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Energy and momentum conservation in spin transfer

Alexander Mitrofanov and Sergei Urazhdin
Department of Physics, Emory University, Atlanta 30322, Georgia USA

(Received 4 April 2020; revised 19 October 2020; accepted 20 October 2020; published 3 November 2020)

We utilize simulations of spin-polarized electron scattering by a chain of localized quantum spins to show
that energy and linear momentum conservation laws impose strong constraints on the properties of magnetic
excitations induced by spin transfer. In turn, orbital and spin dynamics of conduction electrons depends on the
dynamical characteristics of the local spins. Our results suggest the possibility to achieve precise control of
spin-transfer-driven magnetization dynamics by tailoring the spectral characteristics of the magnetic systems
and of the driving electrons.
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I. INTRODUCTION

The advent of spin transfer (ST) effect [1–3] has trans-
formed our understanding of nanomagnetism and spurred
multiple applications [4–8]. ST is caused by the interac-
tion of spin currents carried by conduction electrons with
the magnetization of magnetic materials, resulting in the
absorption of an electron’s spin angular momentum com-
ponent noncollinear with the magnetization [1,9,10]. The
absorbed angular momentum drives magnetization dynamics,
which can result in magnetization reversal [11,12], precession
[13,14], and other dynamical effects [15,16].

Energy and linear momentum conservation laws play a
central role in the dynamical processes in nature. Their role
in ST has been analyzed in the classical approximation for
the magnetization [17–19], but energy and momentum con-
servation of the quasiparticles involved in spin transfer, in
the de Broglie sense, has remained virtually unexplored. The
potential significance of the latter can be illustrated by consid-
ering the electron photoemission process, whose outcome is
determined not by the wave energy and momentum of light but
rather by the Planck’s energy and momentum of light quanta,
the photons.

Analogously to photoemission, ST involves interaction
between electrons and light in magnetic matter, which be-
comes hybridized with electron spins forming spin waves. The
threshold current for ST-driven magnetization dynamics was
initially attributed to the requirement that spin accumulation
must exceed the energy Em of the spin-wave quanta (magnons)
generated by ST [20]. However, the energy of magnons as-
sociated with quasiuniform magnetization precession excited
by ST is small, and the threshold was identified with the
compensation of the dynamical damping by ST [10,11].

Recent studies showed that ST can excite dynamical
modes throughout the magnon spectrum [21,22], which spans
frequencies fm from GHz to THz ranges for common fer-
romagnets (Fs) [23]. Excitation of high-frequency magnons
may play a significant role in the interplay between ther-
mal phenomena and ST [24]. Nonlinear interactions among
these high-frequency modes can also profoundly influence
ST-induced dynamics [25,26]. ST can also drive magnetic

dynamics in antiferromagnets (AFs) [27–29], where the low-
est dynamical frequencies are typically in 100s of GHz or in
the THz range [30,31], which may enable ultrafast devices and
THz oscillators based on AFs driven by ST [32].

The energies Em = h fm of THz magnons are in the meV
range. If energy conservation plays a role in ST, a large
electrical bias may be required to provide energy sufficient
to generate such magnons. Likewise, linear momentum con-
servation may impose strict requirements on the momentum
of the driving electrons in magnetic nanodevices envisioned
to operate with short-wavelength magnons generated by ST
[5,33]. However, both energy and momentum of magnons
have been neglected in the analyses of ST, which with a
few exceptions [34–39] have approximated magnetization as
a classical vector field.

Here, we use simulations of spin-polarized electron scat-
tering by a quantum spin chain to show that energy and
momentum conservation laws impose significant constraints
on the magnetic dynamics, as well as the electron’s orbital and
spin dynamics resulting from ST. Our results suggest the pos-
sibility to control the characteristics of magnetic excitations
generated by ST by optimizing these constraints, which may
provide a new route for the development of efficient magnetic
nanodevices.

II. MODEL SYSTEM AND SIMULATION APPROACH

To analyze ST, we consider scattering of an electron
wavepacket initially propagating in a nonmagnetic medium
by a ferromagnet modeled as a localized 1D spin-1/2 chain. In
the tight-binding approximation, this system can be described
by the Hamiltonian [37,40]

Ĥ = −
∑

i

b|i〉〈i + 1|

−
∑

j

Jsd | j〉〈 j| ⊗ Ŝ j · ŝ + JŜ j · Ŝ j+1 + μBŜz
jB, (1)

where b is the electron hopping parameter, J describes the
exchange stiffness of the local spins, Jsd their exchange with
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FIG. 1. ST due to scattering of electron wave packet by the
chain of 40 spins within 180 tight-binding sites, with a = 0.2 nm,
b = 1 eV, J = Jsd = 0.1 eV, B = 20 T. (a) Pseudocolor map of
wave-packet intensity in the position-time coordinates, for the initial
wave-packet polarization along the x axis. Schematics: The wave
packet and the spin chain before and after scattering. The scale unit
is the probability per site. (b), (c) Evolution of the expectation values
of x (b) and z (c) components of electron and chain spins.

