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Isolating transits from molecular dynamics data with application to the equation of state
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In vibration-transit theory of liquid dynamics, the atomic motion consists of two contributions: First-principles
vibrational motion in a 3N-dimensional liquid potential energy valley, plus transits, which operate to move the
atoms between valleys. In one time step, when an atom crosses the intersection between two valleys, moving
a very small distance, the atom’s equilibrium position moves the very large distance between the equilibrium
positions of two neighboring valleys. A figure showing this simultaneous two-part motion is presented early in
this paper. We recognize the motion of the equilibrium position as the transit motion, and we verify that this
motion can be observed and measured. We present a collection of single-atom transit-motion profile graphs
extracted from molecular dynamics liquid trajectories. These graphs confirm that vibrations plus transit motions
constitute nearly the entire liquid atomic motion. While the transit motion is never fully resolved on the liquid
trajectory, it is by definition fully resolved on the trajectory of equilibrium positions. The transit contribution
to thermodynamics is calibrated via two adjustable parameters in the transit partition function. The transit
contribution to the liquid thermal energy is graphed and discussed. The condensed-matter atomic motion theory
of thermodynamic functions for crystals and liquids is outlined with particular attention to recent developments
in the equation-of-state program.
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I. INTRODUCTION

Vibration-transit (VT) theory of liquid dynamics is being
developed primarily for equilibrium thermodynamic func-
tions, for equation-of-state (EOS) applications. The theory
has reached the stage where the foundational principles are
determined, and fixed, and theory accounts for experimental
and molecular dynamics (MD) data to very good accuracy.
It is now an appropriate time to present the theory in detail,
to clarify its unique points of view, and to provide some
guidelines for application. To this end, we planned a series
of three research reports to cover the three major components
of the theory, to be followed by comparisons of theory with
experiment and MD. The first two reports are published, and
are briefly summarized in the following two paragraphs, on
topics relevant to the transit research that follows here.

The long-standing lore of many-body theory is that the po-
tential energy surface (PES) for an N-atom condensed-matter
system consists of an enormous number of 3N-dimensional
intersecting potential energy valleys. Our first VT theory
report, a large-scale quench study of Na at the volume of
the liquid at melt, V l

m, not only verified this lore but added
valuable theoretical information about the potential energy
distributions of the major condensed-matter phases [1]. The
structures lie in two distributions: The lower-lying symmetric
distribution, composed of a wide spread of amorphous solids,
with the stable bcc Na at the bottom, plus the highest-lying
distribution of random structures, narrowly spread and of
overwhelming numerical superiority. Moreover, the potential
energy of the liquid structure, i.e., a representative random
structure, is recognized as the liquid ground-state energy in

classical statistical mechanics. In quantum theory, the vibra-
tional zero-point motion is also included in the ground state.
Many additional informative notes are recorded in this report.

In the second VT report, the vibrational theory for one
(any) random potential energy valley is constructed [2]. It is
shown how the vibrational frequencies are calculated, how
they calibrate the Hamiltonian, and how the resulting ther-
modynamic functions are calculated in quantum and classical
statistical mechanics. In addition to these operational proce-
dures, the theoretical concepts underlying the application of
vibrational theory to the liquid state are presented in detail. It
cannot be overemphasized that the entire vibrational theory is
calculated from a single random valley taken from the actual
liquid potential energy surface. The vibrational thermody-
namic functions are therefore from first principles, meaning
no adjustable parameters; every application of this vibrational
theory is 100% predictive. Finally, the vibrational contribution
to liquid thermodynamics is the dominant contribution, which
places the complications all in the small transit contribution.
This construction is classic many-body theory, and it provides
highly accurate statistical mechanical results for the liquid
from a knowledge of just the major physical properties of
transits.

