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Tunable quantum spin chain with three-body interactions
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We introduce a generalization of the Fredkin spin chain with tunable three-body interactions expressed in
terms of conventional spin-half operators. Of the model’s two free parameters, one controls the preference for
Ising antiferromagnetism and the other controls the strength of quantum fluctuations. In this formulation, the so-
called t-deformed model (an exactly solvable, frustration-free Hamiltonian) lives on a unit circle centered on the
origin of the phase diagram. The circle demarcates the boundary between ferromagnetic order inside and various
antiferromagnetic phases outside. Throughout most of the nonferromagnetic parts of the phase diagram, the
ground state has Dyck word form: i.e., all contributing spin configurations exhibit perfect matching and nesting
of spin up and spin down. The exceptions are two regions in which Dyck word mismatches are energetically
favorable. We remark that in those regions the energy level spacing can be exponentially small in the system
size. It is also the case that exact diagonalization reveals a highly idiosyncratic energy spectrum, presumably
because the hard spin twist at the chain ends induces strong incommensurability effects on the bulk system when
the chain length is small. As a convergence check, we benchmark our DMRG results to near-double-precision
floating-point accuracy against analytical results at exactly solvable points and against exact diagonalization
results for small system sizes across the entire parameter space.
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I. INTRODUCTION

Quantum spin chains were initially developed as toy mod-
els in the early days of quantum mechanics, but by the 1960s
they had been realized experimentally in transition metal salts
[1–3]. Many other fascinating material examples were subse-
quently discovered [4–9]. In spite of their simplicity, quantum
spin chains exhibit complex properties and behaviors, such
as magnetism [10,11], scale-free criticality [12], quantum
phase transitions [13–16], topological order [17,18], short-
and long-range correlations [19], and entanglement [20,21].
This subject has reached a broader audience following the
2016 Nobel prize, which was awarded in part for Haldane’s
work to elucidate the topological origin of the divergent
behavior of integer- and half-integer-spin chains [22,23]. Re-
search in this area continues to be spurred by the search for
new theoretical insights [19,24–26] and by the possibility of
technological applications in spintronics [27], quantum com-
munication [28,29], quantum computing [30,31], quantum
simulations [32], and quantum sensors [33].

Frustration-free quantum spin chains with local three-body
interactions are relatively recent discoveries, but they have
generated great excitement and have already been studied
extensively [34–53]. As is true for the original Motzkin model,
the ground state of the Fredkin spin chain is known exactly.
Despite being described by a local short-range Hamiltonian,
the ground state exhibits robust nonlocal behavior, including
long-distance entanglement [53] and violation of the cluster

*kadhikar@go.olemiss.edu
†kbeach@olemiss.edu

decomposition property [38]. Furthermore, the entanglement
entropy grows as the square root of system size, putting to
rest the folk wisdom that a Hamiltonian with local interactions
must either obey the area law for a gapped system or deviate
by at most logarithmic corrections for the gapless system.

The Fredkin spin chain [52] is a spin-half chain segment
subject to three-body correlated-exchange interactions and
twisted boundary conditions. Its three-body interactions are
structured such that a spin-singlet projector between adja-
cent spins is operative or not based on the spin state of a
neighboring third site. The model is frustration free, and its
ground state (GS) wave function is known to be an equal-
weight superposition of all spin configurations of Dyck word
form. This is possible because the interactions are in delicate
balance. Various models [40,42,46,47,54] have been proposed
that continuously deform the Fredkin model away from this
specially tuned point. In Refs. [40,47], the model is changed
to allow for a single tuning parameter that controls the strength
and nature of the coupling to the third site. In the two extreme
limits, the model reduces to the conventional Heisenberg
models with ferromagnetic and antiferromagnetic two-body
interactions. A different approach is to modify the two-site
projector away from its spin-singlet form, as in Refs. [42,46].
See the brief review in Appendix.

The authors of Ref. [42] show that a Fredkin-like model
can remain frustration free while still allowing for an indepen-
dent tuning parameter at each site that modifies the nature of
the local projector (admixing singlet and triplet components).
In the uniform case, referred to as the t-deformed Fredkin spin
chain [46], an up-down pair of adjacent spins | ( )〉 = |↑↓〉
moves passed its nested third neighbor as per ( ( ) ⇔ ( ) (
or ( ) ) ⇔ ) ( ) . These reconfigurations occur with different
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probability amplitudes that are functions of the real-valued t .
The leftward and rightward motion of short matching pairs
is symmetric at the Fredkin point (t = 1). The quantum fluc-
tuations freeze out entirely when t approaches 0 or ±∞; in
these extreme limits, the Hamiltonian is semiclassical and the
ground state is a pure product state.

The ground state of the t-deformed model is the area-
weighted superposition of all Dyck paths. Each weight
goes as tA, where A = 1

2

∑N
j=1 h j is the area under the

spin configuration’s height profile, hi = ∑i
j=1 σ z

j . The sin-
gle maximum-area configuration ( ( ( ( · · · ) ) ) ) dominates
as |t | → ∞; the minimum-area configuration ( ) ( ) · · · ( ) ( )
dominates as t → 0. For 0 < |t | < 1, the ground state favors
Ising antiferromagnetic order (z AFM) and the excitations are
gapped. For 1 < |t | < ∞, the ground state is featureless, and
the excitation gap closes exponentially in the system size.
Correlations in the easy (xy) plane are either ferromagnetic
(sgnt = t/|t | = +1) or antiferromagnetic (sgnt = −1).

We consider a further generalization in terms of two pa-
rameters η and γ , such that the t-deformed model lives on the
unit circle in the η-γ plane. That is to say, in polar coordinates,
r2 = η2 + γ 2 = 1 and tan θ = γ /η = 2t/(1 − t2). The upper
and lower half planes of the phase diagram are connected by
symmetry: Reflection across the horizontal axis, γ → −γ ,
connects the upper and lower half circles of the t-deformed
model according to t → −t ; more generally, this is a trans-
formation that swaps xy ferromagnetic correlations for xy
antiferromagnetic correlations by flipping the z direction of
every other spin (and also creating an alternation in the sign
of the wave function amplitudes that tracks the evenness or
oddness of the area under the height field).

