state in the zero-
field limit. It could be thus concluded that the Zeeman splitting
of energy levels due to the external magnetic field leads to
an unexpected sudden rise of the bipartite quantum entangle-
ment of the mixed spin-(1/2, 1) Heisenberg dimer, which is
in contrast with the naive expectation that the magnetic field
suppresses the quantum entanglement. Moreover, it will be
shown herein that the sudden rise of the bipartite entanglement
due to rising magnetic field at absolute zero temperature is
also preserved at sufficiently small but nonzero temperatures,
which makes this feature especially interesting with regard to
possible experimental testing (see Sec. III B).

The phase boundary between the classical ferromagnetic
|FM〉 and quantum ferrimagnetic |QFI+〉 ground states fol-
lows from the formula

μBB

J
= 1

4g1g2

[
g1 + 2g2 + 2g1

D

J

+
√(

g1 − 2g2 + 2g1
D
J

)2 + 8g1g2�2

]
, (28)

which depends on a mutual interplay of the exchange
anisotropy �, the uniaxial single-ion anisotropy D/J , as well
as the g factors g1 and g2. In general, an increase of both
anisotropy parameters D/J and � stabilizes the quantum fer-
rimagnetic ground state |QFI+〉, while the rising magnetic
field μBB/J contrarily stabilizes the classical ferromagnetic
ground state |FM〉. A shift of the gyromagnetic g factors from
their spin-only value also promotes existence of the classical
ferromagnetic ground state |FM〉 at the expense of the quan-
tum ferrimagnetic ground state |QFI+〉; however, this impact
is rather insignificant for reasonable values of gyromagnetic
ratios g1,2 � 2. In addition, it can be clearly seen from Fig. 2
that the ground-state phase boundaries for two particular cases
with unequal g factors cross each other at the special value of
the uniaxial single-ion anisotropy D/J = 1/2 when assuming
the same value of the exchange anisotropy �, because the
transition field is, in accordance with Eq. (28), independent
of the difference of the gyromagnetic g factors |g1 − g2|.
Zero-temperature density plots of the negativity N , which
quantifies a degree of the bipartite quantum entanglement
within the mixed spin-(1/2, 1) Heisenberg dimer, are depicted
in Fig. 3 in the D/J-μBB/J plane for three different sets of
Landé g factors and two representative values of the exchange
anisotropy, � = 0.5 and 1.0. In agreement with the formula
(27), the negativity N becomes within the quantum ferri-
magnetic phase (25) fully independent of a relative strength
of the magnetic field μBB/J under the assumption that the
gyromagnetic factors are set equal to each other, g1 = g2 (see
left panels in Fig. 3). Even under the specific constraint g1 =
g2, the anisotropic parameters D/J and � still significantly
influence the strength of the bipartite quantum entanglement;
for instance, the negativity N is in general reinforced upon
increasing the parameter �. As far as the influence of the uni-
axial single-ion anisotropy is concerned, the maximal value
of the negativity N = 0.5 is notably reached for the particular
case with D/J = 1/2 (see the vertical white lines in the left
panels of Fig. 3), whereas the negativity gradually diminishes
as one moves further apart from this specific case to the highly
anisotropic cases D/J → ±∞.

A situation for the more general case with different gy-
romagnetic g factors, g1 �= g2, is much more involved. The
contours with extremal values of the negativity in the middle
and right panels of Fig. 3, along which the negativity achieves
the maximal value N = 0.5, are apparently not vertical, but
they deflect from a vertical direction by the specific angle α,
which is proportional to the difference of Landé g factors,
α = arctan(g2 − g1). It is noteworthy that the same trend is
preserved also for contours, which do not correspond to the
extremal value of the negativity. Owing to the inclination
of the contours from the magnetic-field axis, the negativity
may thus gradually increase or decrease upon variation of
the magnetic field. Moreover, the increasing magnetic field
may eventually initially enhance and subsequently reduce
the negativity in the parameter region circumscribed by the
specific values of the uniaxial single-ion anisotropy D/J =
1/2 and D/J = [2g2 − g1 − √

2�(g1 − g2)]/2g1 before the
field-driven transition between the quantum ferrimagnetic and
classical ferromagnetic phases finally takes place.
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FIG. 3. Zero-temperature density plots of the negativity N in the D/J-μBB/J plane for three different sets of Landé g factors specified in
the panels and two selected values of the exchange anisotropy, � = 0.5 (upper panels) and 1.0 (lower panels). A thin (white) line starting from
D/J = 1/2 determines the contour line for the maximal value of the negativity, N = 0.5.

