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To investigate the magnetic properties of SmFe12, we construct an effective spin model, where magnetic mo-
ments, crystal-field (CF) parameters, and exchange fields at 0 K are determined by first-principles calculations.
Finite-temperature magnetic properties are investigated by using this model. We further develop an analytical
method with strong mixing of states with a different quantum number of angular momentum J (J-mixing), which
is caused by a strong exchange field acting on the spin component of 4 f electrons. Comparing our analytical
results with those calculated by Boltzmann statistics, we clarify that the previous analytical studies for Sm
transition-metal compounds overestimate the J-mixing effects. The present method enables us to perform a
quantitative analysis of the temperature dependence of magnetic anisotropy (MA) with high reliability. The
analytical method with model approximations reveals that the J-mixing caused by the exchange field increases
the spin angular momentum, which enhances the absolute value of the orbital angular momentum and MA
constants via spin-orbit interaction. It is also clarified that these J-mixing effects remain even above room
temperature. Magnetization of SmFe12 shows a peculiar field dependence known as the first-order magnetization
process (FOMP), where the magnetization shows an abrupt change at a certain magnetic field. The result of
the analysis shows that the origin of FOMP is attributed to competitive MA constants between positive K1 and
negative K2. The sign of K1(2) appears due to an increase in the CF potential denoted by the parameter A0

2〈r2〉
(A0

4〈r4〉) caused by hybridization between 3d-electrons of Fe on the 8i (8 j) site and 5d and 6p valence electrons
on the Sm site. It is verified that the requirement for the appearance of FOMP is given as −K2 < K1 < −6K2.
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I. INTRODUCTION

There have been intensive studies on developing new rare-
earth (R) lean permanent magnetic materials that have strong
magnetic properties comparable to those of Nd-Fe-B. Nitro-
genated compounds such as NdFe12N or NdFe11TiN have
been considered to be candidates of such materials, and thus a
series of experimental and theoretical efforts have been made
to figure out the magnetic properties of these materials [1,2].
SmFe12 with the ThMn12 structure (Fig. 1) is also a possible
candidate and has attracted renewed interest because it ex-
hibits excellent intrinsic magnetic properties such as uniaxial
magnetocrystalline anisotropy [3]. Although SmFe12 itself
is thermodynamically unstable, it has been known that the
substitution of Fe with a stabilizing element, such as Ti or
V, can remove this difficulty [4–8]. In these systems, how-
ever, the saturated magnetization is reduced due to antiparallel
alignment of magnetic moments of Ti and V relative to those
of Fe. The recent development of synthesis technology made
it possible to fabricate highly textured single-phase samples
of SmFe12 thin film [9–13], and it has been shown experi-
mentally that Co substitution for Fe enhances their magnetic

properties, such as Curie temperature and magnetic anisotropy
(MA) [10]. Thus, SmFe12-based systems belong to one of the
most promising hard magnetic materials, and therefore it is
crucially important to clarify the basic magnetic properties of
SmFe12.

So far, many attempts have been made to gain a micro-
scopic understanding of the magnetic properties of R-based
permanent magnets [14–19]. Among them, a powerful method
is to combine the first-principles calculations for electronic
states at the ground state with a suitable model for finite-
temperature properties [20–29]. With regard to SmFe12,
Harashima et al. [30], Körner et al. [31], and Delonge
et al. [32] performed the first-principles calculations and
model analysis of magnetic properties. In the theoretical study
of Sm-based intermetallic compounds, however, there remains
a basic issue of how to deal with the formidably strong J-
mixing effects in Sm. This is the problem that has been studied
for a long period on Sm-based magnets [33–35]. There have
been some attempts to include J-mixing in the analytical form
via first-order perturbation for crystal fields (CFs) [28,29].
However, Kuz’min pointed out that the Sm-based magnetic
materials are exceptional for application of the method [28].
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FIG. 1. Crystal structure of SmFe12 in ThMn12 structure. In-
equivalent sites: Sm(2a), Fe(8 f ), Fe(8i), and Fe(8 j) are shown by
different-colored balls, and solid lines show interatomic short con-
tacts less than 3.2 Å.

We have recently developed a similar method [18,19], in
which the model parameters are calculated by first-principles
calculations, and the finite-temperature magnetic properties
are calculated in a statistical way, and we applied our method
to R2Fe14B systems. By taking into account CF parameters up
to sixth order, the model satisfactorily explained the experi-
mental results for magnetization curves and the temperature
dependence of MA constants [18,19]. Using the method, we
recently calculated the temperature dependence of the MA
constants of SmFe12 and showed that K1 > 0 and K2 < 0, in
agreement with experimental results [12]. The report of the
work, however, contains only the final results, and no details
of the computational procedure have been presented. As a
result, no explanations have been given of the mechanism for
the results K1 > 0 and K2 < 0.

The purpose of the present study is thus to clarify the origin
of the finite-temperature magnetic properties of SmFe12 using
statistical and analytical approaches. To this end, we develop
statistical and analytical methods based on first-principles cal-
culations. The analytical procedure is able to derive simple
relations between the temperature dependence of magnetic
properties and parameters determined by first-principles elec-
tronic structure calculations. The treatment of the J-mixing
effects adopted previously by other groups [28,29] will be
modified, and the results will be compared with the statistical
results of the temperature dependence of the magnetic prop-
erties of SmFe12. Good agreement between the analytical and
statistical results guarantees the applicability of the modified
analytical formula to Sm compounds.

In the following we present the model Hamiltonian, the
parameters of which are determined by first-principles cal-
culations, and we present the calculation procedure for finite
temperatures, especially the statistical method, to obtain the
MA constants and magnetization curves, and to explain the
modified analytical method. The latter method may clarify the
relations among the free energy of the system, the CF, and the
exchange field. Using the analytical method, we will show that
the mechanism of K1 > 0 and K2 < 0 in SmFe12 is attributed
to the characteristic lattice structure around Sm ions, that is,
crystallographic 2b-sites on the c-axis adjacent to Sm are va-
cant. We also present results on the magnetization process and
nucleation fields by calculating Gibbs free energy. As pointed
out in Ref. [19], this analytical spin model can be easily
extended to Sm ions around the intergranular phases, which
is crucially important in the coercivity mechanism [13,36,37].

This paper is organized as follows. The model Hamiltonian
is explained in Sec. II, and the procedures of the statistical and

analytical methods are explained in Sec. III. Section IV shows
the results of the temperature dependence of magnetic proper-
ties calculated using the statistical and analytical methods. A
summary of our work is given in Sec. V.

II. MODEL HAMILTONIAN

We adopt the following Hamiltonian to investigate the
magnetic properties of R transition-metal (TM) compounds:

Ĥ = 1

V0

nR∑
j=1

ĤR, j + KTM
1 (T ) sin2 θTM − MTM(T ) · B, (1)

where ĤR, j is a Hamiltonian for the R ion on the jth site,
and nR is the number of R ions in the unit-cell volume V0.
The second and third terms represent the phenomenological
treatment of MA energy and the Zeeman term on the TM
sublattice, where KTM

1 (T ) and MTM(T ) are the temperature-
dependent anisotropy constant and magnetization vector of
the TM sublattice, respectively, and θTM is the polar angle of
MTM(T ) against the c-axis. MTM(T ) is given as MTM(T )eTM

by using the absolute value of the sublattice magnetization
MTM(T ) and a directional vector eTM of MTM(T ). MTM(T )
is defined by a part of the magnetization subtracting the 4 f
electron contribution from the total magnetization. B is an
applied field.

A. Hamiltonian of a single R ion

The Hamiltonian for the 4 f shell in the jth R ion in Eq. (1)
is

ĤR, j =
n4 f∑
i=1

ĥ j (i) + 1

8πε0

n4 f∑
i �=i′=1

e2

|r̂i − r̂i′ | , (2)

with

ĥ j (i) = ξ l̂ i · ŝi + 2μBŝi · Bex, j (T )

+
∫

r2
i |R4 f (ri)|2Vj (ri )dri + μB(l̂ i + 2ŝi ) · B. (3)

The first and second terms in Eq. (2) represent the single-
electron contribution and the electron-electron repulsion in
a 4 f shell, respectively, where n4 f is the number of 4 f
electrons, and ε0 and e are the vacuum permittivity and the
elementary charge, respectively. ĥ j (i) in Eq. (3) is the Hamil-
tonian for the ith 4 f electron on the jth R site, where the first
term in Eq. (3) is the spin-orbit interaction (SOI) between spin
(ŝi) and orbital (l̂ i) angular momenta, with a coupling con-
stant ξ . The second term represents the exchange interaction
between spin moment and temperature-dependent exchange
field Bex, j (T ) = −eTMBex, j (T ) on the jth R site, where μB is
the Bohr magneton. The third and fourth terms are the CF and
Zeeman terms, respectively. In the expression of CF, Vj (ri )
and R4 f (ri ) are the Coulomb potential and the radial parts of
the 4 f wave function on the jth R site, respectively. Note
that the kinetic energy and screened central potential terms
are effectively taken into account in the formation of the 4 f
orbital.

