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Non-Arrhenius diffusion in bcc titanium: Vacancy-interstitialcy model
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Anomalous diffusion in some bcc metals is the long-standing topic in material science. In this work, I obtain
the temperature dependence of the self-diffusion coefficient in bcc titanium directly from molecular dynamics
(MD) calculation. MD simulations indicate that both vacancies and self-interstitials contribute to diffusivity in
bcc Ti. The resultant self-diffusion coefficient is non-Arrhenius, but shows less curvature than observed in most
experiments.
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I. INTRODUCTION

According to the classical concepts, diffusion in normal
metals mainly occurs due to the formation and migra-
tion of monovacancies [1]. The diffusion coefficient D can
be expressed by the Arrhenius equation, where the acti-
vation energy Q is strongly correlated with the melting
temperature Tm:

D = D0 exp
(
− Q

kbT

)
= D0 exp

(
−κTm

kbT

)
. (1)

However, the characteristic values of κ in some anomalous
bcc metals (Ti, Zr, Hf, U, Ce, Gd, La, Pr, Pu, Yb) are 1.5–2
times smaller than in normal metals. The D0’s are several
orders of magnitude too small [2–4].

The strong non-Arrhenius dependence of the diffusion co-
efficient is additionally observed for bcc Ti and Zr, as the
temperature range for their phase stability is quite large. One
common feature for all anomalous metals is that the bcc phase
exists only at high temperatures or pressures and is mechani-
cally unstable at 0 K.

Two main groups of mechanisms are discussed in the lit-
erature to explain the curvature in the Arrhenius plot [2,3,5].
The first category involves extrinsic defects to explain the high
diffusivity at low temperatures; - enhanced diffusion along
grain boundaries or dislocations, nonequilibrium defects due
to phase transitions, or extrinsic vacancies introduced by im-
purity atoms. The second group focuses on intrinsic defects
and their properties near the melting point. This includes
the formation of divacancies, self-interstitials, or metastable
ω-phase nuclei. Despite considerable efforts, there is no un-
ambiguous experimental evidence for these versions.

Modeling of diffusion in such systems also has several
difficulties. The standard zero-temperature density functional
theory (DFT) methods are inadequate for calculations of the
defect formation and migration enthalpies and entropies. Free
energy calculations of the ideal lattice are also challenging [6].
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Direct calculation of the diffusion coefficient from molecular
dynamics (MD) is also difficult, the characteristic values of
D in anomalous metals are 10−14-10−11 m2/s. Even so, bcc
titanium is the most suitable material for studying anomalous
diffusion due to the availability of various experimental data
and different interatomic potentials for MD simulations.

Non-Arrhenius diffusion of 44Ti in bcc Ti was observed by
Murdoc, Lundy, and Stansbury [7], though they could not rule
out the unambiguous explanation of the anomaly. They fit the
data to the sum of two exponential terms:

D = D1 exp
(
− Q1

kbT

)
+ D2 exp

(
− Q2

kbT

)
(2)

with D1 � D2. The first term matches the data at low temper-
atures and the second term contributes to the high-temperature
region.

Walsöe de Reca and Libanati [8] obtained slightly lower
values of the tracer diffusion coefficient and did not confirm
the anomalous temperature behavior. Next, Köhler et al. [9]
confirmed the Murdock results and attributed the anomaly
to the formation of the ω-phase embryos with the following
model:

D = D0 exp
(
− Q

kbT

)
exp

(
GM

0 T 0

kbT 2

)
, (3)

where GM
0 is the free energy of vacancy migration in pure bcc

lattice below a hypothetical instability temperature T 0.
Pontau and Lazarus [10] measured the self-diffusion co-

efficient at three temperatures. Their data agree well with
Murdock and Köhler points at low temperatures, while the
high-temperature point falls well below, close to the Walsöe
del Reca and Libanati curve. Pontau and Lazarus also did not
directly support any model for the anomalous diffusion.