B. Thermal entanglement

Now, let us investigate in detail how the bipartite entangle-
ment of the mixed spin-(1/2, 1) Heisenberg dimer is resistant
with respect to thermal fluctuations. The magnetic-field de-
pendence of the negativity is shown in Fig. 4 for the specific
case with g1 = g2 and � = 1.0 at a few selected values of
temperature and two different values of the uniaxial single-ion
anisotropy, which are equally distant from the particular value
D/J = 1/2 bringing about the strongest quantum entangle-
ment N = 0.5. It is evident from Fig. 4 that the thermal
entanglement is surprisingly enhanced upon increasing the
magnetic field, as evidenced by a significant round maximum
of the negativity observable for sufficiently low temperatures
regardless of whether the uniaxial single-ion anisotropy is
of easy-axis [Fig. 4(a)] or easy-plane [Fig. 4(b)] type. The
unconventional enhancement of the thermal entanglement due
to the magnetic field can be again related to Zeeman’s splitting
of two energy levels, which form the twofold degenerate quan-
tum ferrimagnetic ground state (22) in the zero-field limit. As
a matter of fact, the negativity converges at sufficiently low
temperatures to the specific value (27), which coincides with
a degree of the quantum entanglement of the nondegenerate
quantum ferrimagnetic ground state (25).

To examine the influence of the uniaxial single-ion
anisotropy on the thermal entanglement, a few density plots
of the negativity N are displayed in Fig. 5 in the temperature-
field plane by assuming the equal g factors g1 = g2 = 2.0,
the fixed value of the exchange anisotropy � = 1.0, and four
different values of the uniaxial single-ion anisotropy D/J . It
follows from the displayed density plots that a strong enough
thermal entanglement can be detected only if temperature
and magnetic field are simultaneously smaller than the ex-
change constant, i.e., kBT/J � 1 and μBB/J � 1. Moreover,

0 0.25 0.5 0.75 1
0

0.1

0.2

0.3

0.4

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

(a)

(b)

FIG. 4. The negativity as a function of the magnetic field for � =
1.0, g1 = g2 = 2.0 by considering a few different values of temper-
ature and two selected values of the uniaxial single-ion anisotropy:
(a) D/J = −0.5, (b) D/J = 1.5. Red circled points determine a zero-
field limit of the negativity for the absolute zero temperature.
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FIG. 5. Density plots of the negativity N in the kBT/J-μBB/J plane for � = 1.0, g1 = g2 = 2.0, and four different values of the uniaxial
single-ion anisotropy, D/J = −0.5, 0.0, 0.5, and 1.5. The black contour lines correspond to the specific values of N = 0.35, 0.1, 0.01, and
0.001 (from left to right).

the strongest thermal entanglement can be detected when the
uniaxial single-ion anisotropy is sufficiently close to the spe-
cific value D/J = 1/2, which gives rise to the highest possible
value of the negativity N = 0.5 in the zero-temperature limit.
It is also worth noticing that the thermal entanglement exhibits
an intriguing reentrant behavior when the external magnetic
field is selected slightly above the saturation value. Under
this condition, the negativity is initially zero at low enough
temperatures, then it starts to develop above a lower threshold
temperature until it reaches a local maximum, and, finally,
the negativity gradually diminishes upon further increase of
temperature until it completely disappears above an upper
threshold temperature. A black contour line shown in Fig. 5
for the smallest value of the negativity indeed corroborates a
temperature-driven reentrance of the thermal entanglement. In
contrast to general expectations, this result means that the rel-
atively small thermal entanglement can be counterintuitively
generated above the classical ferromagnetic ground state upon
increasing the temperature.

Next, our particular attention will be focused on how dif-
ference between the Landé g factors may influence the thermal
entanglement. To this end, the negativity N is plotted in Fig. 6
against the magnetic field for both types of differences of
Landé g factors, g1 > g2 and g1 < g2, respectively, the fixed
value of the exchange anisotropy � = 1.0, a few selected val-
ues of temperature kBT/J , and four different values of the uni-
axial single-ion anisotropy D/J . Generally, the quantitative
differences between the negativities for both considered set-
tings of the gyromagnetic g factors are very subtle, mainly be-
cause of their small relative difference. It should be neverthe-
less pointed out that the negativity tends to the same asymp-
totic values in the zero-field limit as well as at high magnetic
fields, while the most pronounced differences can be thus de-
tected at moderate magnetic fields. It also follows from Fig. 6
that the zero-temperature asymptotic limit of the negativity
shows in the low-field regime a quasilinear increase (decrease)
for g1 > g2 under the assumption that D/J < 1/2 (D/J >

1/2), while the opposite trend applies for the other particular
case with g1 < g2. Most importantly, the negativity for g1 <

g2 mostly exceeds the one for g1 > g2 even though the reverse
statement may hold in a zero- and low-temperature limit.