We now turn to transit theory, the subject of this report. In
the early years of VT theory, the emphasis was on the cal-
culation of transit contributions to thermodynamic functions.
This program has been remarkably successful in accounting
for the internal energy and entropy of elemental liquids at the
melting temperature Tm, and to high T ; a summary is provided
in Sec. II of [1]. Transit theory was consolidated in an approx-
imate configuration integral, and the corresponding formulas
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for transit thermodynamics were derived [3]. That work has
since been updated, and we were preparing the update for the
third VT theory report when a breakthrough came on another
front, and changed our priorities.

The only pictures we have of actual transits are from MD
trajectories of Na and Ar at temperatures of 30.0 and 17.1 K,
respectively [4]. The graphs show Cartesian components of
single-atom trajectories versus time t . All the transits show
a common motion: A segment of vibration about a constant
equilibrium position, then a permanent displacement of the
equilibrium position, then a continuation of the vibration
about the new equilibrium position. In passing, we note that
the MD systems studied here, Na and Ar, are indeed liquids in
the transit pictures, because they are moving among random
valleys, which constitute the liquid domain; however, they are
frozen, and metastable.

Some time later, when we looked for transits in liquid Na
at 395 K, a bit above melting, they were not to be seen. This
started a long investigation into what was going on. In time,
we reached the conclusion that changed everything: To see
transits at T � Tm, we shall have to separate the pure vibra-
tional motion from the motion of the equilibrium positions.

In Sec. II, a procedure is established to extract one-atom
transits from MD data, and it is applied to our MD system
for liquid Na at 395 K. Through a set of figures with their
detailed discussions, the character of single-atom transit mo-
tion is illustrated. In Sec. III, a well-developed definition of
the transit motion is assembled from a variety of technical
perspectives. In Sec. IV, a brief update is presented for our
original partition-function formulation of transit thermody-
namics [3]. In Sec. V, the relevance of VT theory to recent
advances in EOS construction technique for crystal and liquid
phases is discussed.

II. RESOLVING TRANSITS

To isolate the motions of the equilibrium positions, we
create a “quench trajectory,” as follows. From the liquid tra-
jectory, the MD system is quenched to its underlying N-atom
equilibrium configuration at every time step. We work with
N = 500. The quench trajectory consists of the set of equilib-
rium positions RK (tn), for atom K with K = 1, 2, . . . , N, at
time steps tn with n = 0, 1, . . . . It is necessary to verify that
this trajectory belongs to the liquid phase, not to an amorphous
solid; this issue is discussed in Sec. IV of [1].

In analyzing the quench trajectory, one must keep in mind
that it does not express atomic motion, but it does express
the motion of the atomic equilibrium positions. Precisely this
point is what enables the quench trajectory to resolve transits.
An illustrative drawing is presented in Fig. 1. Qualitatively,
when a liquid atom K crosses an intervalley intersection, it
moves an ordinary small distance |δrK | on the liquid trajec-
tory. At the same time, the quench trajectory measures the
much larger distance |δRK | between the atom’s initial and
final equilibrium positions. In more detail, Fig. 1 is based
on a simple mean-atom approximation for the vibrational
motion. The atom moves in a three-dimensional spherically
symmetric harmonic well centered on its equilibrium position;
its mean probability density is a spherical surface, which is
projected as a circle in Fig. 1. This part of the description is the

FIG. 1. How a single transit is revealed by the quench trajectory.
Top and side projections of the potential surface of two intersecting
valleys, truncated above, are shown by the enclosing outer lines and
the central intersection lines. The two continuous circular lines show
the trajectory of one atom moving above the potential surface. The
two potential minima are marked with plus signs, and the arrows
pointing to the minima show a sequence of quenches of the atom
from its trajectory to a minimum. The transit is the motion of the
equilibrium position from the initial to the final minimum, left to
right on the horizontal line, of distance δR, occurring when the atom
passes above the intersection. The potential energies are �0 at the
minima, �1 on the atomic trajectory, and �2 on the PES truncation.

beginning of the construction of a transit configuration in-
tegral, to be installed in the VT partition function. Such a
simplified picture is satisfactory for transit theory, since ul-
timately it will be calibrated from MD or experimental data.