To obtain the electronic properties at T = 0, we apply the
first-principles calculations and determine the parameters in
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TABLE I. Values of CF potentials Am
l, j〈rl〉 (K), exchange field μBBex, j (0)/kB (K), and TM-sublattice magnetization V0MTM(0) (μB) in

SmFe12 calculated by first-principles calculations, where μB and kB are the Bohr magneton and Boltzmann constant, respectively, and V0 =
a × b × c. We note that Am

l, j〈rl〉 and μBBex, j (0)/kB are independent of site index j.

A0
2, j〈r2〉 A0

4, j〈r4〉 A4
4, j〈r4〉 A0

6, j〈r6〉 A4
6, j〈r6〉 μBBex, j (0)/kB V0MT M (0)

−71.4 −21.3 −49.3 5.9 3.0 296.1 51.6

the Hamiltonians in Eq. (3). We use the full-potential lin-
earized augmented plane wave plus local orbitals (APW+lo)
method implemented in the WIEN2K code [38]. The Kohn-
Sham equations are solved within the generalized-gradient
approximation (GGA). To simulate localized 4 f states, we
treat 4 f states as atomiclike core states, which is the so called
open-core method [39–44].

We calculate the ground-state properties of SmFe12 such
as the Coulomb potential, charge distribution, and sublattice
magnetizations. In accord with the previous theoretical stud-
ies for SmFe12 [30–32], we assume that the Sm ion has a
trivalentlike electronic structure. The exchange fields Bex, j (0)
at T = 0 are determined from an energy increase caused by
spin flip of 4 f electrons [18,45], and CFs acting on the ith
4 f electron are directly estimated from the Coulomb potential
Vj (ri ) acting on the jth R site. It is noted that the single-
ion Hamiltonian ĤR, j thus determined for the jth R ions
includes effects of TM atoms surrounding the R ions as a mean
field.

Practically, the CF term is rewritten as the following for-
mula [40,42]:

∫ rc

0
r2

i |R4 f (ri )|2Vj (ri )dri =
∑
l,m

Am
l, j〈rl〉
al,m

tm
l (θ̂i, ϕ̂i ), (4)

Am
l, j〈rl〉 = al,m

∫ rc

0
drir

2
i |R4 f (ri )|2

×
∫

d�iVj (ri )t
m
l (θi, ϕi ), (5)

where Am
l, j〈rl〉 is the CF parameter on the jth R site, al,m

is a numerical factor [46], tm
l (θ̂i, ϕ̂i ) is a tesseral harmonic

function of a solid angle � = (θ̂i, ϕ̂i ), and rc is a cutoff radius.
Values of CF parameters Am

l, j〈rl〉 in Eq. (5), exchange field
Bex, j (0) in Eq. (3), and TM-sublattice magnetization MTM(0)
in Eq. (1) in SmFe12 are shown in Table I. The lattice constants
used in these calculations are the experimental values a = b =
8.35 Å and c = 4.8 Å [10]. For Wyckoff positions, we apply
the theoretically optimized ones given in Ref. [30]. The crystal
structure of SmFe12 is shown in Fig. 1.

B. Single R ion Hamiltonian in the LS coupling regime

We apply the concept of LS coupling to the single-
electron Hamiltonian of Eq. (3) with Russell Saunders states
|L, S; J, M〉, due to the strong Coulomb interaction between
4 f electrons. According to Hund’s rule, we specify the quan-
tum number of the total orbital (spin) moment L(S). Total
angular momentum J is varied from |L − S| to L + S, and
M is the magnetic quantum number. Thus the single-ion

Hamiltonian in Eq. (2) can be reduced to

ĤR = Ĥso + Ĥex + ĤCF + ĤZ, (6)

Ĥso = λL̂ · Ŝ, (7)

Ĥex = 2μBŜ · Bex(T ), (8)

ĤCF =
∑

l,m,m′
Bm

l 	L
l C(l )

m (L̂), (9)

ĤZ = μB(L̂ + 2Ŝ) · B. (10)

Hereafter, the site index j is omitted for a single-ion quan-
tity. L̂ and Ŝ are total orbital and spin momenta of 4 f
electrons, respectively, B0

l = √
(2l + 1)/4πA0

l 〈rl〉/al,0 and
B±|m|

l = (∓1)m√
(2l + 1)/8π [A|m|

l 〈rl〉 ∓ iA−|m|
l 〈rl〉]/al,m for

m �= 0, and 	L
l = 〈L ‖ ∑

i C(l )
m (θ̂i, ϕ̂i ) ‖ L〉/〈L ‖ ∑

i C(l )
m (L̂) ‖

L〉. In the treatment of SOI, we should note that the eigenstates
of LS coupling are specified by the quantum number of J . In
general, the term Ĥso is dominating in Eq. (6). Thus J is a
good quantum number in most of the R-4 f systems. Because
the LS coupling in Sm compounds is weak compared with
other R ones, it is necessary to include excited J-multiplets.
Hereafter, we abbreviate the states |L, S; J, M〉 as |J, M〉.

The energy levels of Sm-4 f states in SmFe12 depend on
Bex(T ) and applied field B. Figure 2 shows the Bex(T )/Bex(0)
dependence of the energy levels for eTM = nc, which is a unit
vector parallel to the c-axis, and for B = 0. The data needed
are given in Table I. As for the SOI constant, we use an exper-
imental value of λ/kB = ξ/5kB = 411 K [47]. At Bex(T ) = 0
the S is strongly coupled with L to form a Kramers doublet
with a total angular momentum J due to the large LS coupling
with fine CF splitting. With increasing Bex(T )/Bex(0), the

-1000

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0  0.2  0.4  0.6  0.8  1

E
ne

rg
y 

L
ev

el
 [

K
]

Bex(T)/Bex(0)

J=5/2

J=7/2

J=9/2

J=11/2

FIG. 2. Energy levels as a function of Bex(T )/Bex(0) of the Sm-
4 f states in SmFe12 at eTM = nc and for B = 0. High-energy levels
originating from J = 13/2 and 15/2 multiplets are above 6000 K,
which are not shown.
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exchange field breaks the time-reversal symmetry and lift the
degeneracy.

C. Phenomenological model for the TM sublattice

For finite-temperature magnetic properties of TM, we ap-
ply a phenomenological formula assuming uniform MTM(T )
and KTM

1 (T ). For MTM(T ), we apply the Kuz’min for-
mula [48]:

MTM(T )

MTM(0)
= Bex(T )

Bex(0)
= α(T ), (11)

α(T ) =
[

1 − s

(
T

TC

)3/2

− (1 − s)

(
T

TC

)5/2]1/3

, (12)

where TC is the Curie temperature and s is a fitting parameter.
The temperature dependence of KTM

1 (T ) has been expressed
by an extended power law [23]:

KTM
1 (T )

KTM
1 (0)

= α3(T ) + 8

7
C1[α3(T ) − α10(T )]

+ 8

7
C2

[
α(T )3 − 18

11
α(T )10 + 7

11
α(T )21

]
,

(13)

where C1 and C2 are fitting parameters.
In the present study for SmFe12, we use values of s = 0.01

and TC = 555 K in Eq. (12), as used by Hirayama et al. [10].
They showed that the magnetization agrees well with exper-
imental measurement for SmFe12. The values of C1, C2, and
V0KTM

1 (0) in Eq. (13) are determined as −0.263, −0.237, and
47.7 K, respectively, by fitting the expression to observed data
for YFe11Ti in Ref. [49].