To provide a deeper insight, density plots of the negativity
are depicted in Fig. 7 for the fixed value of the exchange
anisotropy � = 1.0, four different values of the uniaxial
single-ion anisotropy D/J , and two different sets of Landé
g factors, g1 > g2 and g1 < g2, respectively. In agreement
with general expectations, the negativity mostly decreases
upon increasing of temperature or magnetic field. The only

exceptions to this rule apply to magnetic fields slightly
exceeding the saturation field when the thermal entanglement
is enhanced upon increasing temperature, as well as to low
enough temperatures when the increasing magnetic field gives
rise to an enhancement of the thermal entanglement. It could
be thus concluded that the negativity shows qualitatively
the same generic features for both settings of the g factors,
as discussed previously for the particular case g1 = g2. The
marked difference in the respective density plots occurs just at
relatively high temperatures kBT/J � 1 and magnetic fields
μBB/J � 1.5, where a kink in contour lines of the negativity
may be observed. Note furthermore that this nontrivial feature
appears at very small values of the negativity N � 0.001
just for D/J < 1/2 under the assumption that g1 > g2 [see
Figs. 7(a)–7(c)], while the same anomaly of the negativity
can be detected for D/J > 1/2 only if g1 < g2 [see Fig. 7(h)].
However, it is questionable if such a small value of the
negativity can be experimentally detected. Last but not least,
the contour plots shown in Figs. 7(d) and 7(h) convincingly
show that the negativity may be reinforced upon inceasing
the magnetic field also at relatively high temperatures (e.g.,
kBT/J � 1 for D/J = 1.5) whenever a sufficiently strong
easy-plane single-ion anisotropy is considered.

C. Thermal entanglement in the CuNi complex

In this part we will put forward a theoretical prediction for
a degree of quantum and thermal entanglement of the het-
erodinuclear complex CuNi [70], which affords an appropriate
experimental realization of the mixed spin-(1/2, 1) Heisen-
berg dimer. It has been verified in Ref. [70] that the magnetic
properties of the CuNi complex can be faithfully reproduced
by the mixed spin-(1/2, 1) Heisenberg dimer with the rela-
tively strong isotropic exchange constant J/kB = 141 K and
the gyromagnetic g factors g1 = 2.20 for Cu2+ and g2 = 2.29
for Ni2+ magnetic ions, respectively, while any clear signa-
tures of the exchange (� = 1) or uniaxial single-ion (D/kB =
0) anisotropy have not been found [70]. In the following we
will therefore adapt this set of the model parameters in order
to make the relevant theoretical prediction for the bipartite
entanglement of the CuNi dimeric compound.

The negativity of the mixed spin-(1/2, 1) Heisenberg dimer
with the isotropic exchange constant J/kB = 141 K and the
gyromagnetic g factors g1 = 2.20 and g2 = 2.29 is plotted in
Fig. 8 as a function of temperature for a few selected values
of the magnetic field and as a function of the magnetic field
for a few selected temperatures. Temperature variations of
the negativity displayed in Fig. 8(a) exhibit mostly a mono-
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FIG. 6. The negativity as a function of the magnetic field for the fixed value of the exchange anisotropy � = 1.0, a few different values
of temperature, four selected vales of the uniaxial single-ion anisotropy D/J = −0.5, 0.0, 0.5, 1.5 and two different combinations of the
gyromagnetic factors with equal difference |g1 − g2| = 0.2.

tonic decline with increasing temperature. At zero magnetic
field the negativity monotonically decreases from the initial
value N = 1/3 until it completely vanishes at the threshold
temperature kBTt/J ≈ 150 K. At nonzero magnetic fields the
negativity markedly starts from the local maximum N ≈
0.47 which is relatively close to the highest possible value

N = 1/2 for the mixed spin-(1/2, 1) system, whereas the
threshold temperature turns out to be independent of the mag-
netic field. An outstanding nonmonotonic thermal dependence
of the negativity can be found only if the magnetic field
surpasses the saturation value. Under this condition, the neg-
ativity become nonzero just at a lower threshold temperature,

