
PHYSICAL REVIEW B 102, 184404 (2020)

Current-induced orbital magnetization in systems without inversion symmetry
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In systems with time-reversal symmetry, the orbital magnetization is zero in equilibrium. Recently, it has
been proposed that the orbital magnetization can be induced by an electric current in a helical crystal structure
in the same manner as that in a classical solenoid. In this paper, we extend this theory and study the current-
induced orbital magnetization in a broader class of systems without inversion symmetry. First, we consider polar
metals which have no inversion symmetry. We find that the current-induced orbital magnetization appears in a
direction perpendicular to the electric current even without spin-orbit coupling. Using the perturbation method,
we physically clarify how the current-induced orbital magnetization appears in polar metals. As an example,
we calculate the current-induced orbital magnetization in SnP and find that it might be sufficiently large for
measurement. Next, we consider a two-dimensional system without inversion symmetry. We establish a method
to calculate the current-induced orbital magnetization in the in-plane direction by using real-space coordinates
in the thickness direction. By applying this theory to surfaces and interfaces of insulators, we find that an electric
current along surfaces and interfaces induces an orbital magnetization perpendicular to the electric current.
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I. INTRODUCTION

In recent years, spintronics in which both electron spin and
charge degrees of freedom are utilized has made remarkable
progress. This remarkable progress is supported by discover-
ies of various ways of conversions between a charge current
and a spin current. Famous typical examples of spin-charge
conversion phenomena are the spin Hall effect [1–4] and
the Edelstein effect [5–8]. In the spin Hall effect, an elec-
tric current generates a transverse spin current in a material
with spin-orbit interaction. Conversely, a spin current can
generate a transverse charge current by the inverse spin Hall
effect.

In addition to the spin Hall effect, the Edelstein effect is
also known as a spin-charge conversion phenomenon. In the
Edelstein effect, a charge current flowing through a material
with spin-orbit interaction shifts the Fermi surface, and it
produce a nonequilibrium spin polarization. These effects are
important for spintronics.

In ferromagnetic materials, in addition to the contribution
of electron spin, there is another contribution to the magneti-
zation of ferromagnetic materials, i.e., orbital magnetization.
In many ferromagnets, the spin magnetization is dominant and
the orbital magnetization is small. For example, in Fe, Ni, and
Co, the orbital magnetization is 5% to 10% of the total mag-
netization [9–11]. On the other hand, there are some examples
in which orbital magnetization (OM) plays an important role,
such as in weak ferromagnets where the spin and orbital
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magnetic moments are opposite to each other, as well as in
magnetic nanowires, and in materials showing magnetoelec-
tric coupling. Therefore, understanding the orbital magnetism
and mechanisms behind it can further enable us to develop
spintronic and orbitronic devices, utilizing the orbital degrees
of freedom.

Existence of the OM has been known for a long time, but
until recently, there has been no method to calculate OM as
a bulk quantity. Then in 2005, the modern theory of OM was
developed. According to this theory, OM is expressed as an
integral over the Brillouin zone (BZ) in terms of Bloch wave
functions. As such, it is determined by the band structure.
This formula can be derived from the semiclassical theory
[12–14], the Wannier function approach [15–17], and the per-
turbation theory [18]. Furthermore, it has been reported that
OM can be induced by an electric current through a chiral
crystal [19,20], but so far it applies only to a small class of
systems [21–25].

In this paper, we construct a theory for the current-induced
OM in systems without inversion symmetry. In particular, we
establish a method to calculate the current-induced OM in
the in-plane direction, and we find that an electric current
along surfaces and interfaces induces OM perpendicular to the
electric current. This approach can be widely applied to van
der Waals atomic layered materials, surface, and interfaces.
This paper is organized as follows. In Sec. II, we describe
our method for the calculation of the current-induced OM.
In Sec. III, we apply this to a polar metal and calculate the
current-induced OM using a tight-binding model. In Sec. IV,
we develop a new formula for the in-plane OM in the two-
dimensional systems. In Sec. V, we show that the OM can be
induced by an electric current on surfaces and interfaces of
insulators. In Sec. VI, we summarize.
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II. BACKGROUND: CURRENT-INDUCED
ORBITAL MAGNETIZATION

In this section, we derive a formula for the current-induced
OM. In a three-dimensional crystal, in the limit of zero
temperature T → 0, the OM is calculated from the formula
[15–17,19,20]

[Morb]i = ie

h̄
εi jk

∑
n

∫
BZ

d3k

(2π )3
fnk

∑
m( �=n)

2εF − εnk − εmk

(εnk − εmk)2

× 〈unk| ∂Ĥk

∂k j
|umk〉 〈umk| ∂Ĥk

∂kk
|unk〉, (1)

where the integral is performed over the BZ, n denotes the
band index, |unk〉 is the n-th eigenstate at the Bloch wave
vector k, εnk is the corresponding eigenenergy, fnk is the
distribution function for the eigenenergy εnk, and εF is
the Fermi energy.