Our primary instrument for analyzing the quench trajectory
is the distance graph, dK (tn) versus tn, where

dK (tn) = |RK (tn) − RK (t0)|. (1)

t0 is the start time of a distance graph, and t0 can be chosen
arbitrarily on the quench trajectory. An important point is that
dK (tn) is not a time correlation function. dK (tn) does measure
a correlation, but it is not averaged over atoms K , nor over
start times t0. While a time correlation function carries out
these averages, and returns a sequence of mean values, dK (tn)
presents a single-atom measure of distance versus time. This
level of precision is possible only by evaluating dK (tn) on
the quench trajectory instead of the liquid trajectory. To be
sure, the graphs are noisy, but the physical processes are clear
enough, and that is the information we seek.

We begin by making a quench trajectory long enough for
a good supply of transits, and by making distance graphs for
all N atoms in the MD system, from different start times t0
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FIG. 2. Four distance graphs showing intervalley transits on the
time step t4 − t5. The distance is measured from the equilibrium
position at t0 [see Eq. (1)]. Up to t4 the distance is very small, and
generally can be approximated by zero, while after t5 the distance
is well approximated by a horizontal line at the mean value, plus
standard deviation.

if needed. To isolate each single transit in a short segment
of undisturbed trajectory, we study the first transit of each
distance graph; the reason is given at the end of this section.
In Figs. 2 and 3, the dominant distance increase in one δt of
each graph is identified as the transit. The eight graphs show

FIG. 3. Four distance graphs showing intervalley transits on the
time step t5 − t6. The remaining description is the same as in Fig. 2.

FIG. 4. Eight distance graphs showing intravalley transits on the
same time step. See the discussion in the text.

a uniform behavior in three time intervals, as follows. The
low-lying segment ahead of each transit shows that the atomic
equilibrium position remains close to its initial equilibrium
position, until the first transit appears. The high-lying segment
following each transit shows that the final equilibrium position
also remains constant, with moderate fluctuations. The transit
itself is quite fast, proceeding essentially in a single δt . In our
assessment, all three of these graphical characteristics must be
visually present in order to certify that the graph constitutes a
transit. Obviously, what appears in a distance graph strongly
depends on the value of δt ; trial and error is in order here.

In our system, a transit takes place in one time step. Over
the system, the number of transits in one time step fluctuates,
but our graphs are generally chosen to show a group of transits
in the same time step, for visual clarity of the overall figure.

For a more incisive examination of distance graphs, we
need to separate transits into two qualitative categories. An
intervalley transit is one in which an atom crosses an inter-
valley intersection, and the atom’s initial equilibrium position
moves to its next one, just as shown in Fig. 1. At the same
time, the equilibrium positions of nearby atoms move short
distances in order to maintain a proper liquid structure. These
motions are referred to as intravalley transits.

A collection of intravalley transits, appearing in the same
δt as the intervalley transits of Fig. 2, is shown in Fig. 4. We
have chosen to put transits of less than 1a0 in the intravalley
category. As a result, Figs. 2 and 4 together, or Figs. 3 and 4
together, show one complete distribution, from near the high-
est transit distance observed, down to zero. The separation at
1a0 has only qualitative theoretical significance.

Figure 5 shows a collection of distance graphs in each
of which an intravalley transit appears ahead of an interval-
ley transit. The presence of the earlier short-distance transit
appears to have no effect on the character of the following
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FIG. 5. Six distance graphs showing intravalley transits, each
followed by an intervalley transit. See the discussion in the text.

intervalley transit. But that appearance cannot be substantiated
in Fig. 5. Each atom shows two successive distances, both
measured from a common initial position at t0, but at an
unknown intersection angle. To see the effective interaction
between transits, we need to see the graphs in three dimen-
sions.