FIG. 7. Density plots of the negativity N in the kBT/J-μBB/J plane for � = 1.0, two different set of the Landé g factors g1 > g2 and
g1 < g2 with the same relative difference |g1 − g2| = 0.2, and several values of the uniaxial single-ion anisotropy D/J . The black contour
lines correspond to N = 0.35, 0.1, 0.01, 0.001, and 10−5 (from left to right).
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FIG. 8. (a) Temperature dependences of the negativity N con-
forming to the CuNi compound for several values of the magnetic
field. (b) Magnetic-field dependences of the negativity N conform-
ing to the CuNi compound for several values of temperature (the inset
shows in an enhanced scale a quasiplateau region). All displayed
dependences were obtained for the mixed spin-(1/2, 1) Heisenberg
dimer with the isotropic exchange constant J/kB = 141 K (� = 1),
a zero single-ion anisotropy (D/kB = 0 K), and the gyromagnetic g
factors g1 = 2.20 and g2 = 2.29 adapted according to Ref. [70].

then it rises to a local maximum, which is successively fol-
lowed by a gradual reduction until it again disappears at an
upper threshold temperature (see the curve for B = 150 T).

The isothermal dependence of the negativity on a magnetic
field shown in Fig. 8(b) corroborates a transient strengthening
of the thermal entanglement due to the external magnetic field.
Owing to a difference of the gyromagnetic g factors g1 = 2.20
and g2 = 2.29 of Cu2+ and Ni2+ magnetic ions, the negativity
exhibits at very low temperatures T � 1 K a quasilinear de-
crease (quasiplateau) [see the inset in Fig. 8(b)], which is quite
analogous to a quasiplateau predicted for low-temperature
magnetization curves of quantum Heisenberg spin systems
with different g factors [71]. Moreover, the negativity starts
at sufficiently low temperatures T � 25 K from the initial
value N = 1/3, then it gradually increases to its local max-
imum before it finally diminishes upon further increase of
the magnetic field. It is noteworthy that the initial value of
the negativity is suppressed and its local maximum becomes
more flat at moderate temperatures (e.g., for T = 50 K), while
the negativity monotonically decreases upon strengthening

FIG. 9. A density plot of the negativity N in the temperature-
field plane conforming to the CuNi compound. The presented plot
was obtained for the mixed spin-(1/2, 1) Heisenberg dimer with the
isotropic exchange constant J/kB = 141 K (� = 1), a zero single-ion
anisotropy (D/kB = 0 K), and the gyromagnetic g factors g1 = 2.20
and g2 = 2.29 adapted according to Ref. [70]. Black contour lines
correspond to the particular values N = 0.3, 0.1, and 0.01 (from left
to right).

the external magnetic field at higher temperatures (e.g., for
T = 100 K).

Finally, the density plot of the negativity in the
temperature-field plane is depicted in Fig. 9 for the mixed
spin-(1/2, 1) Heisenberg dimer with the isotropic exchange
constant J/kB = 141 K (� = 1), the gyromagnetic g fac-
tors g1 = 2.20 and g2 = 2.29, which correspond according
to Ref. [70] to the heterodinuclear complex CuNi. The dis-
played density plot can be alternatively viewed as a kind
of “phase diagram,” which circumscribes a parameter space
with a nonzero thermal entanglement from a disentangled
parameter region. Although a subtle thermal entanglement
can be detected even under extremely high magnetic fields
and temperatures, the indispensable thermal entanglement of
sufficient intensity (say N � 0.1) is confined to the magnetic
fields B � 140 T and temperatures T � 115 K that are compa-
rable with the relevant exchange constant. While the bound set
for the magnetic field considerably exceeds a reasonable range
of magnetic fields for possible technological applications, the
respective bound set for temperature apparently indicates the
necessity search for heterodinuclear complexes quite anal-
ogous to the CuNi compound [70] which would, however,
possess at least twice as large an exchange constant in order to
make technological applications at room temperatures viable.