the electron, B = −Bz is the magnetic field, and μB is the
Bohr magneton. The states |i〉 are localized on the sites i =
1..200 comprising the entire simulated system that includes
the ferromagnet and the nonmagnetic medium surrounding it,
forming a complete spatial tight-binding basis for the itinerant
electron. The states | j〉, with j = 70 − 110 in our simulations,
represent a subset of these sites where the spins-1/2 represent-
ing the ferromagnet are localized. ŝ, Ŝ j are the spin operators
of the electron and the local spins. The entire Hilbert space
of the system is thus a direct product of the 200-dimensional
spatial component of the itinerant electron, 2d spin subspace
of this electron, and 240-dimensional spin subspace of the
localized spin-1/2’s. However, the dimensionality of the latter
subspace in our simulations could be substantially reduced by
explicitly taking into account the axial rotational symmetry of
the Hamiltonian [40]. We use periodic boundary conditions
for both the electron and the spin chain to avoid spurious
effects of reflections at the boundaries. Spin-orbit interaction
is neglected in our model.

To analyze ST, the system is initialized with the electron
forming a Gaussian wave packet spin polarized along the x
axis, while the local spins are in their ground state aligned
with the z axis. The system is then evolved according to the
Hamiltonian Eq. (1). The wave packet is partially reflected
and partially transmitted by the local spins [Fig. 1(a)]. One
can clearly identify the time intervals when the wave packet
is localized mostly outside or inside the spin chain, allowing
us to analyze the effects of scattering by tracking the time
evolution.

III. SIMULATION RESULTS AND ANALYSIS

To analyze the evolution of each subsystem, we intro-
duce the density matrices ρ̂e = Trmρ̂ and ρ̂m = Treρ̂ for the

electron and the local spins, respectively, by tracing out the
full density matrix ρ̂ with respect to the other subsystem [37].
The expectation value of an observable Â associated with the
electron is 〈Â〉 = Tr(Âρ̂e), while the probability of its value a
is Pa = 〈ψa|ρ̂e|ψa〉, where ψa is the corresponding eigenstate.
Similar relations hold for the observables associated with the
local spins. For instance, the expectation values of different
contributions to the system’s energy discussed below were
obtained by using the corresponding terms in the Hamiltonian
Eq. (1) as Â. The distribution of momentum p, also discussed
below, was obtained using the plane-wave eigenstates |ψk〉 ∼
eikx, defined for the electron and the magnons in the respective
spatial domains. Here, k = p/h̄ is the wave vector describ-
ing the corresponding Fourier component of the electron or
magnon wave.

Precession of the electron spin around the effective ex-
change field, produced by the local spins aligned with the z
axis, results in the oscillation of its x component [Fig. 1(b)].
The oscillation rapidly decays due to dephasing, consistent
with the ST mechanisms [1,10]. The x component of the local
spins mirrors this evolution, so the x component of the total
spin is conserved. The contribution of the Zeeman term in
Eq. (1) that breaks the spin conservation is negligible on the
considered timescales.

The z component of electron spin increases from zero to
almost its maximum value 1/2, with the local spins mir-
roring this evolution, Fig. 1(c). This transfer of the spin
component collinear with the magnetization is consistent with
the recently demonstrated nonclassical contribution to ST
[36,37,40]. Since the constraints imposed by energy and mo-
mentum conservation are expected to be general, we do not
separate between the two contributions to ST in the analysis
below.

The evolution of different contributions to energy is illus-
trated in Fig. 2(a). The magnetic energy Em comprising the
Zeeman and the exchange energies of the local spins increases
due to their excitation by ST, while the exchange energy Esd

between the local spins and the electron initially decreases due
to the increase of the electron’s spin-up [majority] component
[see Fig. 1(c)]. We note that the effects of the Zeeman field be-
come significant on the time scales comparable to the inverse
of the Larmor precession frequency, about 2 ps for the field
of 20 Tesla used in our simulations, 2–3 orders of magnitude
larger than our typical simulation times. The two subsystems
no longer interact after scattering, so Esd increases back to
zero. Since the Hamiltonian is time independent, the total en-
ergy of the system is conserved [dashed line in Fig. 2(a)]. The
deficit of energy associated with a finite Em after scattering
is made up by the reduction of the electron’s kinetic energy
Ehop. This suggests that the relation between the electron’s
kinetic energy and the magnetic excitation spectrum plays an
important role in ST, as confirmed below.