III. METHOD OF MODEL CALCULATIONS

A. Statistical method

To calculate the finite-temperature magnetic properties,
we use the model Hamiltonian and calculate MA and the
magnetic moment for Sm 4 f electrons using the statistical
method for the partial system. Using the eigenvalues of the
Hamiltonian Eq. (6), we express the free-energy density as

G(eTM, T, B) = 1

V0

nR∑
j=1

g j (eTM, T, B)

+ KTM
1 (T ) sin2 θTM − B · MTM(T ), (14)

g j (eTM, T, B) = −kBT ln Zj (eTM, T, B), (15)

Zj (eTM, T, B) =
∑

n

exp

[
−En, j (eTM, T, B)

kBT

]
, (16)

where g j (eTM, T, B) is the Gibbs free energy for R-4 f partial
system, and En, j (eTM, T, B) and Zj (eTM, T, B) are the eigen-
value and the partition function of the jth R Hamiltonian ĤR, j

[Eq. (6)] for given eTM, respectively. The direction of the TM
magnetization eTM is treated as an external parameter. The
equilibrium condition of the system for given T and B is

G
(
eTM

0 , T, B
) = min

eTM
G(eTM, T, B), (17)

where eTM
0 is the direction of TM sublattice magnetization

in the equilibrium. In practice, we determine the minimal
G(eTM, T, B) numerically by changing eTM.

The MA energy is given by the free energy G(eTM, T, 0)
with different directional vector eTM. In the tetragonal sym-
metry, g j (eTM, T, 0) in G(eTM, T, 0) is formally expressed
as [23,24]

g j (eTM, T, 0) =
∞∑

p=1

[
kp, j (T ) +


p/2�∑
q=1

kq
p, j (T ) cos(4qϕTM)

]

× sin2p θTM + C(T ), (18)

where θTM and ϕTM are polar and azimuthal angles of eTM,
respectively, 
p/2� indicates the greatest integer of p/2, and
kp, j (T ) and kq

p, j (T ) are out-of-plane and in-plane MA con-
stants for the jth R ion. The C(T ) is an angle-independent
constant. The series expansion does not guarantee conver-
gence [25,26]; however, for finite p, kq

p, j (T ) can be obtained
from a comparison between Taylor series of gj (eTM, T, 0) of
Eqs. (15) and (18) with respect to θTM for a fixed ϕTM [21,22]
as

g j (eTM, T, 0) = g(0)
j (T ) + g(1)

j (T )θTM

+ 1

2!
g(2)

j (T )(θT M )2 + · · · ,

g(n)
j (T ) = ∂ng j (θTM, ϕTM, T, 0)

∂ (θTM)n

∣∣∣∣ θTM = 0
ϕTM = π/8

,

and

g j (eTM, T, 0)

= k1, j (T )(θTM)2 + [ − 2
3! k1, j (T ) + k2, j (T )

]
(θTM)4 + · · · ,

respectively, which are resulting in

k1, j (T ) = 1
2 g(2)

j (T ), (19)

k2, j (T ) = 1
3 k1, j (T ) + 1

4! g
(4)
j (T ), (20)

etc. Using MA energy on the single R ion in Eq. (18), the total
MA constants are obtained as

K1(T ) = 1

V0

nR∑
j=1

k1, j (T ) + KTM
1 (T ) (p = 1), (21)

K (q)
p (T ) = 1

V0

nR∑
j=1

k(q)
p, j (T ) (p � 2), (22)

where Kp(T ) and Kq
p (T ) are out-of-plane and in-plane MA

constants in the whole system.
The orbital and spin components of the magnetic moment

of a single-R ion in equilibrium can be calculated by

mL, j (T, B) = −μB

∑
n

ρn, j (T, B)〈n, j|L̂|n, j〉, (23)

mS, j (T, B) = −2μB

∑
n

ρn, j (T, B)〈n, j|Ŝ|n, j〉, (24)

respectively, where ρn, j (T, B) = exp [−βEn, j (eTM
0 , B)]/Zj

(eTM
0 , T, B), |n, j〉 is the nth eigenstate for En, j (eTM

0 , B), and
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TABLE II. Probability weight for each J-multiplet calculated by
WJ (T ) in Eq. (26). For J = 13/2 and 15/2, WJ (T ) = 0.0.

J 5/2 7/2 9/2 11/2

T = 0 0.93217 0.06548 0.00229 0.00005
T = TC 0.90536 0.09049 0.00406 0.00009

the total magnetization Ms(T, B) is given as

Ms(T, B) = 1

V0

nR∑
j=1

m j (T, B) + MTM(T )eTM
0 , (25)

with m j (T, B) = mL, j (T, B) + mS, j (T, B).
Finally, to confirm the convergence of the probability

weights for excited-J multiplet states at B = 0, we define the
following weight function:

WJ (T ) =
∑
n,M

ρn, j (T, 0)|〈n, j|J, M〉|2. (26)

In the case of SmFe12 crystal, the value of WJ (T ) is inde-
pendent of site index j. The results are shown in Table II,
which indicates good convergence of weight for the number
of excited J-multiplets even at T = TC = 555 K. Thus in the
calculation using the statistical method for SmFe12, we take
the excited J-multiplets up to J = 9/2. In the analytical cal-
culation, the J-mixing effects are approximately treated only
for the lowest-J multiplet by using unitary transformation.

B. Analytical method

According to the hierarchy of energy scale in R inter-
metallic compounds, Ĥso � Ĥex � ĤCF ∼ ĤZ, we develop
an analytical method for finite-temperature magnetic proper-
ties that enables us to connect the thermodynamic properties
directly to our model parameters based on electronic states.
Practically, we generalize the analytical expression of the
Gibbs free energy [20,24] to include the effects of J-mixing
using a first-order perturbation for the CF potential and Zee-
man energy. We also derive an analytical expression for the
magnetization curve, which enables us to estimate the CF
potential using the observed results. The procedure of the for-
malism consists of (i) construction of a starting Hamiltonian
for a single R ion, (ii) approximation for a diagonal matrix
element of an effective Hamiltonian, (iii) finite-temperature
perturbation for a single R ion, and (iv) thermodynamic anal-
ysis.

1. Effective lowest-J multiplet Hamiltonian for a single R ion

To restrict ĤR in low-energy subspace for Ĥso � Ĥex, the
effective lowest-J multiplet Hamiltonian ĤeffJ

R is obtained by
unitary transformation and projection, where the off-diagonal
matrix elements between inter-J multiplets become negligibly
small, and a compensating term Ĥmix is added in the diagonal
element for the lowest-J multiplet. We introduce here a mod-
ified version of the effective Hamiltonian as explained below.

First, we define a rotational operator D̂(eTM) that trans-
forms the quantization axis to eTM. With this operator, the

Hamiltonian ĤR and ĤA (A = ex, CF, and Z) is transformed
to

D̂†(eTM)ĤRD̂(eTM) ≡ Ĥ′
R = Ĥ′

so + Ĥ′
ex + Ĥ′

CF + Ĥ′
Z, (27)

Ĥ′
so = λ

2
[Ĵ

2 − L(L + 1) − S(S + 1)], (28)

Ĥ′
ex = −2Bex(T )C(1)

0 (Ŝ), (29)

Ĥ′
CF =

∑
l,m,m′

Bm
l 	L

l

[
D(l )

m,m′ (eTM)
]∗

C(l )
m′ (L̂),

(30)

Ĥ′
Z = μB

∑
m,m′

b(1)
−m

[
D(1)

m,m′ (eTM)
]∗

× [
C(1)

m′ (L̂) + 2C(1)
m′ (Ŝ)

]
, (31)

where Ĵ = L̂ + Ŝ, C(k)
q (Â) is the spherical tensor operator with

rank k for angular momentum Â [50], and b(1)
m is a mag-

netic field tensor: b(1)
0 = Bz and b(1)

±1 = −(±Bx + iBy)/
√

2.

D(l )
m,m′ (eTM) = D(l )

m,m′ (ϕTM, θTM, 0) is Wigner’s D function.
Now we apply a unitary transformation (Schrieffer-Wolf
transformation [52]) to Ĥ′

R,

ei�̂Ĥ′
Re−i�̂ = Ĥ′

R + i[�̂, Ĥ′
R] + O(�̂2), (32)

and we introduce a projection operator P̂J =∑J
M=−J |J, M〉〈J, M|, by which the space of the J-multiplet

is restricted to the lowest one. The operator �̂ is defined so as
to remove the first-order off-diagonal matrix elements for J
in Ĥ′

R:

i
∑

J ′
[�̂, P̂J ′Ĥ′

RP̂J ′] =
∑

J ′
P̂J ′Ĥ′

RP̂J ′ − Ĥ′
R. (33)

Apparently, 〈J, M|�̂|J, M ′〉 = 0. The second term on the
right-hand side of Eq. (32) has now a diagonal matrix with
corrections to the diagonal elements in the original Ĥ′

R. The
second- and higher-order terms in �̂ are neglected. By insert-
ing Eq. (33) into Eq. (32), we obtain

ĤeffJ
R = P̂Jei�̂Ĥ′

Re−i�̂P̂J ≡ ĤJ
R + Ĥmix, (34)

ĤJ
R = P̂JĤ′

RP̂J = EJ + ĤJ
ex + ĤJ

CF + ĤJ
Z, (35)

Ĥmix = i

2
P̂J [�̂, Ĥ′

R]P̂J , (36)

where EJ = λ[J (J + 1) − L(L + 1) − S(S + 1)]/2 and ĤJ
A =

P̂JĤ′
AP̂J (A = ex, CF, and Z). We classify here analytical

models depending on the approximation to the matrix element
of �̂ for J �= J ′ in Eq. (33) as follows:

(i) Model A: Lowest-J multiplet without mixing as

〈J, M|�̂A|J ′, M ′〉 = 0.