The purpose of this paper is to investigate and character-
ize the new regions at 0 < r < 1 and r > 1. Note that the
extended phase diagram is not everywhere frustration free.
We measure the dimer order that coexists with the Ising an-
tiferromagnetism (z AFM) in the original t-deformed model
and show how it spreads into the broader phase space. We
also identify a region of doubly staggered Ising magnetic
order (z DSM) outside the unit circle and a region of Ising
ferromagnetic order (z FM) inside.

We find that our model favors a Dyck word ground state for
all points r > 1 in the model space, except within two small
cat’s-ear domes, shown in Fig. 1. We develop a representation
of the Hilbert space with spins grouped into pairs whose dis-
tinct character is preserved under action by the Hamiltonian
we study. To span the full Hilbert space, this representation
requires that spin pairs can form conventional (xy-planar),
excited (z-canted), and defect (Dyck-word spin mismatch)
bonds. We establish that the number of Dyck word defects
is a good quantum number and that the ground state within
the two domes is of non-Dyck form with one defect (a single
mismatched pair of spins). Unlike the extended quantum crit-
ical phases in frustrated systems, which are typically bounded
by a line of continuous transitions [55,56], the transition here
from Dyck form to non-Dyck form is a simple level crossing.

We organize this paper as follows. The model description
and its full Hilbert space are discussed in Secs. II and III,
respectively. A detailed discussion of numerical methods is
presented in Sec. IV. In Sec. V we analyze the results for

FIG. 1. The diagram shows the various phases of the proposed
deformed Fredkin model, plotted in the η-γ plane. The false color
background (applied outside the unit circle and outside the two
domes) is based on DMRG measurements of dimer order for the
N = 60 system; the dark red color implies stronger order, following
the same scale used in Fig. 6(d). The numerical labels correspond to
polar coordinates. Labels at the rim of the outermost circle mark the
angle in degrees, and interior labels mark the radii. The patterns of
up and down arrows describe the spin states of the classical ground
state in the vicinity of the horizontal axis. The text labels denote
regions characterized by Ising ferromagnetic order (z FM), Ising anti-
ferromagnetic order (z AFM), doubly staggered Ising magnetic order
(z DSM), xy-directed ferromagnetic correlations (xy FM), and xy-
directed antiferromagnetic correlations (xy AFM). The relevant order
parameters are defined in Sec. IV. The ground state is z FM inside the
unit circle, favoring the fully polarized (except the rightmost down
spin) state inside the smallest ellipse and stepping down across each
dotted green line. Unlike all diagonal measurements, the off-diagonal
measurements are antisymmetric about the horizontal diagonal axis.
For example, the filled blue circle represents xy-directed FM at the
top and the filled red circle denotes xy-directed AFM at the bottom
on the unit circle. A distinct hyperbolic region on the left favors
fully polarized z DSM. In much of the phase diagram, z AFM and
dimer order coexist, with dimer order dominating when γ � η and
vice versa. The regions with a unique non-Dyck-form ground state
appear as two cat’s ears domes, bounded by a solid green line. The
regions marked with wavy white hatching and enclosed by dotted
black lines indicate where the first excited state is Sz

tot(ES) = 0 in
character. The system is gapped everywhere except along the green
(solid and dotted) lines.

various types of ground states in separate subsections. Key
findings of the model are summarized in Sec. VI. The model
derivation is provided in Appendix.

II. MODEL

Our starting point is the Fredkin spin chain [47,52], a finite
chain of N coupled spin-half objects. In the chain’s interior,
the Hamiltonian

Hbulk =
N−1∑
i=2

Hi (1)
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is the sum of three-site operators

Hi = Ui−1Pi,i+1 + Pi−1,iDi+1. (2)

Here, Ui = 1
2 (1 + σ z

i ), Di = 1
2 (1 − σ z

i ), and Pi,i+1 = 1
4 (1 −

σ i · σ i+1) are lone-spin-up, lone-spin-down, and spin-singlet
projectors, with σ = (σ x, σ y, σ z ) denoting the Pauli matrices.
The projector is directed at two neighboring spins, but it acts
only if a third spin on the left (right) is up (down). The bound-
ary term Hboundary = α1D1 + αNUN ensures that two strong
magnetic fields are applied at the chain’s two open ends such
that the leftmost (rightmost) spin is almost always up (down).
In the numerics presented here, the external field is chosen
to be α1 = αN = α = 1000, which is the largest energy scale
in the system by far. The zero-energy frustration-free ground
state (GS) of the Fredkin spin chain is in the Sz

tot(GS) = 0
sector while the doubly degenerate excited states (ES) belong
to Sz

tot(ES) = ±1.
We extend the Fredkin model by replacing the singlet pro-

jector Pi, j by a more general operator,

P̃i, j (η, γ ) = 1

4

(
1 − σ z

i σ z
j

) + η

4

(
σ z

i − σ z
j

)
− γ

2
(σ+

i σ−
j + σ−

i σ+
j ), (3)

with 2σ± = σ x ± iσ y defining the raising and lowering op-
erators. The two independent tuning parameters, η and γ ,
control the tendency toward Ising antiferromagnetism and the
intensity of the quantum fluctuations. The model conventions
have been set so that the t-deformed model coincides with
η2 + γ 2 = 1; the position on this circle is defined by η =
(1 − t2)/(1 + t2) and γ = 2t/(1 + t2) [see Eq. (A10) in Ap-
pendix]. The Fredkin point (t = 1) is located at (η = 0, γ =
1), the “north pole” of the unit circle. Note that quantum
fluctuations vanish along the horizontal γ = 0 line. There, the
model is governed purely by the energetics, and the ground
state is a single, classical configuration.

As a convenience, we transform from Cartesian coordi-
nates to polar coordinates according to η = r cos θ and γ =
r sin θ . Here, r = 1 corresponds to a t-deformed model with

cos

(
θ

2

)
= 1√

1 + t2
, sin

(
θ

2

)
= t√

1 + t2
. (4)

A unique point (r = 1, θ = 90◦) represents the Fredkin
model. By construction, the ground state energy is positive
inside (r < 1), negative outside (r > 1), and exactly zero ev-
erywhere on the unit circle. For r � 1, the model is simply
an Ising ferromagnetic, largely independent of the angle θ . In
the other extreme limit (r � 1), the ground state is a strong
function of θ . At intermediate radii, there is a strong interplay
between r and θ , and a rich phase diagram emerges.