We now analyze the momentum evolution. Defining linear
momentum in ferromagnets can be subtle since the canonical
momentum of the magnetization motion is not invariant under
spin rotations, resulting in terms of the Wess-Zumino type in
the action [41,42]. Here and below, we use the term momen-
tum to refer to the quantum-mechanical momentum h̄ke of
electron with wave vector ke, or similarly to the momentum
h̄km of magnon with wave vector km. For brevity, we refer
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FIG. 2. (a) Evolution of different contributions to energy, as de-
fined in the text. The curves are shifted by the t = 0 values for clarity.
(b), (c) Majority (solid curves) and minority (dashed) contributions
to the transmitted and reflected wave-packet components (b), and
the corresponding average wave vectors (c). The reflected minority
component (not shown) is negligible. (d) Energy versus momentum
for forward-propagating electron components at times t0, t1, and t2, as
marked in (a), (b). Solid curves: Spin-dependent electron dispersion
inside the spin chain; dashed curve: dispersion outside the chain.

below to the wave vector as momentum, since the two quanti-
ties are simply related by h̄. Before scattering, the wave packet
contains only the forward-propagating component, with equal
majority and minority spin contributions, Fig. 2(b). During
scattering, the minority contribution decreases, while the ma-
jority contribution increases, consistent with the transfer of the
z spin component shown in Fig. 1(c). Additionally, a majority-
spin backward-propagating component emerges due to the
electron reflection by the spin chain. The reflected minority-
spin component is negligible in the approximation of the same
electron hopping parameter inside and outside the spin chain,
consistent with the mechanisms of electron-magnon scattering
discussed below.

The momentum of the reflected majority-spin component
is considerably smaller than that of the original wave packet
[Fig. 2(c)], indicating that electron reflection by the chain
involves a large transfer of energy. Meanwhile, the mo-
mentum of the majority-spin forward-propagating component
increases, and that of the minority component decreases as
the electron enters the chain, consistent with the spin splitting
of the electronic band structure inside the chain due to the
sd exchange [see Fig. 2(d)]. However, the difference between
the momenta of the two spin components remains significant
even after scattering, indicating that the electron experiences
spin-dependent momentum and energy loss. This is confirmed
by Fig. 2(d), which shows the average momentum and energy
of the forward-propagating components calculated for instants
t0, t1, and t2 before, during, and after scattering, as marked
in Figs. 2(a) and 2(b). The momentum and the energy of the
majority-spin component are slightly reduced at t2 relative to
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at t = t1 (solid curve). (d) Electron dispersion Ee = 2b[1 − cos(kea)]
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t0, while those of the minority-spin component are signifi-
cantly reduced.

The variations of the electron’s energy and momentum
(Fig. 2) are inconsistent with quasielastic scattering, sug-
gesting that the energy and the momentum of the generated
magnons play a significant role in the scattering process. This
is confirmed by the analysis of the relation between the dis-
tribution of the generated magnons and the characteristics of
the wave packet, Fig. 3. Two distinct groups of magnons are
generated: forward-propagating magnons with a large central
momentum k f

m and backward-propagating magnons with a
small central momentum kb

m [Fig. 3(a)]. We use the magnon
dispersion relations Em = 4J (1 − cos(kma)) + SμBB, where
a is the tight-binding site spacing, to determine the corre-
sponding magnon energies E f

m and Eb
m [Fig. 3(b)].

The relations between the momenta of the generated
magnons and the characteristics of the electron wave packet
are illustrated in Fig. 3(c), which shows the majority-spin
momentum distributions of the wave packet at t = t0 and at t1.
The difference between the initial central momentum ki

e of the
wave packet and the momentum kr

e of the reflected component
is equal to the momentum k f

m of the forward-propagating
magnons generated due to ST, while the corresponding dif-
ference for the momentum kt

e of the transmitted wave packet
component is equal to the momentum kb

m of the generated
backward-propagating magnons.