In our estimation, the intravalley transits are almost cer-
tainly fluctuations. Their origin is as follows. Each liquid
structure has very strong global correlations, produced by
the constraint of zero force on every atom, together with
the periodic boundary conditions. At T � Tm, all motions of
the equilibrium positions are proceeding in a steady state,
and sampling different configurations, which have signifi-
cant variations in their structural correlations. This produces
system-wide fluctuations in the distance graph of every atom.
At t0, the system is in a single global structure, and some time
is required to build up the fluctuations as tn − t0 increases.
This is the tentative cause of the larger fluctuations after the
transit than before it.

The complete theoretical motion is then described by three
contributions: Vibrational motion of the atoms about fixed
equilibrium positions RK (t0), plus the motion of the equi-
librium positions RK (tn) − RK (t0) due to intervalley transits,
plus ordinary fluctuations about the equilibrium positions
RK (t0), due to intravalley transits over the entire system. Then
VT theory is changed only by the addition of a fluctuation,
normally negligible as a finite-N effect. And the fluctuation
contributes nothing to self-diffusion. Figure 4 supports this
view, since the mean value of the distance remains constant
after the first intravalley transit operates. On the other hand,
Fig. 5 is unable to inform us on this issue.

Occasionally in a distance graph, sometime after the first
transit, dK (tn) decreases again to nearly where the transit be-
gan. The motion is called a “transit return,” or simply “return.”

FIG. 6. Two transit return graphs, in which a transit returns to
near its starting distance. To bring out the underlying graph charac-
ter, approximately constant segments are replaced by mean-segment
horizontal lines. The arrows encompass the set of dots averaged
in one line. In the top graph, the horizontal lines emphasize the
characteristic transit-return shape. In the bottom graph, the horizontal
lines eliminate an oppressive level of noise.

Two graphs are shown in Fig. 6. Partial returns also appear.
The returns are not useful in studying single transits, but on
rare occasions they do show an interesting two-point repeti-
tion where a transit cannot make up its mind on which valley
to take.

One more significant motional effect appears in the dis-
tance graphs, and that is an overlay of scatter in varying
degree. The curves in Figs. 2–5 show scatter at a normal level;
Fig. 7 shows a wider variation. In general, the type of motion
appearing in a distance graph can be seen through the scatter.

As a final discussion of this section, we shall propose
an operational control that will remove uncertainties in the
interpretation of distance graphs. The control is the “First-of-
the-First Transit Rule,” and it applies when one wants to study
single transits of single atoms. There are two parts.

(a) Problem: As observed in Figs. 2–4, we can interpret
the first transit, but we cannot interpret the second transit in
Fig. 5. Solution: In any distance graph, the initial and final
equilibrium segments must be in place, and only the first
transit is kept for study.

(b) Problem: As transits proceed, the atomic equilibrium
positions begin to drift away from their positions at t0. Solu-
tion: In any distance graph, keep transits appearing only in an
early time interval, say until around 10% of the system atoms
have transited.

Our ultimate transit analysis follows the preceding two
rules. Distance graphs were constructed for the 500 atoms
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FIG. 7. Two very noisy distance graphs, converted to useful in-
tervalley transits by averaging out the noise. The horizontal fitted
line transforms a segment of variable data into a single accurately
measured data point. The transit distance δR is the distance from the
point at t4 up to the horizontal line.

in our system, and were examined by eye. Approximately
half of these graphs exhibited the required stationary segment
before and after the transit. Of these acceptable graphs, ap-
proximately 60% were single transits like the ones shown in
Figs. 2–4 and 7. Another 30% were return transits like the
one shown in Fig. 6. While these graphs have various levels
of noise, there were an ultimate 10% of graphs so noisy that
they could not be interpreted. This overall collection of graphs
is rather constant in our studies of one system at a single
temperature. The liquid system studied here is based on an
interatomic pair potential with a long successful history for
crystal and liquid sodium.

III. DEFINING TRANSITS

We can now say that transits in the liquid at T ≈ Tm are
real. They have been extracted from MD data.