III. HILBERT SPACE

A Dyck path of even length N = 2n is a lattice path in
the two-dimensional Cartesian plane with traversal from (0,0)
to (n, n) in unit steps—either (1,0) or (0,1)—and with the
additional constraint that the path never crosses the line y = x.
In the equivalent landscape picture, the allowed steps are the
diagonals (1,1) or (1,−1), and the path going from (0,0) to
(2n, 0) never drops below the horizon (the line y = 0). The

TABLE I. A symbol dictionary translating spin configurations
into two alternative representations: viz., height profiles and nested
and matched delimiters.

Up Down Dyck Up Down
spin spin form excitation excitation Defect

↑ ↓ ↑↓ ↑↑ ↓↓ ↓↑
� � ��

�
� �

�
��

( ) ( ) �  � � 〈 〉

number of unique Dyck paths of length 2n is a sequence of
numbers called the Catalan number. The Catalan number of
order n is given by

Cn = 1

n + 1

(
2n

n

)
= (2n)!

n!(n + 1)!
. (5)

The Hamiltonian of the Fredkin spin chain commutes with
Sz

tot = (1/2)
∑N

i=1 σ z
i , and hence the Sz

tot is a good quantum
number. The set of valid Dyck paths is a subspace within the
Sz

tot = 0 spin sector of the Hilbert space. The full Hilbert space
consists of all spin assignments with σ z

1 = +1, σ z
N = −1, and

σ z
i = ±1 at sites 1 < i < N . This corresponds to all random

walks of the height profile starting from h0 = 0 and ending at
height hN = 2Sz

tot.
In order to describe the full Hilbert space, we introduce two

additional concepts: excitations and defects. There is some
flexibility in how one defines these. In this paper, we adopt
the convention illustrated in Table I. Each Dyck path is in 1-1
correspondence with a Dyck word that consists of equal num-
bers of properly nested left and right parentheses. Although a
state in Dyck form or with one or more defects can present
in any spin sector, excitations only occur in the Sz

tot �= 0 spin
sectors—with up excitations only in the Sz

tot > 0 sectors and
down excitations only in those with Sz

tot < 0. To ensure a
unique delimiter representation of the states, we establish the
following prescription.

The population of excited bonds is fixed within each spin
projection sector Sz

tot ∈ {0,±1, . . . ,±(N/2 − 1)}. The excita-
tions are

Ne =

⎧⎪⎨
⎪⎩

0, if Sz
tot = 0,

Sz
tot (up-spin pairs), if Sz

tot > 0,

|Sz
tot| (down-spin pairs), if Sz

tot < 0

(6)

in number and connect (reading left to right) sites of odd and
even index, consistent with the boundary conditions. Unlike
the conventional ( ) pairs, excitations themselves cannot be
nested; i.e, �  �  is allowed but � �   is not. Moreover, the
representation can accommodate up to N/2 − 1 − Ne defects,
organized in perfectly nested form: i.e., 〈 〈 〉 〉 is allowed but
〈 〉 〈 〉 is not. Defects occupy a position exclusively to the left
(right) of the up (down) excitations. Given a particular spin
configuration, it is straightforward to determine the number
of defect bonds that must appear. We define left-cumulative
and right-cumulative height functions,

hi =
i∑

j=1

σ j and h̄i =
N∑

j=i+1

σ j, (7)
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such that h0 = 0 and hN = 2Sz
tot (whereas h̄0 = 2Sz

tot and h̄N =
0). The number of defects Nd is then

Nd =
{− mini hi if Sz

tot � 0,

hN − mini hi = maxi h̄i if Sz
tot < 0.

(8)

The remaining spins that are not participating in an excitation
or defect are grouped into disjoint chain segments, each of
which must contain a spin configuration that is a Dyck word.

We have confirmed that the three-site correlated interaction
that appears in our two-parameter tunable model preserves
bond type, so that the number of excitations Ne and the
number of defects Nd are good quantum numbers. Hence the
reshuffling of short bonds by the Hamiltonian can be used to
define a canonical form for each equivalence class of states:

N/2−Nd−Ne−1︷ ︸︸ ︷
( ) ( ) · · · ( ) 〈 〈 · · · 〉 〉︸ ︷︷ ︸

Nd

Ne︷ ︸︸ ︷
�  �  · · · �  ( ) (9a)

or

( )

Ne︷ ︸︸ ︷
� � � � · · · � � 〈 〈 · · · 〉 〉︸ ︷︷ ︸

Nd

N/2−Nd−Ne−1︷ ︸︸ ︷
( ) ( ) · · · ( ) . (9b)

Here, Ne, Nd, N/2 − Nd − Ne represent the pair counts
of matching square-cornered brackets, angled brackets, and
parentheses; these take on whole number values, limited only
by the finite length of the spin chain and by the constraints
imposed by the hard boundary conditions. The number of
spins belonging to each delimiter type, 2Ne and 2Nd and
N − 2Nd − 2Ne, is always even. Up-canted excitations cannot
reach the right edge of the spin chain ( i : i �= N), and down-
canted excitations cannot reach the left (� i : i �= 1); hence the
lone ( ) pair on the right and left edges in Eqs. (9a) and (9b).
Defects cannot extend to either end (〈 i · · · 〉 j : i �= 1, j �= N).

The full Hilbert space for system size N = 8 is shown
in Fig. 2 using the landscape representation with up (�)
and down (�) slopes. The two lowest-energy states of the
two-parameter model defined by Eq. (3) live in the subspace
(Sz

tot, Nd ) ∈ {(0, 0), (0, 1), (±1, 0)}. With the exception of the
two domes, the GS is of Dyck form and corresponds to
(Sz

tot = 0, Nd = 0). The other important states belong to either
(Sz

tot = 0, Nd = 1) or (Sz
tot = ±1, Nd = 0), both of which can

be represented in terms of a single defect or excitation by

∣∣ψNd
Sz

tot

〉 = 1√
Nnorm

∑
D′,D′′,D′′′

i, j

g|i, j;D′,D′′,D′′′〉. (10)

Here, |i, j;D′,D′′,D′′′〉 is a shorthand notation for the
spin configuration |D′〉 ⊗ |σi〉 ⊗ |D′′〉 ⊗ |σ j〉 ⊗ |D′′′〉, and g =
gi j (D′,D′′,D′′′) is the corresponding wave function ampli-
tude. The bond is positioned at sites i and j and has (σi, σ j ) ∈
{ �  , � � , 〈 〉 } as appropriate. The length of the Dyck words
D′,D′′, and D′′′ are i − 1, j − i − 1, and N − j, respectively.