D. Experimental testing of theoretical results

It should be emphasized that the negativity of the mixed
spin-(1/2, 1) Heisenberg dimer was theoretically calculated
according to the definition (13) from the eigenvalues (18)–
(21), which are expressed in terms of density-matrix elements
explicitly quoted in Appendix A. It is quite obvious that the
individual elements of the density matrix cannot be directly
measured and, hence, it necessary to suggest an alternative
way that theoretical results for the negativity of the heterodin-
uclear complex CuNi [70] could be experimentally verified.
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First, it is worthwhile to remark that the density-matrix
elements ρi j , and thus the negativity, can be directly connected
to a few local observables calculated according to the formula
〈Ô〉 = Tr Ôρ̂. It is easy to convince oneself that the five local
expectation values 〈Ŝz〉, 〈μ̂z〉, 〈(μ̂z )2〉, 〈Ŝzμ̂z〉, and 〈Ŝz(μ̂z )2〉
can be easily related to diagonal elements of the density
matrix:

〈Ŝz〉 = Tr ρ̂Ŝz = 1
2 (ρ11 + ρ22 + ρ33 − ρ44 − ρ55 − ρ66),

〈μ̂z〉 = Tr ρ̂μ̂z = ρ11 − ρ33 + ρ44 − ρ66,

〈(μ̂z )2〉 = Tr ρ̂(μ̂z )2 = ρ11 + ρ33 + ρ44 + ρ66, (29)

〈Ŝzμ̂z〉 = Tr ρ̂Ŝzμ̂z = 1
2 (ρ11 − ρ33 − ρ44 + ρ66),

〈Ŝz(μ̂z )2〉 = Tr ρ̂Ŝz(μ̂z )2 = 1
2 (ρ11 + ρ33 − ρ44 − ρ66).

All diagonal elements of the density matrix ρii can be con-
sequently expressed in terms of the local expectation values
〈Ŝz〉, 〈μ̂z〉, 〈(μ̂z )2〉, 〈Ŝzμ̂z〉, and 〈Ŝz(μ̂z )2〉 when additionally
taking into account the trivial identity Tr ρ̂ = ∑6

i=1 ρii = 1:

ρ11 = 1
4 [〈(μ̂z )2〉 + 2〈Ŝzμ̂z〉 + 2〈Ŝz(μ̂z )2〉 + 〈μ̂z〉], (30)

ρ22 = 1
2 [1 − 〈(μ̂z )2〉 + 2〈Ŝz〉 − 2〈Ŝz(μ̂z )2〉], (31)

ρ33 = 1
4 [〈(μ̂z )2〉 − 2〈Ŝzμ̂z〉 + 2〈Ŝz(μ̂z )2〉 − 〈μ̂z〉], (32)

ρ44 = 1
4 [〈(μ̂z )2〉 − 2〈Ŝzμ̂z〉 − 2〈Ŝz(μ̂z )2〉 + 〈μ̂z〉], (33)

ρ55 = 1
2 [1 − 〈(μ̂z )2〉 − 2〈Ŝz〉 + 2〈Ŝz(μ̂z )2〉], (34)

ρ66 = 1
4 [〈(μ̂z )2〉 + 2〈Ŝzμ̂z〉 − 2〈Ŝz(μ̂z )2〉 − 〈μ̂z〉]. (35)

Next, four nonzero off-diagonal elements of the density
matrix ρ24 = ρ42 and ρ35 = ρ53 can be related to the local
pair correlation function 〈Ŝxμ̂x〉 through the relation

〈Ŝxμ̂x〉 = Tr ρ̂Ŝxμ̂x = 1√
2

(ρ24 + ρ35), (36)

which can be additionally supplemented with the inter-
relation between two inequivalent off-diagonal elements,

ρ24 = ρ35eβh2

√
[J − 2D + 2(h1 − h2)]2 + 8(J�)2

[J − 2D − 2(h1 − h2)]2 + 8(J�)2

× sinh
(

β

4

√
[J − 2D − 2(h1 − h2)]2 + 8(J�)2

)
sinh

(
β

4

√
[J − 2D + 2(h1 − h2)]2 + 8(J�)2

) .

(37)

After straightforward, but tedious algebra, one may derive
from Eqs. (36) and (37) the following formulas for nonzero
off-diagonal elements of the density matrix:

ρ24 = ρ42 = 〈Ŝxμ̂x〉K24, (38)

ρ35 = ρ53 = 〈Ŝxμ̂x〉K35, (39)

which include the coefficients K24 and K35 explicitly given in
Appendix B. In this way, we have successfully expressed all
nonzero density-matrix elements determining the negativity
through six local expectation values, 〈Ŝz〉, 〈μ̂z〉, 〈(μ̂z )2〉,
〈Ŝzμ̂z〉, 〈Ŝz(μ̂z )2〉, and 〈Ŝxμ̂x〉. Although the aforementioned

set of local observables is not directly accessible by means
of standard magnetometry measurements, recent advances in
inelastic neutron scattering experiments pave the way towards
indirect determination of the local spin correlations from the
relevant structure factors [72–76].