(ii) Model B: Effective lowest-J multiplet with mixing as

〈J, M|�̂B|J ′, M ′〉 = i
〈J, M|Ĥ1|J ′, M ′〉

EJ ′ − EJ
.
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(iii) Model C: Modified effective lowest-J multiplet with
mixing (present study) as

〈J, M|�̂C|J ′, M ′〉

= i
〈J, M|Ĥ1|J ′, M ′〉

EJ ′ − EJ
− i

(EJ ′ − EJ )2

×
∑
M ′′

[〈J, M|Ĥ1|J ′, M ′′〉〈J ′, M ′′|Ĥ1|J ′, M ′〉

− 〈J, M|Ĥ1|J, M ′′〉〈J, M ′′|Ĥ1|J ′, M ′〉],

where Ĥ1 ≡ Ĥ′
R − Ĥ′

so. The approximations are referred to
as models A, B, and C hereafter. By using �̂B, Magnani et al.
derived the effective lowest-J multiplet Hamiltonian [29], and
Kuz’min had also derived an equivalent approximation for
anisotropy constants [28]. In the latter work, it was pointed out
that the approximations of models A and B are not applicable
to the Sm compounds due to relatively small λ. In the present
study, we have modified �̂B to �̂C.

2. Approximation for the diagonal matrix element of ĤeffJ
R

The energy levels for the 4 f electron system are obtained
by the exact diagonalization of ĤR in Eq. (6), and the diagonal
matrix elements of ĤeffJ

R can be expressed as

〈J, M|ĤeffJ
R |J, M〉 = 〈J, M|Ĥ′

R|J, M〉 + 〈J, M|Ĥmix|J, M〉,
(37)

through two unitary transformations by D̂(eTM) and e−�̂. The
first term in Eq. (37) can be obtained by using the relation
D(l )

m,0(ϕTM, θTM, 0) = Y m
l (θTM, ϕTM) and the Wigner-Eckert

theorem [50],

〈J, M|Ĥ′
R|J, M〉

= EJ − 2(gJ − 1)μBBex(T )〈J, M|C(1)
0 (Ĵ)|J, M〉

+
∑
l,m

Am
l 〈rl〉	J

l

tm
l (eTM)

al,m
〈J, M|C(l )

0 (Ĵ)|J, M〉

+ μBgJ (eTM · B)〈J, M|C(1)
0 (Ĵ)|J, M〉, (38)

where 	J
l is the Stevens factor [46,53]. By using the model C

with �̂C, the second term in Eq. (37) is approximated as

〈J, M|Ĥmix|J, M〉

∼ − 1

�so
〈J, M|Ĥ′

ex|J + 1, M〉

× 〈J + 1, M|Ĥ′
ex + 2Ĥ′

CF + 2Ĥ′
Z|J, M〉

×
[

1 − 〈J + 1, M|Ĥ ′
ex|J + 1, M〉 − 〈J, M|Ĥ ′

ex|J, M〉
�so

]
,

(39)

where �so = λ(J + 1). Contributions from Ĥ′
CF and Ĥ′

Z are
neglected in the second term of the square bracket. By using
the Wigner-Eckert theorem [50] and the relation for products
of the matrix elements of the spherical tensor operators given
by Eq. (5) in Chap. 12 of Ref. [51], the diagonal matrix

element is expressed as follows:

〈J, M|Ĥmix|J, M〉

= −�ex(T )
L + 1

3S
〈J, M|T1(Ĵ)|J, M〉

−
∑
l,m

Am
l 〈rl〉�J

l

tm
l (eTM)

al,m

l (l + 1)

2l + 1
〈J, M|Tl (Ĵ)|J, M〉

+ (eTM · B)
2(L + 1)

3(J + 1)
〈J, M|T1(Ĵ)|J, M〉, (40)

where �ex(T ) = −2(gJ − 1)μBBex(T ). We use the relation
J = L − S assuming R as a light rare-earth element and �J

6 =
−22/(33 × 7 × 11) and −22 × 17/(35 × 7 × 112) for Ce3+

and Sm3+, respectively, and �J
l = 	J

l in the other cases.
More explicit expression of T1(Ĵ) depends on further ap-

proximations. So far, two approximations have been adopted;
one completely neglect the term 〈J, M|Ĥmix|J, M〉, that is,
Ĥmix = 0 [24], and the other is an approximation to neglect
the second term in the square brackets in Eq. (39), which was
adopted by Kuz’min [28] and Magnani et al. [29]. According
to the model approximations of �̂X with X = A, B, and C, the
quantities Tl (Ĵ) are denoted as T X

l (Ĵ) with X = A, B, and C.
Clearly T̂ A

l = 0, and for X = B and C,

T B(C)
l (Ĵ) = �ex(T )

�so

[
2J + l + 1

2
VB(C)

l−1 (Ĵ)

− 2

2J + l + 2
VB(C)

l+1 (Ĵ)

]
, (41)

with

VB
l (Ĵ) = C(l )

0 (Ĵ),

VC
l (Ĵ) = C(l )

0 (Ĵ) + �ex(T )

�so

L + S + 1

S(J + 2)

×
[

l (2J − l + 1)(2J + l + 1)

4(2l + 1)
C(l−1)

0 (Ĵ)

+ l + 1

2l + 1
C(l+1)

0 (Ĵ)

]
, (42)

where we formally set C(−1)
0 (Ĵ) = 0.

The energy levels En for the 4 f electron system, which
consist of the lowest energy E1 to the 2Jth excited energy
E2J+1, are now expressed as

EX
M = 〈J, M|Ĥ′

R|J, M〉 + 〈
J, M|ĤX

mix|J, M
〉

(43)

(X = A, B, and C), with M = −J to J for models A, B,
and C.

Figure 3 shows the diagonal matrix element EX
M (X = A, B,

and C) of the effective lowest-J multiplet Hamiltonian ĤeffJ
R

at T = 0 in Eq. (43). Note that CF coefficients and exchange
fields are determined by first-principles calculations, and the
same values are used for models A, B, and C. The results
are compared with the exact results. To distinguish the con-
tribution from each Ĥso, Ĥex, and ĤCF in ĤR of Eq. (6),
the original Hamiltonian ĤR is taken as Ĥso, Ĥso + Ĥex, or
Ĥso + Ĥex + ĤCF.
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FIG. 3. Calculated energy levels of the Sm-4 f states in SmFe12

at B = 0. Analytical results EX
M with X = A, B, and C for corre-

sponding model approximations in Eq. (43) are given by thick green
(A), blue (B), and red lines (C), respectively. To clarify the contri-
butions from Ĥso, Ĥex, and ĤCF, we take original Hamiltonian ĤR

as ĤR = Ĥso, Ĥso + Ĥex, and Ĥso + Ĥex + ĤCF. The numerically
exact results are also shown by thin black lines.

Let us first describe the characteristics for the result ĤR =
Ĥso + Ĥex. In model A, the sixfold degeneracy of energy
levels given by Ĥso splits into equienergy levels as EA

M = EJ +
�ex(0)M. In model B, the equienergy levels shift to lower
energy states by the J-mixing term, EB

M = EJ + �ex(0)M −
|〈J, M|Ĥex|J + 1, M〉|2/�so. In model C, the energy shifts,
which were overestimates by the J-mixing term, are corrected.

The results obtained by ĤR = Ĥso + Ĥex + ĤCF show that
the effect of CF potentials on the energy levels is weak,
as expected, and they reproduce the results obtained by the
numerical exact-diagonalization method as shown in Fig. 3.