The allowed values of (odd) i and (even) j are as follows:

�
↑
i

· · · 
↑
j

i = 1, 3, . . . , N − 3,

j = i + 1, i + 3, . . . , N − 2;

�
↓
i

· · · �
↓
j

i = 3, 5, . . . , N − 1,
j = i + 1, i + 3, · · · · · · , N ;

〈
↓
i

· · · 〉
↑
j

i = 3, 5, . . . , N − 3,

j = i + 1, i + 3, · · · · · · , N − 2.

(11)

The total number of allowed configurations is

Nconf =
{ 5(n−1)(n−2)

2(n+2)(2n−1)Cn, if Sz
tot = 0, Nd = 1,

2(n−1)
(n+2) Cn, if Sz

tot = ±1, Nd = 0.
(12)

For example, in the N = 8 system with a single defect bond,
there are five contributing states, and Eq. (10) takes the form∣∣ψ1

0

〉 = 1√
Nnorm

[g1| ( ) 〈 ( ) 〉 ( )〉 + g2| ( ) 〈 〉 ( ) ( )〉

+ g3| ( ) 〈 〉 ( ( ) )〉 + g4| ( ) ( ) 〈 〉 ( )〉
+ g5| ( ( ) ) 〈 〉 ( )〉], (13)

with normalization Nnorm = ∑Nconf

n=1 g2
n. Recall that the strong

external boundary fields, which demand that σ z
1 = +1 and

σ z
N = −1, prevent the defect from touching either edge of the

spin chain.

IV. METHODS

Exact diagonalization (ED) is implemented as described in
Ref. [47]. The basis-size reduction due to the discrete symme-
tries is not enough to significantly reduce the computational
cost, so we cannot simulate large systems. To help guide
our investigations, however, we have generated the full set
of energy eigenstates for N = 12 and N = 16 over a densely
spaced mesh of (r, θ ) values.

To access larger sizes, we employ a DMRG algorithm
implemented in the open-source C++ library ITensor [57],
taking advantage of the fact that Sz

tot is a good quantum num-
ber in the model. We are mindful of the fact that the high level
of entanglement in the vicinity of the Fredkin model and its
mirror point at the “south pole” (r � 1 and 90◦ � θ � 110◦
or 250◦ � θ � 270◦) requires us to keep many states; farther
away, we can be more cavalier about truncating the DMRG
basis set. We are also careful about issues of convergence: In
and around the two domes of the phase diagram (roughly cor-
responding to a region 1 � r � 1.2 and 110◦ � θ � 260◦) an
unexpectedly large number of sweeps is required, because the
low-lying energy levels are very closely spaced (see Fig. 3).

Moreover, the convergence is strongly biased by the choice
of initial trial state, because the nature of the low-lying states
sometimes changes abruptly with a small change in r or θ

values. As a workaround, we make a list of possible low en-
ergy configurations using ED results for N � 16. Comparable
configurations are then used to seed the DMRG calculations
for bigger system sizes. The first excited state belongs to the
Sz

tot(ES) = 0 spin sector in most parts of this region. So, we
calculated the two orthogonal states in Sz

tot = 0 having the
lowest eigenvalues using many possible trial states. Then, the
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FIG. 2. The full Hilbert space is depicted for the N = 8 Fredkin system with infinitely strong twisted boundary fields. The horizontal lines
separate the subspace blocks with definite values of Sz

tot, the total spin in the z direction, and Nd, the number of defects.

ground state and the first excited state are found by sorting
two lowest energies in the Sz

tot = 0 spin sector and the lowest
energy in the Sz

tot = 1 spin sector.
We have employed a very conservative convergence crite-

rion: The DMRG algorithm runs through 10N sweeps using
an adaptive truncation cutoff at relative error 10−12 with
maximum bond dimension 15N . We have benchmarked our
DMRG results to near double-precision floating-point accu-
racy against ED results for N � 16. The DMRG computation
is carried out for all lattice sizes that are multiples of 4 up
to N = 60, over a tight mesh of tuning parameter values r =
0, 0.025, . . . , 2.975, 3 and θ = 0◦, 1◦, . . . , 359◦, 360◦. The
most expensive of those simulations corresponds to 600
sweeps with a maximum bond dimension of 900. Various
physical quantities are computed in the ground state as a
function of the tuning parameters r, θ ; i.e., O(r, θ ) = 〈Ô〉 =

〈ψ0(r, θ )|Ô|ψ0(r, θ )〉. These include the spin profile 〈σ z
i 〉,

dimer profile 〈σ z
i σ z

i+1〉 − 〈σ z
j 〉〈σ z

j+1〉, dimer order parameter

〈d‖〉 = 1

N

N−1∑
j=1

c j
[〈
σ z

j σ
z
j+1

〉 − 〈
σ z

j

〉〈
σ z

j+1

〉]
(14)

where

c j = (−1) j

{
1/2, if j = 1 or N

1, otherwise

Ising ferromagnetic order parameter (z FM)

〈m‖(FM)〉 = 1

N

N∑
j=1

〈
σ z

j

〉
, (15)
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θ

θ

FIG. 3. Exact diagonalization gap-spectrum results for r = 1.05
and N = 12. Few low-lying energy spectra belong to |Sz

tot| � 1 sector
and it shows how difficult it is to integrate out the ground state and
first excited state energy in the non-Dyck-form dome (see the north-
west quadrant of Fig. 1) because the spacing between them is narrow.
The first excited state (red line) make a transition from Sz

tot(ES) = 1
(solid triangle) to Sz

tot(ES) = 0 (solid circle) just before entering the
non-Dyck-form ground state from the left at angle θ = 115.5◦ as
shown in the inset.