If we focus on a nonmagnetic system with time reversal
symmetry, Eq. (1) becomes zero in equilibrium because the
integrand is an odd function of k. When a current is flowing in
the system, the distribution function fnk deviates from equilib-
rium, which may lead to OM. Here we note that the integrand
of Eq. (1) for OM is zero in systems with both time-reversal
symmetry and inversion symmetry, and the current cannot in-
duce the OM. Therefore, since we have assumed time-reversal
symmetry, we need to break inversion symmetry. To induce
the OM, we apply an electric field E. Within the Boltzmann
approximation, the applied electric field along the x axis Ex

changes fnk into [19,20]

fnk = f 0
nk + eExτvn,x

df

dε

∣∣∣∣
ε=εnk

, (2)

where f 0
nk = f (εnk) is the Fermi distribution function in equi-

librium, τ is the relaxation time assumed to be constant, and
vn,x = (1/h̄)∂εnk/∂kx is the velocity in the x direction. Sub-
stituting fnk into Eq. (1), we obtain the current-induced OM
Morb,

[
M3D

orb

]
i
= ie2Exτ

h̄
εi jk

∑
n

∫
BZ

d3k

(2π )3
vn,x

df

dε

∣∣∣∣
ε=εnk

×
∑

m( �=n)

2εF − εnk − εmk

(εnk − εmk)2

× 〈unk| ∂Hk

∂k j
|umk〉 〈umk| ∂Hk

∂kk
|unk〉. (3)

Because of the time-reversal symmetry, the f 0
nk term in Eq. (2)

does not contribute to Morb. In the T → 0 limit, ∂ f /∂ε has a
sharp peak at εF . Therefore, for a band insulator, the induced
OM Morb is zero.

III. POLAR METAL

In the previous work [19,20], a current-induced OM in a
helical crystal structure is calculated. Meanwhile, from a sym-
metry viewpoint, this theory can also be applied to a broader
class of systems without inversion symmetry. In this section,
we focus on polar metals, which have no inversion symmetry.

FIG. 1. Our three-dimensional tight-binding model. (a) Lattice
structure of our model of a polar metal. The B layers (blue) and the A
layers (red) are stacked along the z direction alternately. (b) Side view
of our model. The two types of layers are connected by a hopping
t1 (solid lines) and t2 (dashed lines) alternately. (c), (d) Two layers
having a different hopping. The B layers (blue) have a hopping t and
the A layers (red) have a hopping t ′.

As a result, we find that a current-induced OM appears in a
direction determined by the polar symmetry of the system.

A. What is a polar metal?

Ferroelectrics are materials in which electric dipole mo-
ments are spontaneously aligned. Electric polarization does
not appear in metals because conduction electrons screen
electric polarization. Therefore, ferroelectrics are limited to
insulators. Many ferroelectrics are classified as displacement
ferroelectrics. This is nonpolar in the high-temperature phase
and becomes polar in the low-temperature phase. Metals do
not become ferroelectric, but they can undergo similar struc-
tural changes by lowering temperature. In this sense, such a
polar metal can be regarded as a “ferroelectric” metal.

“Ferroelectric” metals were suggested by Anderson and
Blount in their study on a structural phase transition of V3Si
[26]. The transition is of the second order and it was described
as martensitic from various experiments. However, most of
the already known martensitic phase transitions were of the
first order and only characterized by a change in the shape
of the unit cell. Anderson and Blount tried to describe the
phase transition of V3Si using the Landau theory, with strain
treated as the only parameter. However, it proved impossible
and was concluded that if the phase transition is of the second
order, another unknown parameter except for strain is needed.
It was suggested that this unknown parameter is related to
atomic displacement which breaks inversion symmetry glob-
ally. From this study of the second-order phase transition of
V3Si, the idea of “ferroelectric” metals was born. This class
of metals is known as polar metals, and there exist a number
of materials [26–29].

B. Our model for a polar metal

In order to calculate a current-induced OM, we consider
a three-dimensional tight-binding model of a polar metal
as shown in Fig. 1. The lattice structure of this model is
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FIG. 2. The Brillouin zone and band structure of our model. (a) The Brillouin zone. (b) Band structure. Parameters are t = 1.0, t ′ =
1.5t, t1 = 0.1t , and t2 = 0.2t . If −6 � εF /t � 6, the system is a metal.

composed of an infinite stack of two types of square-lattice
layers within the xy plane: the A layers (red) having a
nearest-neighbor hopping t and the B layers (blue) having
a nearest-neighbor hopping t ′. The two types of layers are
stacked along the z direction alternately and connected by
nearest-neighbor interlayer hoppings t1 (solid lines) and t2
(dashed lines) alternately along the z direction. Here, t , t ′, t1,
and t2 are assumed to be real. When t �= t ′ and t1 �= t2, this
model does not have inversion symmetry. Let a and c denote
the lattice constants within the xy plane and along the z axis,
respectively. In the formula Eq. (1), we need to adopt a gauge
[15,16]

Hk+G = e−iG·rHkeiG·r,

|unk+G〉 = e−iG·r |unk〉, (4)

where G is the reciprocal lattice vector. We need to be care-
ful because this gauge choice is different from the gauge
Hk+G = Hk and |unk+G〉 = |unk〉, which is often adopted in
various situations. Under this gauge, the Hamiltonian of this
model is

Hk =
(

tα β∗
β t ′α

)
, (5)

where

α = 2(cos kxa + cos kya), (6)

β = t1e−ikzc + t2eikzc. (7)

The unit cell consists of an atom in the A layers and an atom in
the B layers, displaced along the z direction. The Hamiltonian
contains the information of the position of atoms within unit
cells. Namely, Eq. (7) tells us that the A and B layers are
displaced by c.