3. Finite-temperature perturbation for a single R ion

We apply the first-order perturbation at finite temperature
assuming ĤJ

ex � ĤJ
CF + ĤJ

Z + ĤX
mix. The unperturbed and

perturbed Hamiltonians are ĤJ
ex = �ex(T )C(1)

0 (Ĵ) ≡ Ĥ(0)

and ĤJ
CF + ĤJ

Z + Ĥmix ≡ Ĥ′, respectively. Note that Ĥso is
effectively taken into account in the J-multiplet formation
of the R ion. The approximated Gibbs free energy for
the R-4 f partial system on the jth R site up to first-order
perturbation is formally expressed as gj (eTM, T, B) =
−kB ln Z0(T ) + ∑

M ρ
(0)
M (T )〈J, M|Ĥ′|J, M〉, where

E (0)
M (T ) = �ex(T )M, Z0(T ) = ∑

M exp[−βE (0)
M (T )], and

ρ
(0)
M (T ) = exp[−βE (0)

M (T )]/Z0(T ). More explicitly, it is
given as

g(eTM, T, B) =kBT
∑

M

ρ
(0)
M (T ) ln ρ

(0)
M (T ) +

∑
M

ρ
(0)
M (T )EM

(44)

by using EM in Eq. (43). It is noted that g(eTM, T, B) is
model-dependent because EM is equal to EA

M , EB
M , or EC

M ,
corresponding to the model adopted.

By using Helmholtz free energy f (eTM, T ) for the R-4 f
partial system, the Gibbs free energy in the modified effective
lowest-J model is given as

g(eTM, T, B) = f (eTM, T ) − m(T )eTM · B, (45)

m(T ) = μB

[
gJJB1

J (x) − 2(L + 1)

3(J + 1)
T 1

J (x)

]
, (46)

with

f (eTM, T ) = kBT
∑

M

ρ
(0)
M (T ) ln ρ

(0)
M (T )

+ fex(T ) + fCF(eTM, T ), (47)

fex(T ) = −�ex(T )

[
JB1

J (x) + L + 1

3S
T 1

J (x)

]
, (48)

fCF(eTM, T ) =
∑
l,m

Am
l 〈rl〉�J

l

tm
l (eTM)

al,m

×
[

Jl Bl
J (x) + l (l + 1)

2l + 1
T l

J (x)

]
. (49)

Here x ≡ J�ex(T )/kBT , and the model dependence appears
in T l

J (x), which is denoted as T l,X
J (x) with X = A, B, or C.

For X = A, T l,A
J (x) = 0 and for X = B and C,

T l,B(C)
J (x) = �ex(T )

�so

[
2J + l + 1

2
V l−1,B(C)

J (x)

− 2

2J + l + 2
V l+1,B(C)

J (x)

]
, (50)

with

V l,B
J (x) =Jl Bl

J (x), (51)

V l,C
J (x) = JlBl

J (x) − �ex(T )

�so

L + S + 1

S(J + 2)

×
[

l (2J − l + 1)(2J + l + 1)

4(2l + 1)
Jl−1Bl−1

J (x)

+ l + 1

2l + 1
Jl+1Bl+1

J (x)

]
, (52)

where Bl
J (x) is the generalized Brillouin function [24] defined

by (−1)l Jl Bl
J (x) = 〈C(l )

0 (Ĵ)〉0 with x = J�ex(T )/kBT for l �
0, where 〈Â〉0 = ∑

M ρ
(0)
M (T )〈J, M|Â|J, M〉. The analytical

expression of Bl
J (x) is given in Ref. [29], and T l,A

J (x) = 0,
T l,B

J (x), and T l,C
J (x) are linear combinations of Bl−1

J (x) and
Bl+1

J (x), and Bl−2
J (x), Bl

J (x), and Bl+2
J (x), respectively, as

shown in Eq. (50).
Because of the first-order perturbation for Ĥ′

Z, an analyt-
ical expression of the magnetic moment m(T ) is obtained as
m(T ) = mL(T ) + mS (T ) with

mL(T ) = μB

[
L + 1

J + 1
JB1

J (x) + 2(L + 1)

3(J + 1)
T 1

J (x)

]
, (53)

mS (T ) = −2μB

[
S

J + 1
JB1

J (x) + 2(L + 1)

3(J + 1)
T 1

J (x)

]
, (54)

where mL(T ) and mS (T ) are orbital and spin components of
the magnetic moment on the R ion. It is noted that mL(T ) and
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mS (T ) are model-dependent because of the model dependence
of T l

J (x) as shown above.
Within the finite-temperature perturbation theory, the angu-

lar eTM-dependent part of single R ion free energy f (eTM, T )
in Eq. (47) with the tetragonal symmetry can be written as

f (eTM, T ) = k1(T ) sin2 θ + [
k2(T ) + k1

2 (T ) cos 4ϕTM
]

× sin4 θTM + [
k3(T ) + k1

3 (T ) cos 4ϕTM
]

× sin6 θTM + C(T ), (55)

which is a truncated form of g(eTM, T, 0) in Eq. (18). The
C(T ) is an angle-independent constant. For example, the
leading anisotropy constants for a trivalent magnetic light R
ion (Ce3+, Pr3+, Nd3+, Pm3+, and Sm3+) can be written as
follows:

k1(T ) = −3
[
J2B2

J (x) + 6
5 T 2

J (x)
]
A0

2〈r2〉�J
2

− 40
[
J4B4

J (x) + 20
9 T 4

J (x)
]
A0

4〈r4〉�J
4

− 168
[
J6B6

J (x) + 42
13 T 6

J (x)
]
A0

6〈r6〉�J
6, (56)

k2(T ) = 35
[
J4B4

J (x) + 20
9 T 4

J (x)
]
A0

4〈r4〉�J
4

+ 378
[
J6B6

J (x) + 42
13 T 6

J (x)
]
A0

6〈r6〉�J
6. (57)

All terms of MA constants k(q)
p (T ) in models A, B, and C are

given by linear terms with respect to Am
l 〈rl〉.

We may rewrite the approximations used and adopted in
the present formalism by using T l,X

J (x) in Eq. (50) as follows:
(i) Model A: Lowest-J multiplet without mixing as

�ex(T )/�so = 0 or T l,A
J (x) = 0 [24].

(ii) Model B: Effective lowest-J multiplet with mixing as
[�ex(T )/�so]2 = 0 or T l,B

J (x) [28,29].
(iii) Model C: Modified effective lowest-J multiplet with

mixing as T l,C
J (x) (present study).

At T = 0, we have found that the following simple relation
holds between T l,C

J (∞) and T l,B
J (∞) as

RJ = T l,C
J (∞)

T l,B
J (∞)

= 1 − �ex(0)

�so

(L + S + 1)J

S(J + 2)
. (58)

Because RJ is independent of l , relations among the models
X = A, B, and C on mX

L,S (0) and k(q,)X
p (0) can be generally

expressed as follows:

mC
L,S (0) = mA

L,S (0) + RJ
[
mB

L,S (0) − mA
L,S (0)

]
, (59)

k(q,)C
p (0) = k(q,)A

p (0) + RJ
[
k(q,)B

p (0) − k(q,)A
p (0)

]
. (60)

At finite temperatures, T l,B(C)
J (x) for J = 5/2 scaled by

T l,B
J (∞) > 0 are shown in Fig. 4(a) for the SmFe12 com-

pound. Here, �ex(T )/�so is taken to be 0.206α(T ). For
comparison purposes, we also show the Bl

J (x)/Bl
J (∞) in

Fig. 4(b). Bl
J (x) decays faster than T l,B(C)

J (x) with increasing
temperature. Thus the J-mixing effects included in T l,B(C)

J (x)
remain even at high temperatures.

4. Thermodynamic analysis

Finally, we investigate the thermodynamic instability
by using the thermodynamic relation between Gibbs and
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(b)Ref. 24

FIG. 4. Temperature dependence of (a) T l,B(C)
J (x) scaled by

T l,B
J (∞) > 0 in Eq. (50) for model B (C) with broken (solid) curves,

and (b) generalized Brillouin function Bl
J (x)/Bl

J (∞) [24] with J =
5/2 and x = J�ex(T )/kB, where the temperature is scaled by Curie
temperature TC. The dashed-dotted line represent the value of RJ (see
the text).

Helmholtz free energy, which explicitly contains the CF po-
tentials and the exchange field determined by first-principles
calculations. We have to note that above room temperature the
exchange contribution Ĥex decreases with increasing temper-
ature at a rate proportional to α(T ), so the energy hierarchy is
changed and thermal fluctuation effects have to be considered
as kBT � ĤCF ∼ Ĥex. Even in this case, the formulation de-
rived here based on the generalized Brillouin function holds,
as shown by Kuz’min in Refs. [26,28]. In this thermodynamic
analysis, we use model C.