Ising antiferromagnetic order parameter (z AFM)

〈m‖(AFM)〉 = 1

N

N∑
j=1

(−1) j
〈
σ z

j

〉
, (16)

doubly staggered Ising magnetic order parameter (z DSM)

〈m‖(DSM)〉 = 1

N

N∑
j=1

c j
〈
σ z

j

〉
(17)

where

c j =
{+1, if j = 0, 1 (mod 4)

−1, if j = 2, 3 (mod 4)

the xy-plane ferromagnetic order parameter (xy FM)

〈m2
⊥(xy FM)〉 = 1

N2

N∑
i, j=1

〈σ+
i σ−

j + σ−
i σ+

j 〉, (18)

and the xy-plane antiferromagnetic order parameter (xy AFM)

〈m2
⊥(xy AFM)〉 = 1

N2

N∑
i, j=1

(−1)i+ j〈σ+
i σ−

j + σ−
i σ+

j 〉. (19)

V. RESULTS AND DISCUSSION

Unlike the upper half-plane where wave function ampli-
tudes are all positive, the wave function amplitudes in the
lower circular plane contain an admixture of positive and
negative signs. About the horizontal line (γ = 0), diagonal
(σ z dependent only) and off-diagonal (products of σ+ and σ−)
measurements are symmetric and antisymmetric, respectively.
For example, xy FM and xy AFM measurements in Fig. 6(b)

TABLE II. A list of relevant spin configurations for the two low-
lying states of the classical model of size N = 8. States |8〉 and |9〉 are
excluded from the Hilbert space in the limit (α → ∞) of infinitely
strong boundary fields.

State Configurations E (N, η, γ = 0, h)

|1〉 (z FM) | �  �  �  ( ) 〉 (1 + η)/2
| ( ) � � � � � �〉

|2〉 | ( ) �  �  ( ) 〉 1
| ( ) � � � � ( ) 〉

|3〉 (z AFM) | ( ) ( ) ( ) ( ) 〉 (N − 2)(1 − η)/2

|4〉 |�  ( ) ( ) ( ) 〉 (N − 4)(1 − η)/2 + (1 + η)/2
| ( ) ( ) ( ) � �〉

|5〉 (DW) | ( ( ( ( ) ) ) ) 〉 1 + η

|6〉 (z DSM) | ( ( ) ) ( ( ) ) 〉 N (1 + η)/4, N = 0 (mod 4)

|7〉 | ( ) 〈 〉 ( ( ) ) 〉 (N − 2)(1 + η)/4, N = 0 (mod 4)
| ( ( ) ) �  ( ) 〉

and others

|8〉 | ( ) ( ) ( ) � 〉 (N − 3)(1 − η)/2 + α

| � � ( ) ( ) ( ) 〉
|9〉 | 〈 ( ) ( ) ( ) 〉 〉 (N − 2)(1 − η)/2 + 2α

have peaks at (r, θ ) = (1, 90◦) and (1, 270◦), respectively. So,
we discuss our diagonal measurement results only for the
upper semicircular plane, and a similar explanation applies
to the lower semicircular plane. We analyze the ground state
properties of the system at distinct regions of the phase space
separately in Secs. V A–V D 1.

A. Fluctuation-free limit (γ = 0)

The classical energy of Eq. (2) is given by

E (η, γ = 0)i =

⎧⎪⎨
⎪⎩

(1 + η)/2, if | ( ( )〉 or | ( ) )〉
(1 − η)/2, if | ( ) ( 〉 or | ) ( )〉
0, otherwise

. (20)

The energy difference (�Ei = ±η) in Eq. (20) can be viewed
as a movement of a short bond ( ) to the left or right; i.e.,
( ( ) ⇔ ( ) ( or ( ) ) ⇔ ) ( ) . In Table II, we summarize a
list of several low-lying energy configurations of the classical
model using Eq. (20).

The lowest two energy configurations of this classical
model are discussed in Secs. V A 1 and V A 2.

1. On the positive x axis (θ = 0, η = r)

The ground state, excited state, and the excitation gap are
shown in Table III. Let us define two critical radii rc(N ) =
(N − 4)/(N − 2) and rcc(N ) = (N − 3)/(N − 1). At r = 0,
only the first term survives in Eq. (3). The ground state favors
the doubly degenerate z FM state and the first excited state
belongs to the highly degenerate states of types |2〉 and |5〉
with an excitation gap � = 1/2. For a finite system size N,
the first-order phase transition from z FM to z AFM occurs
exactly at rcc(N ). In the thermodynamic limit, the phase tran-
sition occurs exactly at rcc(N → ∞) = 1. Both z FM and
z AFM are fully polarized at this angle and they belong to
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TABLE III. The table summarizes the ground state, first excited
state, and the excitation gap at θ = 0◦. The corresponding spin con-
figuration of the state (GS or ES) are shown in Table II.

Radial coordinate |GS〉 |ES〉 �(N, r, α)

r = 0 |1〉 |2〉, |5〉 1/2
and others

0 < r < rc(N ) |1〉 |2〉 (1 − r)/2
rc(N ) < r < rcc(N ) |1〉 |3〉 (N − 1)(1 − r)/2 − 1
rcc(N ) < r < 1 |3〉 |1〉 1 − (N − 1)(1 − r)/2
r = 1 |3〉 |4〉 r + (r − 1)/2

and others
1 < r < α |3〉 |4〉 r + (r − 1)/2
r = α |3〉 |4〉, |8〉 α + (r − 1)/2
α < r < 2α + 1 |3〉 |8〉 α + (r − 1)/2
r = 2α + 1 |3〉 |8〉, |9〉 2α

r > 2α + 1 |3〉 |9〉 2α

the Sz
tot(GS) = (N − 2)/2 and Sz

tot(GS) = 0, respectively. For
r � 1, the ground state favors z AFM. The excitation gap is
�(z FM) = (1 − r)/2 for r < 1, and �(z AFM) = r + (r −
1)/2 for r � 1 in the limit α → ∞.

The ground state is independent of the field strength α

(tested for α � 1). However, the magnitude of field strength
affects the measurement of the excitation gap if r � α and
the angle θ is small. The spin flip at the boundary adds ex-
tra energy α to the system resulting Sz

tot(ES) = 0 excitation
instead of Sz

tot(ES) = 1. At exactly r = α, the state |8〉 with
the excitation gap �(r, α) = α + (r − 1)/2 is equal to the
state |4〉. So, the state |8〉 is the excited state in the range
α < r < 2α + 1. At exactly r = 2α + 1, the state |9〉 with
two spins flips at the boundary overlap with previous doubly
degenerate excited states giving common gap �(α) = 2α. For
r > α, a unique state |9〉 with a constant gap �(α) = 2α is the
excited state.