Vogl et al. [11] measured the elementary diffusion jump
with quasielastic neutron scattering and concluded that dif-
fusion is carried almost exclusively by atomic jumps into
vacancies, and an additional 10–15% contribution of next
nearest-neighbor jumps in the [100] direction via a divacancy
or a dumbbell is possible.
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Based on the ab initio and classical MD calculations with
Ko et al. modified embedded atom method (MEAM) po-
tential [12], the authors of a recent Letter [13] suggested
that the migration of vacancies and the concerted migration
of atoms may explain the anomalous non-Arrhenius tem-
perature dependence of the self-diffusion coefficient in bcc
Ti. The concerted migration of atoms was also observed by
Belonoshko et al. in bcc Fe at extreme temperatures and
pressures [14]. The total self-diffusion coefficient in Ref. [13]
is expressed as

D = cvac
e Dvac + (

1 − cvac
e

)
Dc, (4)

where cvac
e is the thermal equilibrium concentration of vacan-

cies, Dvac is the diffusivity of an individual vacancy, Dc is
the diffusivity in an ideal lattice without defects. However,
the absolute values of the self-diffusion coefficient in their
work are ten times higher than the experimental data. Good
agreement between the experimental and calculated data is
achieved only on the homologous temperature scale with the
melting temperature Tm = 1651 K, which is calculated in the
original paper of Ko et al. [12]. Recently Dickel et al. [15]
showed that the actual Tm value for this potential is 1719 K
(the experimental value is 1940 K), which worsens the agree-
ment on the homologous temperature scale.

Kadkhodaei and Davariashtiyani [16] used the ab initio
MD and lattice dynamics calculations to get the self-diffusion
coefficient below 1600 K for bcc Ti and below 1700 K for bcc
Zr. They consider vacancy-driven mechanism with temper-
ature dependent vibration frequency and formation entropy.
However, their analysis completely ignores the formation and
migrations of self-interstitials, as well as influence of temper-
ature on the migration enthalpy of vacancies.

In this paper, I use the classical MD and zero-temperature
DFT simulations to show that enhanced diffusion at high
temperatures is the result of self-interstitials contribution to
the monovacancy mechanism. The self-diffusion coefficient
is calculated in two distinct ways. The one involves the di-
rect MD simulations in a slab geometry. The other based on
calculations of the equilibrium concentration of point defects
and their effective diffusivities. Both methods give consistent
results and explain the long-standing problem of anomalous
diffusion in bcc metals. Though the proposed model is not
new and was discussed many times in the literature [3,9,17],
there has been no experimental or theoretical confirmations
so far. I also consider the formation of Frenkel pairs and their
relation to the concerted migration, proposed in Ref. [13].

II. COMPUTATIONAL METHOD

Several classical interatomic potentials based on embedded
atom method (EAM) and MEAM models have been devel-
oped for titanium and its alloys. A MEAM potential for Ti was
created by Baskes and Johnson [18], and it accurately repro-
duces the properties of the hcp α-phase, but the bcc β-phase is
unstable over the entire temperature range. The next version
of this potential [19] also does not yield the hcp-bcc phase
transformation. Further improvement was made by Hennig
et al. [20], who developed the spline MEAM potential for
modeling α, β, and ω phases. Ko et al. [12] developed MEAM
potential for NiTi alloy, focusing on finite-temperature prop-

erties of different phases. Mendelev et al. [17] proposed three
EAM potentials for titanium, one correctly reproduce hcp-bcc
transformation and melting temperature, and two other cor-
rectly describe the properties of defects in the hcp phase.

The MEAM potentials of both Hennig and Kowere were
designed to correctly reproduce the hcp-bcc transition temper-
ature. They observed the dynamic evolution of the bcc phase
to calculate the phase transition temperatures. Dickel et al.
[15] demonstrated that this method systematically underes-
timates the correct hcp-bcc transition temperature Thcp-bcc =
1155 K by hundreds of degrees due to the onset of mechanical
instability in the bcc phase. The free energy method [15] gives
Thcp-bcc = 1720 K, Tm = 1882 K for the Hennig et al. [20]
model and Thcp-bcc = 1460 K, Tm = 1719 K for the Ko et al.
model [12].

Dickel et al. [15] also proposed an alternative MEAM
potential, which correctly describes the thermal properties of
hcp and bcc phase (Thcp-bcc = 1155 K, Tm = 1911 K), but fails
to predict the high-pressure ω phase. The recent many-body
potential by Kartamyshev et al. [21] and the artificial neural-
network potential by Dickel et al. [22] offer even higher
description accuracy, but they are not available in the standard
MD packages.

All MD calculations in this work are performed using
the LAMMPS package [23]. The Dickel et al. [15] MEAM
potential is chosen to describe the interaction between atoms.
The details of the simulations are given in the corresponding
sections. The analysis, post-processing, and visualization of
the data are done using the OVITO package [24].