C. Numerical result

We compute the band structure of the model represented by
the Hamiltonian Eq. (5), as shown in Fig. 2. Figure 2(a) shows
the Brillouin zone, and Fig. 2(b) shows the band structure. If
the Fermi energy εF lies in the energy band, this model is a
metal and can carry electric current. We calculate the current-
induced OM by using Eq. (1) and Eq. (2). Figure 3 shows the
numerical result of the current-induced OM when a current
passes along the x direction and along the y direction. When
the current flows along the x direction [Fig. 3(a)], the OM

appears in the +y direction, and likewise, when it flows along
the y direction [Fig. 3(b)], the OM appears in the −x direction.
The magnitudes of the current-induced OM in two cases are
the same.

This numerical calculation reflects the symmetry of the
model. This model has C4v symmetry and a response tensor
αi j for the current-induced OM in a system with such symme-
try is given by

M = αJ �⇒ α =
⎛
⎝ 0 −αyx 0

αyx 0 0
0 0 0

⎞
⎠. (8)

When an external field is applied along the x direction, a
response appears in the +y direction, and likewise, when an
external field is applied along the y direction, a response with
the same magnitude appears in the −x direction. Thus the
result in Fig. 3 perfectly agrees with Eq. (8). Considering this
result, in a general polar metal with the z polarity direction,
we can obtain the result that the OM appears in the direction
perpendicular to the current.

D. Interpretation of current-induced orbital magnetization

Current-induced OM does not appear when the system
has inversion symmetry. We investigate how the absence of
inversion symmetry effects the current-induced OM by using
the model of a polar metal.

We consider a case in which hopping parameters of elec-
trons in the xy plane are much larger than those along the z
direction;

t1, t2 
 t, t ′. (9)

Let us divide the Hamiltonian into two parts

Hk = H0 + V, (10)

where

H0 =
(

tα 0
0 t ′α

)
, V =

(
0 β∗
β 0

)
. (11)

From our assumption Eq. (9), we have |tα|, |t ′α| � |β|, and
we regard the interlayer term V as a perturbation term. We
calculate current-induced OM by perturbation theory and we
obtain

My ∝ t2
1 − t2

2 . (12)
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FIG. 3. Numerical result of current-induced OM in the model Eq. (5) of a polar metal. Parameters are t = 1.0, t ′ = 1.5t, t1 = 0.1t , and
t2 = 0.2t . The current-induced OM when the electric current is injected (a) in the x direction and (b) in the y direction.

Namely, the current-induced OM is proportional to a differ-
ence between two values of hoppings in z direction.

We can give a physical interpretation for Eq. (12). Elec-
trons move along two different kinds of layers when the
electric current flows in the x direction. Here, the in-plane ve-
locities of electrons are different between the two layers since
the in-plane hopping is different. Due to this difference in
velocities, when the current flows in the polar metal, electrons
can be regarded to form a closed loop of an electric current in
the crystal as shown in Fig. 4, and we expect OM from this.
In this model, there are two types of closed loops, Fig. 4(b)
and Fig. 4(c). In a closed loop of Fig. 4(b), the magnetization
depends on the product of the hoppings on the bonds forming
the closed loop of current;

M (b)
orb ∝ tt ′t2

1 . (13)

A closed loop of Fig. 4(c) is treated similarly as in Fig. 4(b),
but the orientation of the OM is reversed because the relative

FIG. 4. Physical picture of the current-induced OM. (a) Two
types of pairs of neighboring layers. We assume that the hopping
(t) within the B layers (blue) is different from that (t ′) within the
A layers (red). This model has two combinations of neighboring
layers. One is including t1, and the other is including t2. (b),(c) Closed
loops of an electric current. Due to this difference of the interlayer
hoppings, we expect that the OM will appear. The orientation of the
current-induced OM within the two neighboring layers is reversed
because the relative positions between t and t ′ are reversed.

positions between t and t ′ is reversed;

M (c)
orb ∝ −tt ′t2

2 . (14)

Thus, the total OM is proportional to t2
1 − t2

2 . That is, the OM
appears in a polar metal because closed loops of the current
are formed in the crystal. When t1 �= t2, inversion symmetry is
broken and the OM appears in response to the current, because
Fig. 4(b) and Fig. 4(c) are no longer equivalent.

E. Polar metal: SnP

In this subsection, we calculate the current-induced OM in
a polar metal SnP known since half a century ago. SnP crystal-
izes into the face-centered cubic lattice at room temperature at
ambient pressure. When the temperature drops below 250 K
at ambient pressure, the P atoms are displaced uniformly and
SnP becomes a polar metal as shown in Fig. 5 [29].