2. On the negative x axis (θ = 180◦, η = −r)

The ground state, excited state, and the excitation gap
are shown in Table IV. For 0 < r < 1, the ground state is
the doubly degenerate z FM, and the first excited state is
highly degenerate. At r = 1, the z AFM is highly penal-

TABLE IV. The table summarizes the ground state, excited state,
and the excitation gap at θ = 180◦. The corresponding spin configu-
rations of the state (GS or ES) are shown in Table II.

Radius |GS〉 |ES〉 �(N, r)

r = 0 |1〉 |2〉, |5〉 1/2
and others

0 < r < 1 |1〉 |5〉 (1 − r)/2
| ( ) 〈 〈 〉 〉 ( ) 〉
|�  ( ( ( ) ) ) 〉

and others
r = 1 |5〉 |2〉 1

| � ( )  �  ( ) 〉
| ( ) ( ( ( ) ) ) 〉

and others
1 < r < ∞ |6〉 |7〉 (r − 1)/2

ized, but all other states including the domain wall (DW)
have the same energy resulting in highly degenerate ground
states with Sz

tot(GS) = 0,±1, . . . ,±(N − 2)/2. The highly
degenerate excited state belongs to different sectors Sz

tot =
0,±1, . . . ,±(N − 4)/2. For 1 < r < ∞ and N = 0 (mod 4),
the ground favors a state that forms a repeated patterns of
four spins, z DSM. The degenerate excited states belong to
Sz

tot(ES) = 0, 1 sectors. The excitation gap is independent of
the system size. The N = 2 (mod 4) sizes are excluded from
this work to avoid ambiguity because their ground state is
degenerate in the range 1 < r < ∞. For example, E (N, η) =
(N − 2)(1 + η)/4 for | ( ) 〈 〉 ( )〉, |�  ( ( ) )〉, and many other
states.

B. Unit circle (r = 1)

On the unit circle, the ground state is the area-weighted
sum of the Dyck-form. The zero-energy unique ground state
belongs to Sz

tot(GS) = 0, but the excitations are doubly degen-
erate in Sz

tot(ES) = ±1 spin sectors. The left unit semicircle
is featureless (no order), and the excitation gap vanishes ex-
ponentially fast. On the right unit semicircle, the ground state
is ordered, and the excitations are gapped. The spectral gap
obeys the threshold criteria for frustration-free spin systems
with boundary [58]. The peaks of z AFM (= cos θ/2) and
the excitation gap at (r, θ ) = (1, 0◦) both vanish smoothly at
the Fredkin point (1, 90◦). There is a strong dimer order at
(1,≈65◦) that gradually weakens with changing angle until it
disappears completely at (1, 0◦) and (1, 90◦). For finite system
sizes, the xy FM is smeared out in the vicinity of the Fredkin
point, but it collapses to a delta function in the thermodynamic
limit. Although diagonal measurements are symmetric about
the horizontal line (γ = 0), off-diagonal measurements are
antisymmetric. So, strong xy AFM is measured at the bottom
of the unit circle that was not included in the origin t-deformed
model.

C. Inside the unit circle (r < 1)

For θ = 180◦, the phase transition from z FM to DW
state occurs exactly at r = 1, independent of the system size.
However, for θ = 0, the phase transition from z FM to z
AFM occurs exactly at rcc(N ) for a finite system size N . For
rcc(N ) < r < 1, the true nature of the system in the ground
state is suppressed by the finite size effect where the ground
state favors z AFM only for the finite system. Although the
ground state properties are independent of system size for
r � rcc(N ), the excitation gap does only for r � rc(N ). In
the thermodynamic limit, rc(∞) → rcc(∞) → 1. In Fig. 4,
we omitted the data in the vicinity of (r � 1, θ ≈ 0) to ex-
clude the finite-size effect. Along the vertical line (η = 0) in
the phase diagram, the ground state belongs to Sz

tot(GS) =
(N − 2)/2 sectors for 0 � r � 2/3. As r increases, the spin
sector decreases gradually first and then exponentially fast
as (r � 1, θ = 90◦) resulting in Sz

tot(GS) = 0 at the Fredkin
point. The model is gapped at the center, �(r = 0) = 1/2,
and gapless along the unit circle. The ellipses with gap-
less boundary correspond to the ground state level crossing
in the spin sectors Sz

tot(GS): (N − 2)/2 → (N − 4)/2, (N −
4)/2 → (N − 6)/2, and so on as shown in Fig. 4. The ground
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FIG. 4. These are discrete color maps for N = 60 system in the
parameter regime r < 1. The interior labels mark the radii, and
the outer labels denote the angles in degrees. Left: Three different
colors denote the ground state spin sectors Sz

tot(GS) = (N − 2)/2,
(N − 4)/2, and (N − 6)/2 for the innermost, middle, and outermost
elliptical regions, respectively. The ferromagnetic order weakens
along the vertical diagonal away from the center. Right: The excita-
tion gap is exactly � = 1/2 at the center and vanishes as r → 1. The
gapless elliptical boundaries coincide with the spin sector crossover
in the ground state.

state and the excited state belong to different spin sectors and
satisfy Sz

tot(GS) = Sz
tot(ES) ± 1 (− in the transition window

followed by the gapless boundary and + elsewhere). There
is no quantum fluctuation in the Sz

tot(GS) = (N − 2)/2 sector
because promoting the N th down spin to up costs an addi-
tional energy h to the system. So, the ground state energy
is E0 = (1 + η)/2 (independent of γ ) with the unique z FM
inside the innermost ellipse shown in Fig. 4.

D. Outside the unit circle (r > 1)

The ground state is Dyck-form everywhere except in two
cat ears like plane domes residing on the left semicircular
plane of the phase space (see Figs. 5 and 6). The non-Dyck-
form and Dyck-form ground states are discussed in Secs.
V D 1 and V D 2, respectively.

1. Non-Dyck-form ground state

The non-Dyck-form unique ground state is observed for
N � 10 in the dome residing its base along the unit circle
and peaked at (r ≈ 1.7, θ ≈ 135◦) as shown in Fig. 6. The
ground state shows idiosyncratic nature while making the
phase transition from z AFM at angle 0◦ through z DSM order
at angle 180◦ by creating different numbers of peaks in the
spin profile as shown in Fig. 7 (top). The nature of forming
a group of spins cluster and transition between them makes
the system strongly size-dependent non-Dyck-form ground
state. The Dyck form and non-Dyck form do not coexist in
a particular state because they have distinct quantum numbers
(see Sec. III). In two domes, the ground state favors Sz

tot = 0
and Nd = 1. The first excited state heavily depends on (r, θ )
values and belongs to (Sz

tot, Nd) ∈ {(0, 0), (0, 1)} subspace of
the Hilbert space.