To additionally validate the results of MD simulations,
the defect formation energies are calculated using the DFT
framework in the CP2K program [25]. The Perdew-Burke-
Ernzerhof approximation [26] is used to the description
of exchange-correlation. The norm-conserving Hartwigsen-
Goedecker-Hutter pseudopotential [27] with 3s23p63d24s2

valence electronic configuration and DZVP-MOLOPT basis
set for titanium are utilized. The supercell for DFT calcula-
tions contains 128 Ti atoms in the bcc phase and 4 × 4 × 4
k-point mesh.

III. RESULTS

A. Self-diffusion coefficient

First, the equilibrium lattice constant of bcc Ti is deter-
mined as a function of temperature using constant pressure-
temperature molecular dynamics. The simulation cell with
2000 atoms and periodic boundary conditions (PBC) in all
directions is used for the simulations.

This model with PBC cannot provide the proper concentra-
tion of vacancies and interstitials, as they are bound to form
only by pairs. They are not equal in real materials and can
be generated by extended defects. The problem is generally
solved by incorporating the vacuum layer in the simulation
cell. In that case, the PBC persist in two directions, and the
free surfaces in the third direction act as the sources and sinks
of point defects.

The initial configuration for diffusion calculations is the
ideal crystal [65 600 atoms in 40 × 40 × 20.5 unit cells with
(001) surface orientation] with the vacuum layer in the z
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direction. The thickness of the vacuum layer is sufficient to
avoid the self-interaction of the surfaces. The self-diffusion
coefficient of bcc Ti is obtained from constant volume-
temperature (NVT) MD calculations of the mean-squared
displacements (MSD) of the bulk atoms 〈r2〉 during the sim-
ulation time t : 〈r2〉 = 6Dt . Nosé-Hoover chains are used to
control the temperature in MD simulations.

Calculations in the slab geometry require the separation of
surface and bulk diffusion. The mobility of atoms is much
higher near the free surfaces, where the thin amorphous layers
are formed. There are also intermediate (sub-surface) layers,
where the concentration of point defect is far from the bulk
value and the diffusion of atoms is somewhat too high.

The simplest approach to this problem is purely geometric,
displacements are calculated only for the atoms that were in
a specific (bulk) region inside the crystal at the beginning of
the simulation. But some of these atoms can move from the
bulk to the surface during the simulation, the resultant self-
diffusion coefficient would be overestimated.

I impose the additional constraint to overcome this prob-
lem: atoms are considered to be “bulk” if they do not leave
the region between zmin and zmax during the whole simulation.
However, some of the excluded atoms have “bulk” component
in their displacements, which is completely lost during such
analysis. If the value of zmax − zmin is too small, the highly-
mobile atoms are not counted and the self-diffusion coefficient
is underestimated. If zmax − zmin is too high, the displacements
of atoms from the sub-surface or even surface layers shift the
diffusion coefficient up.

Firstly, I determine the boundaries of the sub-surface
regions measuring the convergence of point defect concentra-
tion with respect to zmax − zmin (see below in Sec. III B). The
bulk region with equilibrium concentration of point defects is
located between planes with zmax = 48 Å and zmin = 18 Å at
T = 1800 K and T = 1900 K, and between zmax = 53 Å and
zmin = 13 Å at lower temperatures. The same values of zmax

and zmin are used for the calculations of self-diffusion, with
the aforementioned time-dependent constrain.

The MSD curves at different temperatures are shown in
Fig. 1 in a double logarithmic scale. The length of each MD
run is chosen to obtain the linear slope of 〈r2〉: 100 ns for
T = 1300 and 1400 K, 40 ns for T = 1500 K, and 10 ns for
higher temperatures. The diffusion process becomes normal
in about 1 ns above 1600 K, the last 5 ns of the MSD curves
are fitted for these temperatures. For lower temperatures,
10–100 ns calculations are necessary; the fitting is performed
for the last 20 ns at 1500 K, 70 ns at 1400 K, and 60 ns
at 1300 K. The fitting error is estimated as the difference
of the diffusion coefficients obtained from fits over the two
halves of the original fit interval. This method provides the
lower estimate of the self-diffusion coefficient, as some atoms
move inside the bulk region for a limited period of time and
they are excluded from the analysis. However, this estimate is
rather accurate, the increase of bulk thickness by 10 Å (that
is including some subsurface atoms) alters the self-diffusion
coefficient only by 5%.