The space group of the polar metal SnP is I4mm, and
we expect that the current-induced OM appears in direction
perpendicular to the electric current, similar to the model in
Sec. III C. To study the current-induced OM in SnP, we first
calculated the relativistic electronic structure of bulk SnP in
the I4mm phase within density functional theory (DFT) using
Perdew-Burke-Ernzerhof exchange-correlation functional as
implemented in the WIEN2K program [30]. For all atoms, the
muffin-tin radius RMT was chosen such that its product with
the maximum modulus of reciprocal vectors Kmax becomes
RMTKmax = 7.0. The Brillouin zone was sampled using a 12 ×
12 × 12 k mesh. From the DFT Hamiltonian we then down-
folded a 14 × 14 tight-binding model using maximally local-
ized Wannier functions [31,32]. The corresponding basis set
was made of atomic spin orbitals: P(px,↑), P(py,↑), P(pz,↑),
P(s,↑), Sn(px,↑), Sn(py,↑), Sn(pz,↑), P(px,↓), P(py,↓),
P(pz,↓), P(s,↓), Sn(px,↓), Sn(py,↓), and Sn(pz,↓)
coming from the 3p orbitals of P atoms and the 5p orbitals
of the Sn atoms. We estimate the magnitude of the current-
induced OM in SnP. By assuming that the electric field is Ex =
104[V/m] and the life time is τ = 10−12[s], the magnitude
of the current-induced interatomic OM is about B = 0.63[G],
which can be measured in experiments.

IV. TWO-DIMENSIONAL SYSTEMS

In the previous section, we showed that a current-induced
OM appears in three-dimensional (3D) polar metals. We
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FIG. 5. Crystal structure and band structure of a polar metal SnP. (a) Crystal structure of SnP in the polar phase. The blue spheres and the
green spheres are Sn and P atoms, respectively. The P atoms are displaced uniformly along the c axis and SnP becomes a polar metal. (b) Band
structure of SnP in the polar phase, calculated from a tight-binding model. The spin-orbit interaction is small, and the band splitting is small.

found that the essence of current-induced OM is formation
of closed loops of the electric current. Therefore, we expect
that it will also appear in a two-dimensional (2D) system
without inversion symmetry. From the results in the previous
section, it is expected that current-induced OM will appear
in the in-plane direction as well as along the out-of-plane
direction, depending on symmetry of the system. Here, we
encounter a theoretical problem in calculating the in-plane
OM in 2D systems. As is clear from the formula of the OM,
Eq. (1), information on the Bloch wave function in the j and
k directions is required when calculating the OM in the i
direction, where i, j, and k represent mutually perpendicular
directions. Actually, there has never been a known method to
calculate in-plane OM in 2D systems, since in the direction
perpendicular to the plane of a 2D system the wave functions
are not of the Bloch form.

In this section, we develop a method to calculate the OM in
the in-plane direction in a 2D system without inversion sym-
metry. To this end, we proceed as follows. First, we consider a
hypothetical stacking of the 2D system to form a 3D system,
for which one can calculate the OM by Eq. (1), and then we
interpret this result as that of the original 2D system. In the
original 2D systems, one had the problem that the Bloch wave
function in the direction perpendicular to the plane of a 2D
system cannot be defined, and we can solve this problem by
going through the 3D system. Through this procedure, we
derive a new formula of the in-plane OM using real-space
coordinates in the out-of plane direction. As a result, the OM
in the in-plane direction of the 2D system can be calculated
theoretically.

A. Orbital magnetization in the in-plane direction

As seen in the previous section, current-induced OM is
caused by closed loops of a current in the crystal. This is
similar to the classical phenomenon of a magnetic field gen-
erated by a closed loop of a current. These two phenomena
show that a magnetic field or magnetization appears in a
direction perpendicular to the plane along which the current
flows. In other words, to calculate OM in a certain direction,
information of the spatial distribution of the wave function in
two directions orthogonal to that direction is required. This
can also be seen from the formula of the OM [Fig. (1)]. When

calculating the OM in the i direction, information on the Bloch
wave function in the j and k directions is required, where the
i, j, and k directions are mutually perpendicular.

Therefore, we encounter a problem when calculating the
OM in the in-plane direction of a 2D system using Eq. (1). As
an example, we consider the OM in the y direction in a 2D
system along the xy plane. In a 3D system both kx and kz are
well defined, but in a 2D system along the xy plane, kz cannot
be defined because the system is finite along the z direction.
This is a problem when calculating the in-plane OM of a 2D
system.

B. Calculation of the current induced orbital magnetization
for 2D systems

Here we solve this problem by going through a 3D system.
We extend the 2D system to a 3D system by putting the 2D
system periodically along the z direction without any hopping
between the 2D systems. Then the OM can be calculated since
kz is well defined. The result can be regarded as the OM of the
original 2D problem in the in-plane direction.

We explain this procedure with an example of the current-
induced OM for a 2D model shown in Fig. 6. This model
consists of two layers A and B, both forming a square lattice.
The A layers (red) have a nearest-neighbor hopping t , the
B layers (blue) have a nearest-neighbor hopping t ′, and the
interlayer hopping is t1 along the z axis. The Hamiltonian H̃k̃
of this model is

H̃k̃ =
(

tα t1
t1 t ′α

)
. (15)

FIG. 6. Our 2D model. The red layer having a nearest-neighbor
hopping t and the blue one having hopping t ′ are connected by a
hopping t1. This bilayer model is finite along the z direction and
infinite along the x, y directions.

184404-5



HARA, BAHRAMY, AND MURAKAMI PHYSICAL REVIEW B 102, 184404 (2020)

FIG. 7. Numerical calculation of the current-induced OM by
changing t2. The parameters are t = 1, t ′ = 0.5, and εF = 1. When
t2/t1 = 1, a current-induced OM is zero because this model has
inversion symmetry. When t2/t1 = 0, this model becomes a pure 2D
system.