Since the states are not entangled, DMRG should work
perfectly but this is not the case. The small energy scale (see

FIG. 5. Top: The color map denotes the discrete values of
Sz

tot(ES), the total spin projection of the first excited state. It also
shows the inward drift of some boundaries (viz., the orange zones
near 90◦ and 270◦) with increasing system size. Bottom: Spin profiles
measured in the excited state for system size N = 60 at parame-
ter values (r = 1.5, θ = 30◦) and (r = 2.5, θ = 90◦). These profiles
correspond to excitations of distinct character.

Fig. 3) hinders to find the global minima, and the solution
is also biased to the initial trial state (noise observed in the
domes). In some parts of the non-Dyck-form ground state,
the lowest-lying energy states are almost continuum where the
Dyck-form ground state appears for few selected system sizes
and special tuning points as a coincidence [spin profile shown
in Fig. 7 (bottom) and line observed in Figs. 6(c) and 6(e)
in the domes]. Additionally, the strong size-dependent nature
observed in the measured values makes extrapolation almost
impossible (see Fig. 3). We believe that this non-Dyck-form
dome appears because of frustration arising from many com-
peting phases surrounding it. The size of the dome is robust
and already conversed for N = 60 as tested against N = 120.

2. Dyck-form ground state

The unique ground state is in Sz
tot(GS) = 0 sector every-

where, and the first excitation belongs to Sz
tot(ES) = 0,±1

as shown in Fig. 5 (top). The hyperbolic regions contain-
ing Dyck-form (Sz

tot(ES) = 0, Nd = 0) excitation emerges for
N � 10 and broaden with the increasing system size. As a
result, the vertex approaches (r ≈ 1.7, θ � 90◦; peak of the
non-Dyck-form dome) in the thermodynamic limit. Unlike
Sz

tot(ES) = 1 excitation where the spin flip occurs at one end
of the chain, even the number of spins flip resulting in the
Dyck-form excitation as shown in Fig. 5 (bottom).

The excitation is gapless only along the unit circle and
the boundary of non-Dyck-form, leaving the system gapped
everywhere on the phase space. The excitation gap increases
along the radial direction away from the center for all
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FIG. 6. Sample color maps for the finite system N = 60 where black solid line represent the domes boundaries. (a) Excitation gap. (b) The
xy-directed FM (AFM) on the upper (lower) semicircular regions. (c) The von Neumann entanglement entropy. (d) The dimer order parameter
showing slightly varying magnitudes at different parts of the phase diagram. (e) The Ising antiferromagnetic order parameter, z AFM. (f)
Doubly staggered Ising magnetic order parameter, z DSM.

angles. In the angular direction, the gap maximum at θ = 0◦
decreases gradually and attains its minima at the hyperbolic
boundary on the left semicircular region. In z DSM, the region
enclosed by the hyperbolic boundary, the excitation gap does
not vary much with the change in angle θ .

The xy-directed ferromagnetic correlation observed at the
Fredkin point appears to leak away from the center on the left
side of the vertical line as shown in Fig. 6(b). Although von
Neumann entropy shows a significant boost in that region,
it does not scale with the system size because the system is
gapped and follows the area law of entanglement entropy.
Unfortunately, this apparent entangled state requires a larger
bond dimension in DMRG calculation resulting in additional
time complexity.

The fully saturated z AFM at θ = 0◦ decreases continu-
ously in the angular direction until it completely vanishes
at the z DSM boundary as shown in Fig. 6(e). In the radial

direction away from the center, z AFM first increases grad-
ually and then saturates to a finite value. The dimer order is
absent in both z DSM and strong z AFM regions. The dimer
order peak at (r = 1, θ ≈ 65◦) shifts toward the left part of
the phase space with the increasing value of radius r as can be
seen in Fig. 6(d). The slightly different magnitudes of dimer
order observed in Fig. 6(d) are shown by the distinct dimer
profiles in Fig. 8.

VI. CONCLUSIONS

In Sec. III, we discussed how to represent the Hilbert
space using the language of matching and nested spin pairs.
Conventional pairs, with a spin up to the left and spin down
to the right, are the building blocks of the Dyck word ground
state. By promoting certain conventional bonds to a bond of
different character—either an excited bond that cants the spin
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FIG. 7. Top row: The two spin profiles shown (red circles) are
typical of the non-Dyck-form ground states that arise in the dome.
The individual configurations ( ( ) ) 〈 ( ( ( ) ) ) · · · ( ( ( ) ) ) 〉 ( ( ) )
and ( ( ) ) 〈 ( ( ( ( ) ) ) ) · · · ( ( ( ( ) ) ) ) 〉 ( ( ) ) dominate the expec-
tation values. The red angled brackets in these spin configurations
denote a single defect. Bottom row: For some system sizes, a narrow
band of Dyck-compatible ground states traces out a line across the
phase space inside the dome. There, the spin profile (blue triangles)
is defect free. The dominant contributions to measurements in the
bottom left and bottom right panels are ( ( ) ) ( ( ( ) ) ) · · · ( ( ( ) ) )
and ( ( ( ) ) ) · · · ( ( ( ) ) ) , respectively.

state out of the xy plane or a defect bond that carries a Dyck
word mismatch—we were able to cover the entire Hilbert
space. We derived formulas relating the number of excited and
defect bonds to the explicit spin arrangement in a given state,
and we offered a detailed prescription for converting from
the raw spin representation into the bond representation. Most
important, we argued that the population count for each kind
of bond is a good quantum number for the model Hamiltonian
considered in Sec. II.

Figure 1 shows a summary of the zero-temperature quan-
tum phase diagram, based on an extrapolation of various
numerical measurements on finite-size systems to the thermo-
dynamic limit. The diagonal measurements (those involving
σ z only) are symmetric about the horizontal (γ = 0) axis,
whereas off-diagonal measurements (involving σ+ and σ−)

FIG. 8. The dimer profile measured in the ground state for size
N = 60 at two points in the model-parameter space, (r = 1.1, θ =
75◦) and (r = 2, θ = 125◦). The data show two distinct dimer
patterns.

are antisymmetric. The two-parameter extended model we
have proposed is exactly solvable on the horizontal line (γ =
0) and on the unit circle (η2 + γ 2 = 1). For r < 1, the fer-
romagnetic ground state is doubly degenerate. For r � 1, the
ground state is everywhere unique, except at the point (r =
1, θ = 180◦), for all system sizes satisfying N = 0 (mod 4).
Along the line (r > 1, θ = 180◦), the ground state is highly
degenerate for sizes N = 2 (mod 4), since the desired doubly
staggered pattern is prevented from forming; hence, these
sizes are excluded.