The results of diffusion coefficient calculations are shown
in Fig. 2. The experimental results are scattered and the results
from MD simulations match different sets of points: Murdock
et al. [7] and Köhler et al. [9] at high temperatures, and the

FIG. 1. Mean-squared displacements of the bulk atoms at differ-
ent temperatures.

lowest values of Walsöe de Reca and Libanatti [8] at low
temperatures.

The non-Arrhenius behavior of the diffusivity in MD
simulations is observed without extrinsic defects: - grain
boundaries, dislocations, nonequilibrium defects, and impu-
rity atoms.

FIG. 2. Temperature dependence of the self-diffusion coefficient
in bcc Ti from the experimental works [7–11] (black symbols) and
the MD calculations (red diamonds, this work). Blue squares and
green triangles denote the contribution of self-interstitials and vacan-
cies respectively. Blue and green lines show the exponential fit, red
line is the sum of these lines.
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A contribution of divacancies and interstitials to self-
diffusion is rarely considered, as their typical formation
energies are too high. However, Mendelev et al. [17] showed
that the self-interstitial formation energy in bcc Ti is smaller
than the vacancy formation energy for their EAM models. The
similar effect was observed in bcc Zr [28] and U [29,30].

Mendelev and Mishin [31] pointed out that the diffusion
coefficient D can be also determined from the effective dif-
fusivity Deff of a single defect and the actual equilibrium
concentration of defects ce at a given temperature: D = ceDeff.
If multiple types of defects are present in the simulation box,
e.g. vacancies and self-interstitials, the total diffusion coeffi-
cient can be split into two terms:

D = cvac
e Dvac

eff + cint
e Dint

eff. (5)

All values in Eq. (5) can be calculated directly from MD,
which allows testing this two-diffusion model.

B. The mechanisms of self-diffusion

1. The concentration of point defects

The accurate determination of the total number of vacan-
cies and self-interstitials contains many pitfalls. Normally
these quantities are determined for the lattice without thermal
fluctuations. There are several methods to identify them at
finite temperatures.

Forsblom and Gromvall [32] used Voronoi decomposition
to count the number of atoms at each Wigner-Seitz cell.
Mendelev, Mishin, and Bokshtein [28,31] counted the defects
by identifying the nearest lattice site for each atom. Davis,
Belonoshko, and Johansson [33] proposed a stochastic opti-
mization algorithm to locate atomic vacancies. In this work, I
use Wigner-Seitz defect analysis tool in the OVITO package
[24] to calculate the average number of defects inside the
specific volume between zmin and zmax along the MD trajecto-
ries from the previous section. The concentration of defects is
nonequilibrium in the subsurface region, and careful analysis
of convergence with respect to the thickness of bulk volume
is required. The convergence criterion is defined as the change
in concentration by less than 1% with the change of the thick-
ness by 4 Å. The inset in Fig. 3 shows the convergence of
point defect concentration at 1400 K, the resultant boundaries
of the bulk region are given in the previous section.

Calculation of the defects concentration at high tempera-
tures contains additional difficulties. Pairs of vacancies and
self-interstitials (Frenkel pairs) are created in the material
through thermal fluctuations, as in superheated crystals before
melting [32]. However, the crystal remains stable and no signs
of melting are observed. The considered temperatures are
also below the actual melting temperature for this MEAM
potential (1911 K).

The Frenkel pair could form by displacement of indi-
vidual atom or even atomic chain. If the pair annihilates
by moving the shifted atom or chain of atoms backward,
it does not contribute to the self-diffusion, but increase
the appearing concentration of defects and should be ex-
cluded from the analysis. Vibrations of individual atoms
could be detected and excluded by identifying the pairs of
vacancies and self-interstitials within the nearest-neighbor
distance. But the extended pairs (due to the vibrations of

FIG. 3. The equilibrium concentration of vacancies and intersti-
tials at different temperatures. Filled blue squares and red triangles
represent the data for self-interstitials and vacancies correspondingly
(this work). Open triangles show the results of anharmonic DFT
calculations [16]. Circles and open squares represent the data for the
Ko et al. [12] potential (data are taken from Ref. [13]). The straight
lines denote the exponential fits for the corresponding points. The
inset shows the convergence of concentrations with respect to the
thickness of the bulk region at 1400 K.

atomic chains) are indistinguishable from the regular diffusing
defects, as Wigner-Seitz analysis of defects relies on instan-
taneous atomic positions. Such extended defects inevitable
enhance the concentration, but do not really participate in
self-diffusion.