We cannot calculate the current-induced OM in the y direc-
tion by Eq. (1) since kz is not defined. To resolve this problem,
we stack the 2D systems periodically along the z direction.
This system is exactly the same as the 3D model introduced in
Sec. III B, with t2 = 0. Therefore, in the calculation we adopt
the 3D Bloch Hamiltonian Hk in Eq. (5) with t2 = 0 instead
of H̃k, namely

H̃k̃ =
(

tα t1
t1 t ′α

)
⇒ Hk =

(
tα t1eikzc

t1e−ikzc t ′α

)
, (16)

where k̃ = (kx, ky) and k = (kx, ky, kz ). Next, we calculate a
current-induced OM in the 3D system with t2 = 0 in Eq. (3).
Finally, the OM as a 2D system is

M2D
orb = 2cM3D

orb, (17)

because the period along the z direction is 2c. Using this
method, we can calculate current-induced OM M2D

orb in 2D
systems.

We show the numerical result of the magnitude of the
current-induced OM by changing the interlayer hopping t2 in
Fig. 7. When t2/t1 = 1, the current-induced OM become zero
since the 3D system has inversion symmetry. When t2/t1 → 0,
the system becomes the original 2D system as we will discuss
in the next subsection.

C. Discussion

We can calculate the in-plane OM of a 2D system by the
method in the previous subsection. This method is rather an
indirect method since we should go through a 3D system.
Therefore, in this subsection we develop a method of calcu-
lating the in-plain OM of a 2D system without going through
a 3D system. In the present model, from Eq. (16), the 2D
Hamiltonian H̃k̃ and the 3D Hamiltonian Hk are connected by
unitary transformation;

Hk = Ukz H̃k̃U †
kz
, Ukz =

(
1 0
0 e−ikzc

)
. (18)

Therefore the eigenstates of the two Hamiltonians are con-
nected by the unitary transformation Ukz , which does not
change their eigenvalues;

|unk〉 = Ukz |ũnk̃〉, (19)

εnk = ε̃nk̃, (20)

where unk, ũnk̃ and εnk, ε̃nk̃ are the eigenstates and the eigen-
values of Hk and H̃k̃, respectively. Therefore, in the limit t2 →
0 in the 3D model, the integrand of Eq. (3) is transformed into

Im

[
〈unk| ∂Hk

∂kz
|umk〉 〈umk| ∂Hk

∂kx
|unk〉

]

= Im

[
i(εnk̃ − εmk̃) 〈ũnk̃| z |ũmk̃〉 〈ũmk̃|

∂H̃k̃

∂kx
|ũnk̃〉

]
, (21)

where z = diag(0, c) is the z coordinate in this model.
Thus, while we start with the formula in three dimensions,
Eq. (21) can be used in two dimensions. Because the term
〈unk| ∂Hk

∂kz
|umk〉 becomes i(εnk̃ − εmk̃) 〈ũnk̃| z |ũmk̃〉, we can get

the OM from information on the real-space coordinates in the
z direction instead of information on kz.

Therefore, the in-plane OM in general 2D systems along
the xy plane is

[
M3D

orb

]
y = ie

h̄2

∑
n

∫ π/2c

−π/2c

dkz

2π

∫
2DBZ

d2k̃
(2π )2

× fnk̃

∑
m( �=n)

2εF − εnk̃ − εmk̃

(εnk̃ − εmk̃)2

× 2iIm

[
i(εnk̃ − εmk̃) 〈ũnk̃| z |ũmk̃〉 〈ũmk̃|

∂H̃k̃

∂kx
|ũnk̃〉

]

= 1

2c

ie

h̄2

∑
n

∫
2DBZ

d2k̃
(2π )2

fnk̃

∑
m( �=n)

2εF − εnk̃ − εmk̃

(εnk̃ − εmk̃)2

×2iIm

[
i(εnk̃ − εmk̃) 〈ũnk̃| z |ũmk̃〉 〈ũmk̃|

∂H̃k̃

∂kx
|ũnk̃〉

]
,

(22)

where
∫

2DBZ is an integral over the 2D BZ along the kx-ky

plane. This shows that the term in the 3D system has been
replaced as follows;

〈unk| ∂Hk

∂kz
|umk〉 �⇒ i(εnk − εmk) 〈unk| z |umk〉. (23)

This can be derived as

〈unk| ∂Hk

∂kz
|umk〉 = 〈unk| h̄[vk]z |umk〉

= i 〈unk| [Hk, z] |umk〉
= i(εnk − εmk) 〈unk| z |umk〉. (24)
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FIG. 8. Numerical results of the in-plane current-induced OM for
the 2D model by the two methods. The parameters are t = 1, t ′ =
0.5, and t1 = 0.1. The purple line is a numerical result going through
the 3D system, and the green line is a numerical result in the 2D
system directly. They completely agree with each other.

This is consistent with the previous results. Thus, the in-
duced orbital magnetization per unit area of the 2D system is
given by[
M2D

orb

]
i = 2c

[
M3D

orb

]
i

= ie

h̄2 ε jiz

∑
n

∫
2DBZ

d2k̃
(2π )2

fnk̃

∑
m( �=n)

2εF − εnk̃ − εmk̃

(εnk̃ − εmk̃)2

× 2iIm

[
i(εnk̃ − εmk̃) 〈ũnk̃| z |ũmk̃〉 〈ũmk̃|

∂H̃k̃

∂k j
|ũnk̃〉

]
.