From scanning the behavior of many distance graphs, it
is clear that the graphs presented here express the dominant
character of the motion of the atomic equilibrium positions in
the liquid at T around Tm. From the information presented
in Sec. II, we are able to make a quantitative definition of
transits: A single-atom transit is the motion of its equilibrium
position from one potential energy minimum to another. Spec-
ifying this motion makes the definition precise, and clearly
separates the vibrational and transit motions. Some years ago,
we introduced the VT decomposition of the liquid atomic
motion [5]: The atoms undergo vibrational motion about the
equilibrium positions of a static 3N-dimensional potential

energy valley, interspersed with a steady-state macroscopic
motion of the equilibrium positions. This definition is still
correct, but now the second word “motion” can be replaced
by “transit motion.”

The present transits carry their own unique information,
at the microscopic level. Transits observed here are at the
single-atom level, hence they are the characteristic input data
for many-body theory. However, the present transits are seen
only in two dimensions. Eventually, they need to be studied in
three dimensions. This will not be difficult now that transits
are readily extracted from MD data. Ultimately, by bringing
transits into three dimensions, they could in principle be as-
sembled with the 3N-dimensional vibrational motion to create
a characteristic atomic-level motion of liquid dynamics.

From the introduction of the name transits in liquid dy-
namics theory, we have identified it with the motion of atomic
equilibrium positions [last topic in Sec. VI of [5]; Sec. II D
of [6]; text below Fig. 3 of [7]; Eq. (9) and following text of
[8]]. In the 3N-dimensional potential energy surface, an atom
moves from one valley to another by crossing the intervalley
intersection. Occasionally we have referred to this crossing
as a transit, because with the crossing the atom’s equilibrium
position moves from one valley to another. However, this
second usage differs noticeably from the first, and we shall
remove it from our lexicon.

It is now clear why we could not find transits on the liquid
trajectory at T � Tm. The transit motion appears in one δt in
Fig. 1, and in the distance graphs of Sec. II. On the liquid
trajectory, after a transit, an atom moves over its new potential
energy surface, remaining distant from the equilibrium posi-
tion, as shown in Fig. 1. The liquid trajectory incorporates
the transit motion in approximately the time it takes for the
atom to move once around its circle in Fig. 1. That time is
measured in the mean-square displacement as 60δt (see Table
1 and figures showing τRW in [7]); so the liquid trajectory is
very slow to incorporate the transit motion, too slow for visual
resolution of the transit. We can remove this problem entirely
only by working with the quench trajectory.

Two well-known historical markers pointed the direction
to where we are today. Almost a century ago, Frenkel [9,10]
argued that the motion of a liquid atom consists of approx-
imately harmonic oscillations about an equilibrium point,
while the equilibrium point itself jumps from time to time.
Half a century later, Stillinger and Weber [11,12] suggested
that the equilibrium properties of liquids result from vibra-
tional excitations within, and shifting equilibria between, the
inherent structures. However, the road to the present was not a
straight line. To arrive where we are today, it was necessary to
uncover the first-principles 3N-dimensional vibrational theory
that had always belonged to the liquid, and combine it with
experimental data to isolate, and then define, the remaining
(transit) motion. The nontrivial “isolate and define” process is
shown in Fig. 1.

IV. TRANSITS AND THE EOS

Here we present a brief update on transit thermodynamics
theory. This is intended to fill the gap in our three-part series
on advances in VT theory, created when we chose to make the
present report about transits observed in the liquid at T � Tm.
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FIG. 8. The internal energy measured from �l
0 vs T . Dots are

UMD(T ), heavy line is 3kBT , and �tr(T ) is dots minus line, according
to Eq. (4). �tr(T ) is zero up to the start of self-diffusion at TD ≈
160 K, is maximum at the transit scaling temperature θtr = 570 K,
and curves downward and goes negative at T around 1100 K (see
Fig. 1 of [2]).

The transits discussed in this section are the mean transits
formulated from a configuration integral [3], and in terms of
which all transit thermodynamic functions are constructed.
The newly observed transits described in Secs. II and III are
presumably the raw material for the transits discussed here.