By applying the finite-temperature perturbation theory to
the lowest-J multiplet Hamiltonian, the approximated Gibbs
free-energy density for the whole system can be expressed as

G(eTM, T, B) = F (eTM, T ) − Ms(T ) · B, (61)

F (eTM, T ) = 1

V0

nR∑
j=1

f j (eTM, T ) + KTM
1 (T ) sin2 θTM,

(62)

Ms(T ) =
[

1

V0

nR∑
j=1

mj (T ) + MTM(T )

]
eTM, (63)

where F (eTM, T ) is the Helmholtz free-energy density for the
whole system with model C, and f j (eTM, T ) and mj (T )eTM

are the corresponding energy for the 4 f -shell, and the ex-
pectation value of the magnetic moment on the jth R ion
given in Eqs. (47) and (46), respectively. The temperature
dependence of G(eTM, T, B) can be expressed as the linear
combination of the generalized Brillouin functions for R ion
Bl

J (J�ex/kBT ) and the temperature coefficient for TM ion
α(T ) in Eq. (12). The equilibrium condition is the same as
Eq. (17), where eTM

0 becomes the direction of total magneti-
zation in the equilibrium. We can also analyze the instability
of magnetic metastable states, which are crucially important
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FIG. 5. (a) Atomic position of first- (8i), second- (8 j), and third- (8 f ) neighbor Fe atoms of the Sm ion in SmFe12, (b) illustration of the
valence mechanism [56] in SmFe12, and (c) typical tesseral harmonic functions as the basis of the CF Hamiltonian, where signs represent the
phase.

in permanent magnetic materials. The metastable condition is
δG(T, eTM, B) > 0 for given T and B with |eTM| = 1.

The MA constants in the whole system are obtained by
combining the contribution from the R sublattice in Eq. (55)
with the Fe sublattice as in Eqs. (21) and (22). K1(T ) can be
substituted into the so called Krönmuller equation [54,55] to
obtain the coercive field

Bc(T ) = αBN(T ) − Neff Ms(T ), (64)

BN(T ) = 2K1(T )

Ms(T )
, (65)

where Bc(T ) and BN(T ) are coercive and nucleation fields,
respectively. α (< 1) is a microstructural parameter and Neff

is a local effective demagnetization factor [55]. The BN(T )
gives the upper limit of Bc(T ).

IV. CALCULATED RESULTS FOR SmFe12

A. Valence mechanism of magnetic anisotropy

We first calculate the charge-density distribution and the
Coulomb potential at 0 K on constituent atoms of the SmFe12

lattice (Fig. 1) using the first-principles calculations. The
calculated results determine the values of CF acting on 4 f
electrons, the magnitude of the exchange field Bex(0) acting
on the J , and the magnitude of TM sublattice magnetization.
These values are used for parameter values in the model
Hamiltonian. The contribution to the CF from the charge-
density distribution inside (outside) the muffin-tine sphere
radius is called the “valence (lattice) contribution” [41]. If
the CF is dominated by the former contribution, we call the
mechanism of the MA the “valence mechanism” [56].

The charge-density distributions of a single R ion are ap-
proximately replaced with charge density on atomic orbitals
of 6p and 5d states. To evaluate the valence contribution to CF
parameters A0

l 〈rl〉(val), we introduce distribution parameters
�n(2)

6p , �n(2)
5d [57,58], and �n(4)

5d defined as

�n(l )
n′l ′ = 4π

2l + 1
al,0

∑
m′

∫
d� t0

l (θ, ϕ)
∣∣tm′

l ′ (θ, ϕ)
∣∣2

nn′l ′,m′ ,

(66)
where � is the solid angle and m′ indicates the multiple or-
bitals for the quantum number (n′l ′). The shape of the function
t0
l (θ, ϕ) in Eq. (66) is given in Fig. 5(c).

The particular cases are as follows:

�n(2)
6p = 1

5

[
n6p,z − 1

2 (n6p,x + n6p,y)
]
, (67)

�n(2)
5d = 1

7

[
n5d,z2 + 1

2 (n5d,xz + n5d,yz )

−(n5d,x2−y2 + n5d,xy)
]
, (68)

�n(4)
5d = 1

28

[
n5d,z2 − 2

3 (n5d,xz + n5d,yz )

+ 1
6 (n5d,x2−y2 + n5d,xy)

]
, (69)

where nn′l ′,m′ is the occupation number of the (n′l ′, m′) orbital.
We note that �n(4)

6p = 0. Valence contributions of A0
2〈r2〉 and

A0
4〈r4〉 are determined as [39,41]

A0
2〈r2〉(val) = F (2)(4 f , 6p)�n(2)

6p + F (2)(4 f , 5d )�n(2)
5d ,

(70)

A0
4〈r4〉(val) = F (4)(4 f , 5d )�n(4)

5d , (71)

with the Slater-Condon parameters

F (l )(4 f , n′l ′)

= e2

4πε0

∫∫ rc

0

rl
<

rl+1
>

r2|R4 f (r)|2r′2|Rn′l ′ (r
′)|2dr′dr > 0,

(72)

where r< = min(r, r′) and r> = max(r, r′). Via Eqs. (70)
and (71), the distribution parameters �n(l )

n′l ′ determine
A0

l 〈rl〉(val). It may be noted that no 6p and 5d orbitals exist
for A0

6〈r6〉(val).
A simple explanation for the appearance of the uniaxial

MA in a Sm ion surrounded by Fe atoms is given as follows.
Figure 5(a) shows the lattice structure of SmFe12 [10,30]. The
left panel of Fig. 5(b) shows the location of Sm and Fe on the
(010) plane of the lattice. Because of the short atomic distance
between Sm and the first-nearest-neighbor (n.n.) Fe(8i) sites,
the distribution of valence electrons on Sm extends within the
a-b plane as shown in Fig. 5(c). According to the negative sign
of t0

2 (θ, ϕ) in Fig. 5(d), the distribution parameters defined by
Eq. (66) in terms of electron numbers of 6p and 5d orbitals
are negative; �n(2)

6p = −0.0012, �n(2)
5d = −0.0011. Therefore,

we obtain A0
2〈r2〉(val) < 0 by Eq. (70) in agreement with the

numerical value of A0
2〈r2〉 shown in Table I. As shown by

Eq. (56), the main contribution of the MA constant k1(T ) is
given by a product of A0

2 and the positive value of Stevens fac-
tor 	0

2, and k1(T ) becomes positive. This means that K1(T ) >

0 because KTM
1 (T ) > 0.
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TABLE III. Magnetic moments mL,S (0) (μB) in Eqs. (53)
and (54) and MA constants k1,2(0) (K) in Eqs. (56) and (57) for
models A, B, and C at 0 K for a single Sm ion. Results obtained
by Boltzmann statistics of mL,S (0, 0) defined by Eqs. (23) and (24)
and k1,2(0) defined by Eqs. (19) and (20) are also shown in the fifth
column.

Model A B C Statistics

mL 4.29 5.04 4.62 4.70
mS −3.57 −5.08 −4.24 −4.39
k1 60.2 144.5 97.7 101.1
k2 −14.0 −74.6 −40.9 −23.5

On the other hand, second-neighbor Fe(8 j) and third-
neighbor Fe(8 f ) atoms of the Sm atom are situated obliquely
upward as shown in Fig. 5(b). According to the negative sign
of t0

4 (θ, ϕ) shown in Fig. 5(d), we obtained �n(4)
5d = −0.0013

using Eq. (69), and A0
4〈r4〉(val) < 0 from Eq. (71). Again,

the negative value is consistent with the numerical values of
A0

4〈r4〉. The main contribution of MA constant k2(T ) comes
from a product of A0

4〈r4〉 and the positive value of 	0
4, and

results in K2(T ) < 0.
Thus, the sign of MA constants K1(T ) and K2(T ) are

determined by the configuration of Sm and Fe atoms in the
lattice. In the following, we investigate the J-mixing effect on
single Sm magnetic properties at T = 0 K.

B. J-mixing effect and zero-temperature magnetic
properties of SmFe12

To clarify the J-mixing effect on single-ion magnetic
properties, we show the calculated results of the magnetic
moments mL,S (0) and the MA constants k1,2(0) for models A,
B, and C in Table III. We used Eqs. (53) and (54) for mL,S (0)
and Eqs. (56) and (57) for k1,2(0), and the values of Am

l 〈rl〉,
Bex(0), and MTM(0) in Table I. As a reference, we also show
the results obtained by the statistical method: mL,S (0, 0) in
Eqs. (23) and (24) and k1,2(0) defined in Eqs. (19) and (20).
Both the analytical and statistical results give k1(0) > 0 and
k2(0) < 0 for three models A, B, and C. The calculated results
in model C (present model) agree best with the statistical ones.