For the sake of completeness, we have listed in Appendix C
an explicit form of expectation values for all local observables
determining the density-matrix elements. The derived formu-
las suggest that the three local observables 〈Ŝz〉 = 〈μ̂z〉 =
〈Ŝz(μ̂z )2〉 = 0 become zero in the absence of an external
magnetic field, which basically simplifies determination of the
negativity for this special case. Besides, the heterodinuclear
complex CuNi does not exhibit, according to Ref. [70], either
exchange or uniaxial single-ion anisotropy, which additionally
implies the equality 〈Ŝzμ̂z〉 = 〈Ŝxμ̂x〉 between two compo-
nents of the pair correlation function due to the underlying
SU(2) symmetry. Consequently, the negativity of the dimeric
compound CuNi [70] can be determined in zero magnetic
field solely from two independent local observables 〈Ŝzμ̂z〉
and 〈(μ̂z )2〉, which can be alternatively obtained from eas-
ily accessible experimental data of zero-field susceptibility
[19–24] and specific heat [25,26]. Unfortunately, the exper-
imental data for the specific heat needed for a concurrent
determination of two local observables 〈Ŝzμ̂z〉 and 〈(μ̂z )2〉 are
unavailable unlike the susceptibility data reported in Ref. [70],
which currently precludes calculation of the negativity of the
molecular complex CuNi from experimental data. However,
it is our hope that the present theoretical study will stimulate
future experimental testing of the thermal entanglement of the
molecular compound CuNi either through inelastic neutron
scattering or specific-heat measurements.

IV. CONCLUSION

In the present article we have exactly examined the neg-
ativity of a mixed spin-(1/2, 1) Heisenberg dimer, which
quantifies the strength of the bipartite quantum and thermal
entanglement at zero as well as nonzero temperatures within
pure and mixed states of this simple quantum spin system. It
has been evidenced that the negativity basically depends on
intrinsic parameters such as exchange and uniaxial single-ion
anisotropy in addition to extrinsic parameters such as temper-
ature and magnetic field. The strongest quantum entanglement
at zero temperature and zero magnetic field has been found for
the particular case without uniaxial single-ion anisotropy and
a perfectly isotropic coupling constant, while the negativity
becomes completely independent of the exchange anisotropy
for the specific strength of the uniaxial single-ion anisotropy
D/J = 1/2. In the presence of an external magnetic field the
situation becomes much more intricate, because the nega-
tivity depends on gyromagnetic g factors in addition to the
exchange and uniaxial single-ion anisotropy, magnetic field,
and temperature. It turns out that the particular case with equal
Landé g factors exhibits the maximal quantum entanglement
whenever the uniaxial single-ion anisotropy acquires the value
D/J = 1/2.

In contrast to general expectations, the rising magnetic
field remarkably reinforces the bipartite quantum entangle-
ment due to the Zeeman splitting of energy levels, which lifts
a twofold degeneracy of the quantum ferrimagnetic ground
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state. The maximal quantum entanglement is thus reached
within a quantum ferrimagnetic phase at sufficiently low but
nonzero magnetic fields under the assumption that the gy-
romagnetic g factors are equal and the uniaxial single-ion
anisotropy is half of the exchange constant D/J = 1/2. The
strength of the bipartite quantum entanglement for the par-
ticular case with unequal gyromagnetic g factors shows a
quasilinear dependence on the external magnetic field, which
is quite reminiscent of a quasiplateau phenomenon reported
previously for low-temperature magnetization curves of quan-
tum spin systems being composed of entities with unequal
gyromagnetic g factors [71]. It should be pointed out that all
aforementioned generic trends are preserved for the bipartite
thermal entanglement within the mixed states emergent at
finite temperatures.

The heterodinuclear complex CuNi, as a prominent experi-
mental representative of the mixed spin-(1/2, 1) Heisenberg
dimer, afforded a useful playground for an investigation of
the bipartite thermal entanglement in a real-world system. It
appears worthwhile to remark that the dimeric complex CuNi

remains strongly entangled up to relatively high temperatures
(about 115 K) and high magnetic fields (about 140 T) that
are comparable with the relevant exchange constant. From
this point of view, the magnitude of the coupling constant in
the heterodinuclear complex CuNi is inadequate for prospec-
tive technological applications of this solid-state material in
quantum computing and quantum information processing at
room temperature. An enhancement of the coupling constant
through the targeted design of a related heterodinuclear co-
ordination compound of the type CuNi thus represents a
challenging task for materials scientists.
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APPENDIX A