We shall work in classical statistical mechanics, at the
fixed volume V l

m. The internal energies from VT theory and
MD, respectively, are UVT(T ) and UMD(T ). The VT theory
equation is

UVT(T ) = �l
0 + Uvib(T ) + �tr(T ), (2)

where �l
0 is the structural potential energy, Uvib(T ) is the

vibrational internal energy, and �tr(T ) is the transit contri-
bution, and is pure potential energy. To apply Eq. (2) to the
EOS, it is necessary to calibrate the terms on the right side.

At T = 0, �l
0 is the only nonzero term on the right side

of Eq. (2), in classical statistical mechanics. Notes on the cali-
bration of �l

0 in DFT calculations are provided in Appendix B
of [13] and the supplemental material of [14]. It is important
that �l

0 is taken from the potential energy valley that is given
to the Hamiltonian (see paragraph 1 of Sec. III of [2]).

The vibrational potential surface is the entire liquid poten-
tial energy up to the level where transits appear in the atomic
motion. Also, Uvib(T ) is 3kBT at all T . Therefore, the system
internal energy is

UVT(T ) = �l
0 + 3kBT (3)

for T up to where transits contribute significantly to the po-
tential energy. This behavior is numerically verified in Fig. 8,
where UVT(T ) and UMD(T ) are graphed versus T : UMD(T )
stays with 3kBT to around 160 K.

Upon increasing T from zero, two transit properties be-
come observable at the common temperature TD ≈ 160 K.
The transit energy �tr(T ) and self-diffusion coefficient D(T )
both increase from zero at TD [see Fig. 10 of [15] for the D(T )
graph]. By definition, the vibrational motion has no diffusive
component. We conclude that transits are entirely responsible
for self-diffusion.

At T > TD, UVT(T ) is given by Eq. (2). To evaluate �tr(T )
from Eq. (2), we set UVT(T ) = UMD(T ). Equation (2) then
becomes

�tr(T ) = UMD(T ) − �l
0 − 3kBT . (4)

Figure 8 shows the calibration of �tr(T ), directly from
UMD(T ).

Our first calibration procedure was developed to simulta-
neously calibrate 13 elemental liquids, whose �tr(T ) follow
a common temperature-scaling behavior [3]. This �tr(T ) is
calibrated with two element-specific parameters, namely the
scaling temperature θtr and the transit potential energy ε. We
have developed a simpler but much more flexible procedure to
calibrate one liquid at a time, without reference to scaling, but
with the same calibration parameters. This procedure employs
Eq. (4) to evaluate �tr(T ).

The last step is to calibrate and test Eq. (4) as follows.
As the two parameters are varied, the error on the right side
of Eq. (4), i.e., the error in UMD(T ) − �l

0, can be mapped.
The map can be used to find the best fit to UMD(T ) over any
chosen range of temperature, to the liquid phase boundary and
beyond. Moreover, the map will give notice of where the the-
ory begins to fail, and will assist in finding the cause. Finally,
since we have thermodynamic consistency over the complete
VT formulation, any pair of calibrated parameters θtr and ε

can be tested simultaneously for additional thermodynamic
functions, e.g., the entropy and so on.

When the calibration of �tr(T ) is accomplished, we have
Eq. (2) for the liquid energy UVT(T ), where in Fig. 8 Uvib(T ) is
the line at 3kBT , and adding �tr(T ) produces a very good fit of
UVT(T ) to the dots. Thermodynamic consistency then certifies
an accurate curve for the specific heat CV (T ) as well. Figure 8
also shows the key character of VT theory wherein the vi-
brational energy dominates the total energy, while the transit
contribution is only around 10% of the total. This construction
is classic many-body theory, with the major contribution being
first principles and tractable, and the complicated contribution
being small and subject to continued research. Further dis-
cussion of VT thermodynamics may be found in [3,5,13,14].
We are currently working through VT theory at increasing
temperatures, accounting for thermodynamic functions as far
as we can, to where theory falls below the MD data and the
system enters the liquid-to-gas regime.