We find that the absolute values of mL,S (0) and k1,2(0)
in models B and C are larger than those in model A, which
is attributed to inclusion of the J-mixing effects. The model
B proposed in previous studies [28,29] overestimated the J-
mixing effects by 1/RJ compared with model C, where RJ =
0.44 in Eq. (58) for SmFe12. Actually, values of mC

L,S and kC
1,2

in Table III satisfy the relation in Eq. (59) and (60). The results
in the present study (X = C) agree quantitatively well with
the statistical ones except for kC

2 (0). The discrepancy in kC
2 (0)

may be due to omitting the second-order terms of A0
2〈r2〉 in

Eq. (57), which have a positive contribution independent of
the sign of A0

2〈r2〉 [25].

C. Finite-temperature magnetic properties of SmFe12

We calculated the results of finite-temperature magnetic
properties for a single Sm ion in equilibrium at eTM

0 = nc:
the magnetic moment mL,S (T ) in Eqs. (53) and (54) and the

FIG. 6. Temperature dependence of (a) magnetic moments of
Sm ion mL,S (T ) and m(T ) at B = 0 and (b) MA constants per
single Sm ion k1,2(T ) calculated by using models A, B, and
C. Results obtained by Boltzmann statistics are shown by bro-
ken curves. (c) Temperature-dependent MA constants K1,2(T ) in
SmFe12 by using the statistical method for Sm sublattice contribu-
tion k1,2(T ), which are compared with experimental ones using the
Sucksmith-Thompson (circles) [10] and the anomalous Hall effect
(triangles) [12]. For both calculated and experimental results in (c),
K1(T ) and K2(T ) are shown by solid and broken curves, respectively.

MA constants k1,2(T ) in Eqs. (56) and (57) are shown in
Figs. 6(a) and 6(b), respectively. The results show that the
J-mixing effect in model B increases the absolute values of
both mL,S (T ) and k1,2(T ). The overestimation in model B is
modified by the present model C in the whole temperature
range. The obtained results of model C reproduce well the
statistical results for mL,S (T, 0) in Eqs. (23) and (24) and for
k1,2(T ) in Eqs. (19) and (20) as shown by broken lines in
Figs. 6(a) and 6(b).

The physical meaning of the increment of the absolute
value of mL,S (T ) and k1,2(T ) by J-mixing may be given as
follows. The expression of the free energy given by Eq. (48)
includes the J-mixing effect in the second term of the square
brackets. The term decreases fex(x) by −μBBex(T )δS(T ),
where δS(T ) = 2(L+1)

3(J+1) T 1
J (T ) > 0. Because of the decrease in

fex(x), the absolute value of the spin 〈C(1)
0 (Ŝ)〉0 and orbital

moments 〈C(1)
0 (L̂)〉0 along eTM

0 are increased by δS(T ). The
tensor operators 〈C(l )

0 (L̂)〉0 for even l are also increased by
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FIG. 7. Dependence of Helmholtz free-energy density on eTM ·
na with eTM · nb = 0 in SmFe12 at (a) T = 0 and (b) 400 K. Analyti-
cal results F (eTM, T ) in Eq. (62) and results of G(eTM, T, 0) obtained
by Boltzmann statistics in Eq. (14) are shown by solid and broken
curves, respectively, in which the contribution from Fe sublattice is
included. The dashed-dotted curves represent the Fe sublattice MA
energy: KTM

1 (T )(eTM · na)2.

l (l+1)
2l+1 T l

J (x), which contribute to an increase in the absolute

value of the MA constants k(q)
p (T ).

The magnetic moment of Sm ion m(T ) is reversed at
around Tcomp = 350 K in model C and calculation by Boltz-
mann statistics. The temperature is called compensation
temperature. This phenomenon is observed also in other Sm
compounds [59,60]. Zhao et al. pointed out that this phe-
nomenon also appears at T = 337 K in Sm2Fe17Nx using
the statistical method including similar parameter values to
ours, such as μBBex(0)/kB = 300 K and λ/kB = 411 K [61].
Their results are comparable with ours; however, the mech-
anism has not been surveyed. In the present model C, the
magnetic moment of the Sm ion can be written as m(T ) =
gJμBJB1

J (x) − μBδS(T ). Because μBδS(T ) is proportional to
T 1,C

J (x) and monotonically increasing with temperature below
T/TC = 0.8 as shown in Fig. 4(a), the term compensates for
the gJμBJB1

J (x) at Tcomp.
Figure 6(c) shows the results of K1(T ) and K2(T ) obtained

by the statistical method in SmFe12, which are compared with
experimental ones denoted by exp 1 and exp 2 measured by
the Sucksmith-Thompson method [10] and the anomalous
Hall effect [12], respectively. In the whole temperature re-
gion, the results of K1(T ) agree well with the experiments.
Our statistical results qualitatively reproduce the experimental
results below 200 K. The negative K2(T ) at low temperatures
is the origin of the first-order magnetization process (FOMP)
as discussed below.

D. Thermodynamic properties of SmFe12

Figure 7 shows calculated results of the Helmholtz free-
energy density F (eTM, T ) given in Eq. (62) for model C as a
function of eTM · na with eTM · nb = 0 at T = 0 and 400 K,
where na(b) is a unit vector parallel to the a(b)-axis. The

 0

 0.5
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 0  2  4  6  8  10  12  14

μ 0
 M

s(T
) ⋅

 n
a [

Τ]

B [T] (|| a-axis)
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broken curves: statistics
solid curves: model C

FIG. 8. Magnetization curves of SmFe12 at T = 0 and 400 K
with applied field B parallel to the a-axis in the equilibrium cal-
culated by analytical (solid curves) and statistical (broken curves)
methods in Eqs. (63) and (25), respectively, where μ0 is the magnetic
constant. Dashed-dotted lines show tangent lines of magnetization
curves at B = 0: y = [μ0Ms(T )2/2K1]B. Values of B at the circles
correspond to the nucleation field BN(T ) obtained by using the free-
energy density of model C (see text).

results are compared with statistical ones of G(eTM, T, 0) in
Eq. (14). When the direction of eTM is changed, the free-
energy density on both Sm and Fe sublattices is increased.
For the Sm sublattice, the energy increase originates from
the CF, which can be expressed by the

∑
j fCF, j (eTM, T ) in

Eq. (55), and for the Fe sublattice, the energy increase can
be written as KTM

1 (T ) sin2 θTM with KTM
1 (T ) = 1.966 and

0.387 MJ/m3 at 0 and 400 K, respectively, which are much
smaller than those of the Sm sublattice

∑
j k1, j (T )/V0 =

8.059 and 2.310 MJ/m3. The analytical results agree well
with the statistical ones.

Figure 8 shows the calculated results of magnetization
curves in the equilibrium states of SmFe12 at T = 0 and
400 K, where the magnetic field B is applied along the a-axis.
Analytical results of the magnetization along the a-axis are
compared with statistical ones. We have confirmed that the re-
sults in model C well reproduce the statistical ones. At T = 0,
we find the characteristic behavior of an abrupt change in the
magnetization Ms(T ) · na at B = BFP. The change is called
the first-order magnetization process, and the BFP is called the
FOMP field. At T = 400 K, no FOMP appears in both ana-
lytical and statistical results and the magnetization saturates at
the MA field BA. In SmFe12, the magnetization curves at low
temperatures were not reported; however, in SmFe11Ti, the
FOMP was observed at T = 5 K and BFP = 10 T [6], which
is qualitatively consistent with our results.

Let us consider the magnetization process along the c-axis
and estimate nucleation field BN in model C. The magneti-
zation is first saturated as Ms(T )nc along the c-axis by an
infinitesimal field. Then the direction of the magnetic field
is reversed and the magnitude is increased as −Bnc. The
original state continues to exist as a quasistable state as far
as the condition for a first-order variation δG(nc, T,−Bnc) >

0 is satisfied. The magnetization tends to decline when
δG(nc, T,−Bnc) = 0. The applied magnetic field at which
the latter condition is satisfied is the nucleation field, which
has been given as BN = 2K1(T )/Ms(T ) [54].

184410-11



YOSHIOKA, TSUCHIURA, AND NOVÁK PHYSICAL REVIEW B 102, 184410 (2020)

 0

 2

 4

 6

 8

 10

 12

 14

 0  100  200  300  400  500  600

B
N

(T
),

 B
F

P(
T)

, B
A
(T

) 
[T

]

T [K]

BN(T)

BFP(T)

BA(T)TFP=281 K

FIG. 9. Temperature dependence of the nucleation field BN(T ),
the MA field BA(T ), and the FOMP field BFP(T ) obtained by using
the approximated free-energy density of model C neglecting K3(T ),
K1

2 (T ), and K1
3 (T ), the details of which are shown in Appendix.