(25)

While this formula is derived for the specific model in Fig. 6,
one can easily see that it applies to general 2D systems to
calculate in-plane OM. We show the calculation result of
the current-induced OM of our 2D model using Eq. (22) in
Fig. 8. For comparison, we also show the result using the 3D
formula Eq. (3). This figure shows that the current-induced
OM calculated by the two methods completely agree with
each other.

D. General theory

So far we have discussed the specific 2D model in Fig. 6
and derived a formula for the current-induced orbital magne-
tization. Here we show that Eq. (25) in fact applies to general
2D systems. To show this, similarly to the previous subsec-
tion, we consider an arbitrary 2D system along the xy plane.
We then put the 2D system periodically along the z direction
without coupling them. Then the original 2D Hamiltonian H̃k̃
and the resulting 3D Hamiltonian Hk are connected by the
unitary matrix Ukz ,

Hk = Ukz H̃k̃U †
kz
, (26)

where

Ukz = e−ikzz. (27)

The eigenstates and eigenvalues of the two Hamiltonians sat-
isfy the transformation,

|unk〉 = Ukz |ũnk̃〉, (28)

εnk = ε̃nk̃. (29)

These are consistent with our gauge choice Eq. (4). Indeed, if
we assume Eq. (4) for the original 2D system:

H̃k̃+G̃ = e−iG̃·r̃H̃k̃eiG̃·r̃,

|ũnk̃+G̃〉 = e−iG̃·r̃ |ũnk̃〉, (30)

where G̃ = (Gx, Gy) and r̃ = (x, y) are reciprocal lattice vec-
tor and real coordinate in the xy plane, then the corresponding
3D Bloch Hamiltonian and eigenstates satisfy the gauge con-
dition in Eq. (4). Thus, the right-hand side of Eq. (21) is
expressed as

Im

[
〈unk| ∂Hk

∂kz
|umk〉 〈umk| ∂Hk

∂kx
|unk〉

]

= Im

[
(εmk̃ − εnk̃) 〈ũnk̃|Ukz

∂U †
kz

∂kz
|ũmk̃〉 〈ũmk̃|

∂H̃k̃

∂kx
|ũnk̃〉

]
,

= Im

[
i(εmk̃ − εnk̃) 〈ũnk̃| z |ũmk̃〉 〈ũmk̃|

∂H̃k̃

∂kx
|ũnk̃〉

]
. (31)

Hence the in-plane orbital magnetization is obtained as

[
M3D

orb

]
y = ie

h̄2

∑
n

∫ π/d

−π/d

dkz

2π

∫
2DBZ

d2k̃
(2π )2

× fnk̃

∑
m( �=n)

2εF − εnk̃ − εmk̃

(εnk̃ − εmk̃)2

× 2iIm

[
i(εnk̃ − εmk̃) 〈ũnk̃| z |ũmk̃〉 〈ũmk̃|

∂H̃k̃

∂kx
|ũnk̃〉

]

= 1

d

ie

h̄2

∑
n

∫
2DBZ

d2k̃
(2π )2

fnk̃

∑
m( �=n)

2εF − εnk̃ − εmk̃

(εnk̃ − εmk̃)2

×2iIm

[
i(εnk̃ − εmk̃) 〈ũnk̃| z |ũmk̃〉 〈ũmk̃|

∂H̃k̃

∂kx
|ũnk̃〉

]
,

(32)

where d is the period along the z direction. Therefore, the in-
plain orbital magnetization in the original 2D system, which
is a magnetic dipole moment per unit area, is given by[
M2D

orb

]
i = d

[
M3D

orb

]
i

= ie

h̄2 ε jiz

∑
n

∫
2DBZ

d2k̃
(2π )2

fnk̃

∑
m( �=n)

2εF − εnk̃ − εmk̃

(εnk̃ − εmk̃)2

× 2iIm

[
i(εnk̃ − εmk̃) 〈ũnk̃| z |ũmk̃〉 〈ũmk̃|

∂H̃k̃

∂k j
|ũnk̃〉

]
,

(33)

which is identical with Eq. (25).
Thus, we have established a formula for a direct calculation

of the in-plane OM in a 2D system. This method of calculating
the in-plane OM in a 2D system can be applied to a wide
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FIG. 9. (a) Our model of a semi-infinite insulator. The system is
finite along the z direction and the lattice constant is a along the xy
plane and c along the z axis. The hoppings are −t and the onsite
potential is 0, but the hopping and the onsite potential of the surface
are −t ′ and −�, respectively. (b) Schematic of the bound state.
Electric density of the bound states decreases exponentially from the
surface.

range of systems. It applies to the in-plane magnetization in
equilibrium, as well as to that induced by a current. Therefore,
this formula applies to atomic-layer compounds and van der
Waals heterostructures.

V. INSULATOR SURFACES AND INTERFACES

In the previous section, we found that OM is induced
by a current in bulk 2D and 3D systems without inversion
symmetry. In this section, we focus on insulator surfaces and
interfaces. From symmetry arguments, it is expected that OM
can be induced in such systems because inversion symmetry is
broken. First, we focus on bound states at an insulator surface
and consider that the Fermi energy lies in the surface band,
making the surface metallic. They exponentially decay away
from the surface and can be characterized by a penetration
depth. We calculate the current-induced OM in the insulator
surface using the formula in the previous section and discuss
its physical properties in this section. If the penetration length
is long, the region in which electrons can move is widened,
and therefore current-induced OM is expected to increase.
However, if the penetration length is too long, the wave func-
tion has little influence from broken inversion symmetry, so
that the current-induced OM is expected to decrease.