The Frenkel pair could also dissociate, forming the inde-
pendent diffusing defects. Such events are correctly counted
by Wigner-Seitz analysis, they are discussed in more details
in Sec. III E.

The formation of Frenkel pairs below 1600 K occurs very
rarely, all of the defects come from the surfaces, and the
concentration of diffusing defects is more reliable. The high-
temperature concentrations (above 1600 K) in this work are
obtained by extrapolation, assuming that the Arrhenius equa-
tion for concentration is valid up to the melting point. As can
be seen from Fig. 3, monovacancy is the main type of point
defects in bcc Ti. Divacancies are not observed even at high
temperatures. The concentration of self-interstitials is high
enough near the melting point and they can contribute to the
diffusion process.

The vacancy formation energy Evac
f from the exponential

fit of the vacancy equilibrium concentration is 1.37 eV. The
corresponding self-interstitial formation energy is 1.83 eV.
Anharmonic DFT calculations [16] give slightly lower value
Evac

f = 1.06 eV. The experimental data for comparison are
limited. The only reported value from calorimetric measure-
ments is Evac

f = 1.55 eV and the corresponding concentration
of vacancies at the melting point is 0.017 [34], but the
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FIG. 4. The effective diffusivity as a function of temperature.
Blue squares and red triangles are the data for self-interstitials and
vacancies correspondingly (this work). Open symbols are for Ti1
EAM potential from Ref. [17]. Black circles show the effective diffu-
sivity via the vacancy mechanism for the Ko et al. [12] potential (data
are taken from Ref. [13]). The straight lines denote the exponential
fits for the corresponding points.

contribution of self-interstitials is not considered in such
experiments.

2. The effective diffusion coefficient

Series of NVT MD calculations with N = 2000 atoms and
PBC are performed to calculate the effective self-diffusion
coefficient Deff. It can be calculated from Deff = D/ceff, where
D is the actual diffusion coefficient in the simulation cell and
ceff is the effective concentration of defects. If the single defect
is present in the simulation cell, ceff = 1/N and Deff = DN .

The single defect is introduced in the ideal lattice and
10 ns MD simulation is performed. To reduce the statistical
error, the diffusion coefficient is averaged by 10 independent
runs. The data are well described by the Arrhenius equation
at low temperatures. However, the spontaneous formation of
vacancy-interstitialcy pairs is observed at high temperatures,
as in the slab simulations. This effect does not allow to cor-
rectly calculate the self-diffusion coefficient of an individual
defect. High-temperature data above 1600 K can only be
obtained by extrapolation, as shown in Fig. 4.

The linear regression of ln(Deff ) vs 1/T gives the defect
migration energy. The resultant values for the potential of
Dickel et al. are 0.3 eV for the vacancy migration and 0.16 eV
for the self-interstitial migration. Mendelev et al. [17] ob-
tained similar values using their Ti1 EAM potential: 0.29
and 0.11 eV correspondingly. DFT calculations [16] yield
the value of 0.274 eV for the vacancy migration, which is
very close to these data. Sangiovani et al. [13] found the
lower value 0.19 eV using the Ko et al. [12] MEAM poten-
tial. Calculations of the self-interstitial migration with this

potential give the result, which is very close to the
Mendelev data.

The effective diffusivity of the self-interstitials is 1.5–2
higher than the vacancies. That is combined with their
relatively high concentration near the melting point give
the observable contribution to the self-diffusion process in
bcc Ti.

C. Two diffusion model

Combining the concentration of point defects and their
effective diffusivity one can obtain the total self-diffusion
coefficient as the sum of two terms [Eq. (2)]:

D[cm2/s] = 2.49 × 10−3 exp

(
−1.66eV

kbT

)

+ 0.011 exp

(
−1.99eV

kbT

)
. (6)

The first term represents the contribution of vacancies
and the second term represents the contribution of self-
interstitials. The corresponding lines and their sum are
shown in Fig. 2. At low temperature the resultant curve
almost exactly coincides with the self-diffusion coefficient
from the direct MD calculations. There exists a discrep-
ancy at high temperatures, where the concentrations of
defects and the effective self-diffusion coefficients are ob-
tained by the extrapolation. Possible nonlinear temperature
dependence of the defect formation and migration free en-
ergies may shift pre-exponential factors in Eq. (6) at high
temperatures.