The explicit forms of nonzero elements ρi j of the density matrix given by Eq. (16) are

ρ11 = 1

Z
e− β

2 [J+2D−(h1+2h2 )], (A1)

ρ22 = 1

Z
e

β

4 (J−2D+2h2 )

[
cosh

(
β

4

√
[J − 2D − 2(h1 − h2)]2 + 8(J�)2

)
− J − 2D − 2(h1 − h2)√

[J − 2D − 2(h1 − h2)]2 + 8(J�)2

× sinh

(
β

4

√
[J − 2D − 2(h1 − h2)]2 + 8(J�)2

)]
, (A2)

ρ33 = 1

Z
e

β

4 (J−2D−2h2 )

[
cosh

(
β

4

√
[J − 2D + 2(h1 − h2)]2 + 8(J�)2

)
+ J − 2D + 2(h1 − h2)√

[J − 2D + 2(h1 − h2)]2 + 8(J�)2

× sinh

(
β

4

√
[J − 2D + 2(h1 − h2)]2 + 8(J�)2

)]
, (A3)

ρ44 = 1

Z
e

β

4 (J−2D+2h2 )

[
cosh

(
β

4

√
[J − 2D − 2(h1 − h2)]2 + 8(J�)2

)
+ J − 2D − 2(h1 − h2)√

[J − 2D − 2(h1 − h2)]2 + 8(J�)2

× sinh

(
β

4

√
[J − 2D − 2(h1 − h2)]2 + 8(J�)2

)]
, (A4)

ρ55 = 1

Z
e

β

4 (J−2D−2h2 )

[
cosh

(
β

4

√
[J − 2D + 2(h1 − h2)]2 + 8(J�)2

)
− J − 2D + 2(h1 − h2)√

[J − 2D + 2(h1 − h2)]2 + 8(J�)2

× sinh

(
β

4

√
[J − 2D + 2(h1 − h2)]2 + 8(J�)2

)]
, (A5)

ρ66 = 1

Z
e− β

2 [J+2D+(h1+2h2 )], (A6)

ρ24 = ρ42 = −
√

8J�e
β

4 (J−2D+2h2 )

Z
√

[J − 2D − 2(h1 − h2)]2 + 8(J�)2
sinh

(
β

4

√
[J − 2D − 2(h1 − h2)]2 + 8(J�)2

)
, (A7)

ρ35 = ρ53 = −
√

8J�e
β

4 (J−2D−2h2 )

Z
√

[J − 2D + 2(h1 − h2)]2 + 8(J�)2
sinh

(
β

4

√
[J − 2D + 2(h1 − h2)]2 + 8(J�)2

)
. (A8)
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APPENDIX B

The explicit forms of the coefficients K24 and K35 entering into Eqs. (38) and (39) are

K24 =
√

2
e

β

2 h2 sinh
(

β

4

√
[J − 2D − 2(h1 − h2)]2 + 8(J�)2

)
√

[J − 2D − 2(h1 − h2)]2 + 8(J�)2

×
(

e
β

2 h2 sinh
(

β

4

√
[J − 2D − 2(h1 − h2)]2 + 8(J�)2

)
√

[J − 2D − 2(h1 − h2)]2 + 8(J�)2
+ e− β

2 h2 sinh
(

β

4

√
[J − 2D + 2(h1 − h2)]2 + 8(J�)2

)
√

[J − 2D + 2(h1 − h2)]2 + 8(J�)2

)−1
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K35 =
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APPENDIX C

The explicit forms of the expectation values, which may be used for calculation of all density matrix elements according to
Eqs. (30)–(35) and (38)–(39), are

〈Ŝz〉 = 1

Z

∂Z

∂βh1
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e− β

2 (J+2D) sinh

(
β

2
(h1 + 2h2)

)

− e
β

4 (J−2D)

[
e

β

2 h2 [J − 2D − 2(h1 − h2)]√
[J − 2D − 2(h1 − h2)]2 + 8(J�)2

sinh

(
β

4

√
[J − 2D − 2(h1 − h2)]2 + 8(J�)2

)

− e− β

2 h2 [J − 2D + 2(h1 − h2)]√
[J − 2D + 2(h1 − h2)]2 + 8(J�)2

sinh

(
β

4

√
[J − 2D + 2(h1 − h2)]2 + 8(J�)2

)]}
, (C1)
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〈Ŝz(μ̂z )2〉 = − 〈μ̂z〉
2

+ 2e− β

2 (J+2D)