The t-deformed model lies on the unit circle, and the line
η = 0 separates the gapped, ordered phases on the right from
the gapless, disordered phases on the left. The latter belong
to a region in which the excitation gap closes exponentially
fast. That unit circle also demarcates a boundary between
regions that shows ferromagnetic behavior inside and coexis-
tence of antiferromagnetic and dimerized behavior elsewhere.
The dimer order is strong in the upper and lower parts of the
diagram, where quantum fluctuations are enhanced. On the
other hand, the right part of the phase space favors z AFM
behavior and the left supports z DSM behavior. The system is
gapped everywhere except on ellipses inside the unit circle
and on the boundary of the domes on the left part of the
phase diagram. Most parts of the phase space favor the
Fredkin-like Dyck-form ground state except the two domes
and inside the unit circle. The two domes on the left and
the Dyck-form (Sz

tot = 0, Nd = 0) excitation on the top of the
phase diagram both emerge only for N � 10; in the thermody-
namic limit, they all touch the circle at r ≈ 1.7, approaching
it from opposite sides. Inside the two domes, the ground
state favors Sz

tot = 0 and Nd = 1, leaving Dyck-form to the
higher energy state. Inside the unit circle, the ground state is
ferromagnetic (higher |Sz

tot|) with no defects (Nd = 0).
The tunable Hamiltonian we have proposed and studied

in this paper puts the Fredkin model and its t-deformed
generalization in the context of a larger space of models
that have a well-defined notion of conventional, excited, and
defect bonds. This is interesting because the identification
of the bond character relies on knowledge of the complete
spin configuration; in other words it is a global rather than
local property of the spin state and hence has a topological
nature. Our work makes clear that, even though the t defor-
mation is frustration free, its quantum-disordered ground state
is nonetheless a result of a special tuning of the competing
interactions, one that carefully balances their ferromagnetic
and antiferromagnetic tendencies.

APPENDIX: GENERALIZATION OF
THE t-DEFORMED MODEL

We consider the colorless S = 1/2 specialization of the
frustration-free, t-deformed Fredkin spin chain described in
Ref. [42]. The Hamiltonian

H (t ) = HF (t ) + Hboundary (A1)

is the sum of bulk and boundary terms,

HF (t ) =
N−1∑
j=2

(∣∣φA
j

〉〈
φA

j

∣∣ + ∣∣φB
j

〉〈
φB

j

∣∣) (A2)
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and

Hboundary = |↓1〉〈↓1| + |↑N 〉〈↑N |. (A3)

The operators in HF project onto the states∣∣φA
j

〉 = 1√
1 + ∣∣tA

j

∣∣2
[|↑ j−1↑ j↓ j+1〉 − tA

j |↑ j−1↓ j↑ j+1〉] (A4)

and∣∣φB
j

〉 = 1√
1 + ∣∣tB

j

∣∣2

[|↑ j−1↓ j↓ j+1〉 − tB
j |↓ j−1↑ j↓ j+1〉

]
.

(A5)

The unspecified parameters satisfy tB
j = tA

j−1. If we treat them
all on an equal footing, as in Ref. [46], then the model depends
on a single, site-independent parameter t = tA

j = tB
j .

The projector in Eq. (2) can be represented as

Pi, j = |Si, j〉〈Si, j |, (A6)

where

|Si, j〉 = 1√
2

[|↑i↓ j〉 − |↓i↑ j〉] (A7)

is the singlet formed by spin at sites i and j. The multiparam-
eter generalization [42] of this state takes the form

|S(ti j )i, j〉 = 1√
1 + t2

i j

[|↑i↓ j〉 − ti j |↓i↑ j〉], (A8)

which is properly normalized and allows for admixing of
the various spin-triplet components. The model preserves the
frustration-free nature of the original Fredkin model in the
sense that the ground state minimizes each term in the Hamil-
tonian individually.

For simplicity, we work on single-tuning-parameter t de-
formation studied in Ref. [46],

|S(t )i, j〉 = 1√
1 + t2

[|↑i↓ j〉 − t |↓i↑ j〉], (A9)

from which the usual Fredkin model is recovered at t = 1. The
t-deformed ground consists of a sum of Dyck-form spin states
whose weight is proportional to area under the corresponding
height profile. Let us express the spin-singlet projector in
terms of Pauli matrices, with 2σ± = σ x ± iσ y defining the
raising and lowering operators.

P(t )i, j = |S(t )i, j〉〈S(t )i, j |

= 1

1 + t2
[(|↑i↓ j〉 − t |↓i↑ j〉)(〈↑i↓ j | − t〈↓i↑ j |)]

= 1

1 + t2
[|↑i↓ j〉〈↑i↓ j | + t2|↓i↑ j〉〈↓i↑ j | − t

(|↑i↓ j〉〈↓i↑ j | + |↓i↑ j〉〈↑i↓ j |
)
]

= 1

1 + t2

[
1

4

(
1 + σ z

i

)(
1 − σ z

j

) + t2

4
(1 − σ z

i )
(
1 + σ z

j

) − t (σ+
i σ−

j + σ−
i σ+

j )

]

= 1

1 + t2

[
1 + t2

4

(
1 − σ z

i σ z
j

) + 1 − t2

4

(
σ z

i − σ z
j

) − t (σ+
i σ−

j + σ−
i σ+

j )

]

= 1

4

(
1 − σ z

i σ z
j

) + 1 − t2

4(1 + t2)

(
σ z

i − σ z
j

) − t

1 + t2
(σ+

i σ−
j + σ−

i σ+
j )

→ 1

4

(
1 − σ z

i σ z
j

) + η

4

(
σ z

i − σ z
j

) − γ

2
(σ+

i σ−
j + σ−

i σ+
j ) =: P̃i, j (η, γ ) (A10)

The final line is the two-parameter generalization, expressed as a function of η and γ , that was introduced as Eq. (3).
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