V. VT THEORY AND THE EOS

Our intention in this last section is to briefly compare two
theoretical procedures for the calculation of thermodynamic
functions, the procedure from many-body theory on the one
hand, and that from EOS research on the other. Our primary
concern here is the low-temperature phases, crystals and the
liquid. The many-body theory of atomic motion in a crystal,
and the corresponding statistical mechanical formulation of
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thermodynamic functions, is known as lattice dynamics. This
theory is first principles, based entirely on the vibrational po-
tential energy surface of the crystal. Just as in the crystal, the
liquid also has a 3N-dimensional harmonic potential energy
surface rising from the minima of the liquid structure. In VT
theory, the liquid atomic motion is again first principles, based
on the vibrational surface, plus transits, which move the atoms
among potential surface equilibrium positions.

The EOS cold curve is the lattice-dynamics structure
potential energy of the lowest-lying crystal at T = 0 as a
function of compression (see the early work of [16]). In the
last several years, EOS research has investigated the appli-
cation of lattice-dynamic phonon densities of state (DOSs)
to the EOS construction [17–20]. All these calculations are
first principles. The temperature dependence of the phonon
data is generally negligible, because crystals exist at low
temperatures. On the other hand, the large volume variations
required in EOS applications provide a computational chal-
lenge to the phonon DOS calculations. For each crystal at each
volume, the information in one phonon DOS graph encodes
the vibrational contributions to all thermodynamic functions
at all temperatures. The authors were able to conclude that
their EOS applications are treated within the lattice-dynamic
framework [19].

For the liquid phase, the situation is quite different from
the crystal phases. Allowing a rather broad generalization,
there is a commonly used procedure, and perhaps the most
well-tested one, for the liquid EOS. That is to employ a Mie-
Grüneisen EOS in the vicinity of the liquid-crystal interface,
and interpolate it with appropriate modifications all the way to
the ideal gas. This liquid-phase model is employed beyond the
crystal-phase studies mentioned above [17–19]. An analytic
Mie-Grüneisen EOS has also been constructed for the same
application [21]. An old parametrized interpolation model
running from crystal to ideal gas is also in common usage
[20]. The temperature range spanned by these models is very
large, and covers the major behaviors of liquid, gas, and ideal
gas. We shall return to this point of departure shortly below.

The phonon theory of liquid dynamics is being developed
from a different point of view (for a review, see [22]). The
thermal energy is attributed to a Debye distribution of frequen-

cies [23], and self-diffusion is accounted for by a modification
of the lowest-frequency transverse modes [24–26]. A recent
formulation for all temperatures includes solid, liquid, and
gas phases, and culminates in a classical hard-sphere system
representing the ideal gas [27]. With the present transit study,
together with the results of current work on liquid thermody-
namics, a detailed comparison of VT theory and the phonon
theory becomes appropriate, and will be included in our next
research report.

Our ultimate conclusion follows. The crystal EOS can
be calculated from lattice dynamics in first principles. The
higher-lying liquid EOS is generally calculated from a Mie-
Grüneisen formulation. As temperature increases from Tm, the
atoms move increasingly above intervalley intersections, and
the vibrational motion disintegrates. There is no phase change
here, but disappearance of the liquid state is observable and
has to be accounted for as temperature continues to increase.
This is accomplished through a slowly operating modifica-
tion of the Mie-Grüneisen EOS. Further modifications will
be required to carry the system to the ideal gas. Now, how-
ever, a new paradigm is available, or soon shall be. With
VT theory, one can add a second well-defined first-principles
liquid phase to the EOS foundation of crystal phases. In
our present liquid Na system, liquid theory is accurate for
temperatures to around 8Tm. The condensed-matter crystal-
plus-liquid EOS will therefore be accurate for temperatures
to around 8Tm before having to start the Mie-Grüneisen EOS.
This will limit the demands on that EOS. This should also
allow an increase in accuracy, because the disintegration
of the liquid vibrational motion is explicitly accounted for
by transits.
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