A. Semi-infinite insulator with a surface

We consider a tight-binding model of a semi-infinite in-
sulator shown in Fig. 9(a). This model in Fig. 9(a) expresses
a semi-infinite system on a simple tetragonal lattice with a
surface along the xy plane having the C4z symmetry. The
lattice constant is a along the xy plane and c along the z
axis. Within each square-lattice layer within the xy plane,
the nearest-neighbor hopping is −t and the onsite potential

is 0, except for the topmost layer where the nearest-neighbor
hopping and the onsite potential are set to be −t and −�,
respectively. We assume t ′ < t . The Hamiltonian of the tight-
binding model is written as

Hk̃ =

⎛
⎜⎜⎜⎝

−� − t ′α −t 0 · · ·
−t −tα . . .

. . .

0 . . .
. . .

. . .
...

. . .
. . .

. . .

⎞
⎟⎟⎟⎠. (34)

The eigenstate |uk〉 of this Hamiltonian is expressed as

|uk〉 = 1

B

⎡
⎢⎢⎣

⎛
⎜⎜⎝

1
e−ikzc

e−2ikzc

...

⎞
⎟⎟⎠ + A

⎛
⎜⎜⎝

1
eikzc

e2ikzc

...

⎞
⎟⎟⎠

⎤
⎥⎥⎦, (35)

where B is a normalization factor, A is given by

A = − � + (t ′ − t )α − teikzc

� + (t ′ − t )α − te−ikzc
, (36)

and the eigenenergy is

εk = −tα − 2t cos(kzc). (37)

Here, we consider a bound state which is localized at
the surface. The wave function of the bound state decreases
exponentially from the surface as shown in Fig. 9(b). In
this situation, kz becomes a complex number; kz = −iK and
K > 0, and we impose A = 0 because Eq. (35) should decay
inside the insulator. Therefore, the eigenvalue of the bound
state becomes

εk̃ = −tα − 2t cosh(Kc),

teKc = � + (t ′ − t )α(kx, ky). (38)

Therefore existence of a bound state requires

α <
� − t

t − t ′ . (39)

The bound states exist in the kx, ky region satisfying Eq. (39).
Another type of bound states is obtained by replacing Kc with
Kc + π i, namely

εk̃ = −tα + 2t cosh(Kc),

−teKc = � + (t ′ − t )α(kx, ky),
(40)

and this type of bound states appear when

α >
� + t

t − t ′ . (41)

We show the energy bands of this model along kx = ky in
Fig. 10. The energy bands change by changing the onsite
potential of the surface. At � = 0, the bound states and the
continuum band have an overlap in energy, and as the onsite
potential increases, the bound states go down in energy. At
� = 3, the bound states and the continuum band are degen-
erate only at k = 0, and when � > 3, the bound states are
completely separated from the continuum band.

We calculate a current-induced OM when the Fermi energy
lies within the band of the bound states but does not cross
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FIG. 10. The energy bands of this model for (a) � = 0, (b) � =
2, (c) � = 3, and (d) � = 5. The parameters are t = 1 and t ′ = 0.5.
The bound states change when the onsite potential � on the insulator
surface changes. (a) At � = 0, the bound states are buried inside the
continuum band. (b), (c) At � = 2 and � = 3, as the onsite potential
increases, the bound states go down in energy. (d) At � = 5, the
bound states are completely separated from the continuum band.

the continuum band, so that the current flows only along the
surface. The eigenenergy is written as

εk̃ = −� − t ′α − t2

� + (t ′ − t )α
, (42)

and the eigenstate is given by

uk̃ = 1

B

⎛
⎜⎜⎜⎜⎜⎜⎝

1
t

� + (t ′ − t )α(
t

� + (t ′ − t )α

)2

...

⎞
⎟⎟⎟⎟⎟⎟⎠

, (43)

where the normalization factor B is given by

B =
[

1 −
(

t

� + (t ′ − t )α

)2]−1/2

. (44)

FIG. 11. Numerical result of the current-induced OM for an in-
sulator surface. The parameters are � = 5, t = 1, and t ′ = 0.5. The
orbital magnetization appears when εF /t ∼ −7.3 where the Fermi
energy lies on the surface bound state in Fig. 10(d) and the surface
states are metallic.

B. Numerical result

We show the numerical result of the current-induced OM
in Fig. 11 for � = 5, t = 1, and t ′ = 0.5, corresponding to
the band structure shown in Fig. 10(d). Figure 11 shows that
the current-induced OM appears in an insulator surface. Here,
we assume that the Fermi energy crosses only the bound
state, so that the current does not flow in the bulk but flows
along the surface. When εF /t is larger than the bottom of
the surface band, the current-induced OM appears and its
magnitude increases as εF increases. This is because an area
of the Fermi surface becomes larger. The area of the Fermi
surface corresponds to the number of conduction electrons in
the surface band. If the area of the Fermi surface become
larger, more electrons can move and the magnitude of the
current-induced OM becomes larger.