BFP(T ) is the point of discontinuity in the FOMP realized below
FOMP temperature TFP (see the text).

Because BN corresponds to the field at which the magne-
tization begins to decline with infinitesimal angle θ against
the c-axis, the magnitude BN in a realistic system can be
estimated once the magnetization curve is obtained along
a hard axis. Figure 8 shows the magnetization curve along
the a-axis calculated in model C. BN is given by a crossing
point of the magnetization curve in the saturated state and
the tangential line of the magnetization curve at zero field
y = [μ0Ms(T )2/2K1(T )]. When the value of y = μ0Ms, the
magnetic field coincides with BN defined in Eq. (65).

The magnetization curves along the hard and easy axis in
the case of K1(T ) > 0 and K2(T ) < 0 can be characterized by
the nucleation field BN(T ), the FOMP field BFP(T ), and the
MA field BA(T ). These values are analytically expressed by
using the ratio γ (T ) = K1(T )/K2(T ) as

BN(T ) = 2K1(T )

Ms(T )
, (73)

BFP(T ) = BN[xFP(T ) + 2γ (T )xFP(T )3]

[0 < xFP(T ) < 1], (74)

BA(T ) = BN[1 + 2γ (T )] [xFP(T ) > 1], (75)

with

xFP(T ) = 1

3

(
−1 +

√
− 3

γ (T )
− 2

)
, (76)

where we use the approximate free-energy density:
F (eTM, T ) = K1(T ) sin2 θTM + K2(T ) sin4 θTM, in which
the small contributions K3(T ), K1

2,3(T ) are neglected.
Details are shown in Appendix. Calculated results of
BN(T ), BFP(T ), and BA(T ) are shown in Fig. 9. The
condition of the FOMP appearance in model C is given
by −K2(T ) < K1(T ) < −6K2(T ) between 0 < xFP(T ) < 1
in Eq. (74). As for SmFe12, the FOMP is realized below
T = 281 K ≡ TFP, which is analytically obtained from the
condition K1(T ) = −6K2(T ). The curves of BFP(T ) and
BA(T ) are continuously connected at TFP, which is referred
to as the FOMP temperature. When K1(T ) < −K2(T ), the
magnetization direction is in-plane at B = 0.

V. SUMMARY

The temperature dependence of magnetic anisotropy (MA)
constants and magnetization of SmFe12 were investigated by
using two methods for the model Hamiltonian, which com-
bines quantum and phenomenological ones for rare-earth (R)
and Fe subsystems, respectively. Parameter values of the R
Hamiltonian were determined by first-principles calculations.
The first method adopts a numerical procedure with Boltz-
mann statistics for the Sm 4 f electrons. The other one is
an analytical method that deals with the magnetic states of
R ions with strong mixing of states with different quantum
numbers of angular momentum J (J-mixing). We have modi-
fied the previous analytical methods for Sm ions, which have
relatively small spin-orbit interaction, and we clarified that
they overestimate the J-mixing effects for Sm transition-metal
compounds. It has been shown that the results of our analytical
method agree with those obtained by the statistical method.
Our analytical method revealed that the increasing spin angu-
lar momentum with J-mixing caused by strong exchange field
enhances the absolute value of orbital angular momentum
and MA constants via spin-orbit interaction, and that these
J-mixing effects remain even above room temperature. The
calculated results of MA constants show that K1(T ) > 0 and
K2(T ) < 0 in SmFe12, in agreement with experiment.

The peculiar temperature dependence known as the first-
order magnetization process (FOMP) in SmFe12 has been
attributed to negative K2. It was also verified that the re-
quirement for the appearance of FOMP is given as −K2 <

K1 < −6K2. The positive (negative) K1(2) appears due to an
increase in the crystal-field parameter A0

2〈r2〉 (A0
4〈r4〉) caused

by hybridization between 3d-electrons of Fe on the 8i (8 j)
site and 5d and 6p valence electrons on Sm. The mechanism
of K1 > 0 and K2 < 0 in SmFe12 has thus been clarified by
using the expressions of K1 and K2 obtained in the analytical
method. Briefly, the sign of K1 and K2 in SmFe12 is attributed
to the characteristic lattice structure around Sm ions, that is,
crystallographic 2b-sites on the c-axis adjacent to Sm are
vacant. We also present results on the magnetization process
and nucleation fields by calculating the Gibbs free energy.

The present method will be applied to derive a general
expression of the free energy to analyze MA of nonuniform
systems such as disordered compounds, surfaces, and inter-
faces. The results will be reported in a forthcoming paper.
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APPENDIX: MAGNETIZATION PROCESS IN THE
CONDITION OF K1(T ) > 0 AND K2(T ) < 0

To investigate the magnetization process in equilibrium
along the c-plane (e.g., the a-axis), we introduce the simplified
model with magnetic anisotropy constants K1(T ) > 0 and
K2(T ) < 0, which can be expressed by the Gibbs free energy
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as

G(x, T, B) = K1(T )x2 + K2(T )x4−BMs(T )x

(|x| � 1), (A1)

where x = Ms(T ) · na/Ms(T ) with total magnetization Ms

and unit vector parallel to the a-axis na. T and B = Bna

(B > 0) are the temperature and the applied magnetic field,
respectively. The equilibrium condition is

G(x0, T, B) = min
|x|�1

G(x, T, B),

where x = x0(T, B) gives the minimum of G(x, T, B). For
K1(T ) � −K2(T ), the magnetization is always tilted to the
a-axis direction due to x0(T, B) = 1. Otherwise, the magne-
tization curve is given by

Ms(T, B) · na = Ms(T )x0(T, B). (A2)

The first-order magnetization process (FOMP) appears when
x0(T, B) has two values at certain B, which is referred to as
FOMP field BFP.

To determine the x0(T, B) for K1(T ) > −K2(T ), we show
the first and second derivative of G(x, T, B) with respect to x
as

∂G(x, T, B)

∂x
= 2K1(T )x + 4K2(T )x3 − BMs(T ), (A3)

∂2G(x, T, B)

∂x2
= 2K1(T ) + 12K2(T )x2. (A4)

An inflection point of G(x, T, B) for x > 0 at fixed T and B is
given by xc(T ) = √−K1(T )/6K2(T ). Hereafter, we consider
the following two cases: xc(T ) � 1 and xc(T ) < 1.

(i) The case of xc(T ) � 1.

x0(T, B) is obtained from the condition ∂G(x, T, B)/∂x =
0 for 0 < x � 1, because ∂2G(x, T, B)/∂x2 > 0 is always sat-
isfied. The saturating point of magnetization x0(T, B) = 1 is
obtained from the condition ∂G(x, T, B)/∂x|x=1 = 0 as

B = 2K1(T )

Ms(T )
[1 + 2γ (T )] ≡ BA(T ), (A5)

where γ (T ) = K2(T )/K1(T ). The BA is the so-called
anisotropy field.

(ii) The case of xc(T ) < 1.
x0(T, B) is obtained from the condition

G(x0, T, B) = min [G(xe, T, B), G(1, T, B)], (A6)

where xe(T, B) is determined by the condition of local
minimum as ∂G(x, T, B)/∂x = 0 and xe(T, B) < xc(T ). In
the magnetization process, x0(T, B) is continuously in-
creased from zero with increasing B according to x0(T, B) =
xe(T, B) for G(xe, T, B) < G(1, T, B). At B = BFP such that
G(xe, T, B) = G(1, T, B) is satisfied, x0(T, B) shows the
abrupt jump and becomes a saturated value of xe(T, B) = 1.
The condition is rewritten as

(x0 − 1)
[
3K2(T )x2

0 + 2K2x0 + K1(T ) + K2(T )
] = 0. (A7)

By solving Eq. (A7) for 0 < x0 � 1, two minimum points of
G(x, T, B) with respect to x are obtained at x0(T, B) = 1 and

x0(T, B) = 1

3

(
−1 +

√
− 3

γ (T )
− 2

)
≡ xFP(T ). (A8)

By using xFP(T ), the field at which the FOMP occurs is
determined by

B = 2K1(T )

Ms(T )
[xFP(T ) + 2γ (T )xFP(T )3] ≡ BFP(T ). (A9)

As a result, for −1 < γ (T ) < −1/6, the FOMP occurs
between Ms(T ) · na = Ms(T )xFP(T ) and Ms(T ).
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