By analyzing the dispersion of the electron outside the
spin chain, as well as the majority-spin dispersion of electron
inside the spin chain [Fig. 3(d)], we find that the energy
Er

e of the reflected component is reduced relative to the ini-
tial energy Ei

e by the energy E f
m of the forward-propagating

magnons generated by scattering, while the energy Et
e of

the transmitted component is reduced by the energy Eb
m of

the backward-propagating magnons. Here, the term energy
refers to the expectation value of energy of the correspond-
ing quantum-mechanical state rather than the net energy
carried by the wave. Thus, generation of forward-propagating
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magnons is associated with electron reflection, while gener-
ation of backward-propagating magnons—with the forward
scattering of electrons, described by the relations

Ei
e = E f (b)

m + Er(t )
e , ki

e = k f (b)
m + kr(t )

e (2)

between the energies and the momenta of the quasiparticles
involved in the corresponding scattering processes. To con-
firm our interpretation, we solved these equations using the
magnon and the electron dispersions. For instance, the equa-
tion for the momentum kt

e of the transmitted electron is

b − SμBB − Jsd + 4J cos
(
ki

ea − kt
ea

)

2
[

cos
(
kt

ea
) − cos(ki

ea)
] = 0. (3)

Its numeric solution is consistent with Fig. 3(c) [40]. The first
relation in Eq. (2) describes energy conservation, as expected
for the time-independent Hamiltonian Eq. (1). However, its
translation symmetry is broken by the spin chain, so the mo-
mentum needs not be conserved. Indeed, the momentum of
the forward-propagating majority electron becomes reduced
after scattering, as expected since its energy is reduced due to
magnon generation [see Fig. 2(d)]. However, the generated
magnon with momentum kb

m propagates backward, i.e., the
total momentum is reduced in this process. Nevertheless, the
momentum relation in Eq. (2) is governed by the same spatial
interference between the spin wave and the incident/scattered
electron wave functions as in the momentum-conserving pro-
cesses, and therefore, for simplicity, we call it the momentum
conservation condition. Roughness of the magnetic interfaces
can be expected to partially relax the constraints imposed by
momentum conservation. However, by analogy to the light
reflection from rough surfaces, we expect that these effects
become averaged out on the length scales of the wavelengths
of magnons generated by ST, which are significantly larger
than the atomic-scale roughness of typical interfaces.

IV. EFFECTS OF MAGNON DISPERSION
ON ELECTRON SCATERING

Electron scattering described by Eq. (2) is governed by the
electron and magnon dispersions. Here, we demonstrate one
of the consequences—dependence of electron scattering and
ST on the magnon dispersion—which is not captured by the
models based on the classical approximation for magnetiza-
tion [40].

Figure 4(a) shows the electron momentum distributions at
the instant t1 for three different values of exchange stiffness
J . The transmitted component is not significantly affected
by the variations of J , as expected since the energy of the
magnons with a small momentum kb

m, which are generated
by the transmitted electrons, is almost independent of the ex-
change stiffness. In contrast, the magnitude of the momentum
of the reflected component rapidly decreases with increasing
J , which is mirrored by the decrease of the momentum k f

m of
the generated magnons [Fig. 4(b)]. This effect is consistent
with the increase of the energy E f

m of these large-momentum
magnons, resulting in a decrease of the scattered electron’s
energy. At J = 1 eV, the momentum of the scattered electron
becomes close to zero, i.e., all of its initial energy is trans-
ferred to the generated magnon.
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The evolution of both the x and the z components of
the electron spin is similar for J = 0.1 eV and J = 0.3 eV,
[Figs. 4(c) and 4(d)]. However, for J = 1 eV, the transfer of
both the x and the z components of spin is reduced. The
electron’s energy is no longer sufficient to generate the largest-
momentum magnons, resulting in a reduced efficiency of ST.
In our simulation, electrons can be scattered into any band
states, so this effect of magnon dispersion on ST becomes
noticeable only at large J , when the magnon energies become
comparable to the electron band energy. In real systems, the
available electron energy is much smaller, as defined by the
occupied Fermi surface. Consequently, a significant depen-
dence of electron scattering and spin dynamics on the magnon
dispersion can be expected even for modest variations of J or
other parameters controlling the magnon dispersion, such as
the magnetic anisotropy or field [40]. We leave analysis of
these effects to future studies.

V. SUMMARY

To summarize, we have shown that energy and momentum
conservation laws define the energies and the momenta of
magnons generated in the ST process. As one of the conse-
quences, the spectral distribution of spin waves generated by
ST in tunnel junctions must significantly differ from those in
metallic systems. The demonstrated relations may provide a
path for the development of laserlike magnetic nanodevices,
where specific magnetic modes are excited by ST due to the
judicious optimization of constraints imposed by the conser-
vation laws.

The demonstrated relations are relevant not only to ST, but
also to orbital and the spin dynamics of electrons scattered
by the ferromagnets. For instance, electron backscattering
at magnetic interfaces, which involves generation of large-
momentum magnons, should strongly depend on the available
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electron energy. The constraints imposed on spin transfer by
the conservation laws are also particularly relevant for AFs,
where the characteristic magnon energies are two orders of
magnitude larger than in ferromagnets.
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