Z
sinh

(
β

2
(h1 + 2h2)

)
. (C6)

[1] L. J. de Jongh and A. R. Miedema, Adv. Phys. 23, 1 (1974).
[2] R. L. Carlin, Magnetochemistry (Springer, Berlin, 1986).
[3] O. Kahn, Molecular Magnetism (Wiley, New York, 1993).
[4] B. Sieklucka and D. Pinkowicz, Molecular Magnetic Materials

(Wiley-VCH, Weinheim, 2017).
[5] M. N. Leuenberger and D. Loss, Nature (London) 410, 789

(2001).
[6] L. K. Grover, Phys. Rev. Lett. 79, 4709 (1997).
[7] L. Thomas, F. Lionti, R. Ballou, B. Barbara, D. Gatteschi, and

R. Sessoli, Nature (London) 383, 145 (1996).
[8] C. Sangregorio, T. Ohm, C. Paulsen, R. Sessoli, and D.

Gatteschi, Phys. Rev. Lett. 78, 4645 (1997).
[9] D. Gatteschi, R. Sessoli, and J. Villain, Molecular Nanomagnets

(Oxford University Press, Oxford, 2006).
[10] P. Shor, in Proceedings of the 35th Annual Symposium

on Foundations of Computer Science, edited by S. Gold-
wasser (IEEE Computer Society, Los Alamitos, CA, 1994),
pp. 124–134.

[11] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Rev. Mod. Phys.
80, 517 (2008).

[12] M. C. Arnesen, S. Bose, and V. Vedral, Phys. Rev. Lett. 87,
017901 (2001).

[13] A. Peres, Phys. Rev. Lett. 77, 1413 (1996).
[14] M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett. A

223, 1 (1996).
[15] G. Vidal and R. F. Werner, Phys. Rev. A 65, 032314 (2002).
[16] W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998).
[17] X. Wang and P. Zanardi, Phys. Lett. A 301, 1 (2002).
[18] S. M. Aldoshin, E. B. Feldman, and M. A. Yurishchev, J. Exp.

Theor. Phys. 107, 804 (2008).
[19] A. M. Souza, M. S. Reis, D. O. Soares-Pinto, I. S. Oliveira, and

R. S. Sarthour, Phys. Rev. B 77, 104402 (2008).
[20] C. Cruz, D. O. Soares-Pinto, P. Brandao, A. M. dos Santos, and

M. S. Reis, Europhys. Lett. 113, 40004 (2016).
[21] D. O. Soares-Pinto, A. M. Souza, R. S. Sarthour, I. S. Oliveira,

M. S. Reis, P. Brandao, J. Rocha, and A. M. dos Santos,
Europhys. Lett. 87, 40008 (2009).

[22] M. S. Reis, S. Soriano, A. M. dos Santos, B. C. Sales, D. O.
Soares-Pinto, and P. Brandao, Europhys. Lett. 100, 50001
(2012).

[23] T. Chakraborty, T. K. Sen, H. Singh, D. Das, S. K. Mandal, and
C. Mitra, J. Appl. Phys. 114, 144904 (2013).

[24] C. Cruz and M. F. Anka, Europhys. Lett. 130, 30006 (2020).
[25] T. Chakraborty, H. Singh, S. Singh, R. K. Gopal, and C. Mitra,

J. Phys.: Condens. Matter 25, 425601 (2013).
[26] T. Chakraborty, H. Singh, and C. Mitra, J. Appl. Phys. 115,

034909 (2014).
[27] Y. Yeo, Phys. Rev. A 66, 062312 (2002).
[28] M. Rojas, S. M. de Souza, and O. Rojas, Ann. Phys. (NY) 377,

506 (2017).
[29] M. Freitas, C. Filgueiras, and M. Rojas, Ann. Phys. (NY) 531,

1900261 (2019).
[30] Y.-D. Zheng, Z. Mao, and B. Zhou, Chin. Phys. B 28, 120307

(2019).
[31] X. Wang, Phys. Lett. A 281, 101 (2001).
[32] A. Abliz, H. J. Gao, X. C. Xie, Y. S. Wu, and W. M. Liu, Phys.

Rev. A 74, 052105 (2006).
[33] H. Fu, A. I. Solomon, and X. Wang, J. Phys. A: Math. Gen. 35,

4293 (2002).
[34] I. Bose and A. Tribedi, Phys. Rev. A 72, 022314 (2005).
[35] M. Cao and S. Zhu, Phys. Rev. A 71, 034311 (2005).
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