C. Discussion

From the previous chapter, the formula of the current-
induced OM in a system finite along the z direction is

[
M2D

orb

]
i = ie2Ezτ

h̄

∑
n

∫
2DBZ

d2k̃

(2π )2

∂ fnk̃

∂kx
εi jz

∑
m( �=n)

2εF − εnk̃ − εmk̃

εnk̃ − εmk̃
2iRe

[
〈unk̃| z |umk̃〉 〈umk̃|

∂Hk̃

∂k j
|unk̃〉

]
. (45)

At zero temperature, because of the factor ∂ fnk̃/∂kx ∝ δ(εnk̃ − εF ), we can put εnk̃ = εF in the integrand. Moreover, using the
completeness, ∑

m( �=n)

|umk〉 〈umk| = 1 − |unk〉 〈unk|, (46)

this formula becomes[
M2D

orb

]
i = ie2Ezτ

h̄

∫
2DBZ

d2k̃

(2π )2

∂ fnk̃

∂kx
εi jz2iRe

[
〈unk̃| z

∂Hk̃

∂k j
|unk̃〉 − 〈unk̃| z |unk̃〉 〈unk̃|

∂Hk̃

∂k j
|unk̃〉

]
. (47)

Next, by using this formula, we discuss how the magnitude
of the current-induced OM depends on various parameters

on surface states, by adopting some simple assumption. In
general, the wave functions of the surface states can be
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written as

unk̃ =
√

1 − e−2Kc

⎛
⎜⎜⎝

1
e−Kc

e−2Kc

...

⎞
⎟⎟⎠, (48)

where K characterizes the decay length of the surface states.
Here, we adopt a convention where the position operator z is a
diagonal matrix, and each diagonal element expresses position
information in a crystal;

z = diag(0, c, 2c, · · · ). (49)

For simplicity, as is the case with our model, we assume that
∂Hk/∂k j is a real diagonal matrix. We also assume that its
diagonal component corresponding to the topmost layer is
different from other diagonal components;

∂Hk̃

∂k j
= gk̃diag(hk̃, 1, · · · , 1), (50)

with some functions gk̃ and hk̃. In addition, we assume that
along the Fermi surface, the parameter K characterizing the
penetration depth is constant. By inserting these assumptions
into Eq. (47), a current-induced OM becomes[

M2D
orb

]
i ∝ ce−2Kc

∫
Fermi surface

d2k̃gk̃(hk̃ − 1). (51)

Therefore if hk̃ = 1, the resulting current-induced OM is al-
ways zero. Namely, the modulation of the hopping at the layer
near the surface is important within this model. In other words,
when hk̃ = 1, the velocity v j = h̄−1 ∂Hk̃

∂k j
is proportional to an

identity and is diagonal in the basis of eigenstates |unk̃〉, and
Eq. (47) vanishes. This means that the off-diagonal compo-
nents of the velocity is essential for the current-induced OM
in 2D systems.

The formulation of in-plane OM in insulator surfaces can
also be applicable to interfaces between insulators. At the
interfaces the inversion symmetry is broken, making the in-
terfaces be polar. Thus, when a current is flowing along the
interfaces, an OM is induced perpendicularly to the current.
this theory can be applied to interfaces between insulators,
such as SrTiO3/LaAlO3 interfaces.

VI. CONCLUSION

In this paper, we discussed the current-induced OM in
systems without inversion symmetry. First, we focused on
polar metals, which have no inversion symmetry in the bulk,
and we showed that the OM is induced by an electric current

in these systems. Because of the crystal symmetry, the current-
induced OM appears when the current is perpendicular to
the polar direction, and the magnetization is perpendicular
to both the current and the polar direction. Moreover, using
the perturbation theory, we also physically clarified how the
current-induced OM appears in a polar metal. From this result,
the electric current forms closed loops in the crystal, and the
OM is induced by them. Our results can be generalized to
any crystals without inversion symmetry. As an example, we
calculated the current-induced OM in SnP and showed that it
might be experimentally measurable.

Second, we established a formula of the in-plain OM in a
2D system. In a calculation of the OM in the in-plane direc-
tion, the known formula cannot be applied directly because
the wave functions are not extended in the thickness direction.
We established a method to calculate the in-plane OM in a
2D system by virtually stacking the 2D system to form a 3D
system. This method can be applied to the current-induced
OM in the in-plane direction.

Third, we discussed the current-induced OM on insulator
surfaces and interfaces by using our theory. We showed that
the current-induced OM can appear through surface states.
The phenomenon of the current-induced OM can be regarded
as an orbital analog of the Edelstein effect, and therefore, it
can be called orbital Edelstein effect. In the conventional Edel-
stein effect, the spin-split bands by the spin-orbit coupling
(SOC) [5–8]. Thus, the SOC is needed for the conventional
spin Edelstein effect. In contrast, the orbital Edelstein effect
does not require the SOC [19,20]. We also note that the OM
has two terms. One is an intra-atomic OM, due to the atomic
orbitals with the angular momentum quantum number l � 1,
such as p and d orbital. The other is as interatomic OM, which
is the main topic of our paper. In our paper, we only consider
the latter contribution, and in real materials such as SnP, the
other contribution due to the intraatomic OM should also be
considered.

To summarize, current-induced OM is expected in a wide
range of materials, and combination with ab initio calculation
can be a promising direction for future research [31,33–57].
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