The pre-exponential factor for the vacancy mechanism is
about five times lower than for the interstitialcy mechanism.
However, the vacancy mechanism dominates in the whole
temperature range due to the lower activation energy. Highly-
mobile self-interstitials contribute to the diffusion even near
the hcp-bcc transition temperature, where they provide about
10% to the total diffusivity.

D. Point defect formation energies from DFT calculations

The equilibrium concentration of vacancies from MD cal-
culations agrees well with the anharmonic DFT calculations
[16]. To additionally validate the formation energy of self-
interstitials, I perform the series of the DFT simulations. The
formation energy of a single vacancy is defined as Evac

f =
EN−1 − N−1

N EN , where EN is the energy of the ideal lat-
tice with N atoms and EN−1 is the energy of the supercell
with one vacancy. Similarly for the self-interstitial, E int

f =
EN+1 − N+1

N EN .
As bcc Ti lattice is unstable at 0 K, the relaxation of atomic

position yields the unrealistic structure. To avoid this issue, a
geometric optimization is performed only for the 14 nearest
atoms to the defect (two nearest shells), meanwhile the
electron density optimization is performed using all atoms.
The similar method was used by Beeler et al. [29] to calculate
the defect formation energies for bcc γ -U. They also
calculate the defect formation energies for bcc Mo,
which is mechanically stable at 0 K, and showed
that the error of the shell method does not exceed
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TABLE I. The formation energy of defects (in eV) from DFT
calculations.

Vacancy 1.1
〈100〉 dumbbell 1.97
〈110〉 dumbbell 1.76
〈111〉 dumbbell 2.12
Octahedral site interstitial 2.51
Tetrahedral site interstitial 2.39

10–15%. However, it incorrectly predicts the ground
state configuration of the dumbbell (〈110〉 instead
of 〈111〉).

The equilibrium lattice constant of the system is calculated
by minimizing the energy with the volume of the super-
cell, keeping the relative positions of atoms fixed. Using the
equilibrium lattice parameter, a single atom is removed (or
added) to the supercell, EN−1 and EN+1 are calculated using
the method described above. The resultant energies are given
in Table I.

This approximate method gives the vacancy formation en-
ergy 1.1 eV very close to result from precise anharmonic DFT
calculations [16] (1.06 eV). The 〈110〉 dumbbell configura-
tion has the lowest formation energy 1.76 eV, which is also
much lower than the typical values in bcc transitions metals
[35,36]. MD calculations in this work give the similar value
of 1.83 eV.

E. Formation of vacancy-interstitialcy pairs

In this section, I discuss the formation of Frenkel pairs
in bcc Ti at high temperatures and the concerted mechanism
proposed in Ref. [13]. These defects are formed via thermal
fluctuations, the effect becomes especially significant above
1600 K. The formation of vacancy-interstitialcy pair can be
observed even in the ideal crystal with PBC in all directions.
Most of the pairs are unstable, they annihilate after several
MD steps and do not participate in the self-diffusion. But
sometimes defects in the pair become fully independent and
start to diffuse through the crystal. The spontaneous exchange
of atoms via the formation of Frenkel was observed in bcc
Zr by Willaime and Massobrio [37]. Similar observations
were made by Fransson and Erhart [38]. Finally, the de-
fects annihilate on the free surfaces or recombine with other
defects in the crystal. The defects from the same pair can
also recombine with each other, forming the specific closed-
loop path.

The example of such process is shown in Fig. 5. Only the
atoms involved in the diffusion are shown. At the initial stage,
one of the atoms in the lattice is displaced from the equilib-
rium position, forming the self-interstitial and the vacancy
[Fig. 5(a)]. Then the defects start to move in the opposite
directions [Figs. 5(b) and 5(c)]. At some point they switch
the course and start to “attract” each other [Figs. 5(d) and
5(e)]. Finally, they get together and recombine [Fig. 5(f)]. The
trajectories of the displaced atoms form the closed-loop path.
This example shows the diffusion of relatively large number
of atoms for the potential of Dickel et al. at 1800 K. Similar
pictures could be also obtained with the Ko et al. potential. See

FIG. 5. The formation and recombination of the vacancy-
interstitialcy pair in bcc Ti. Only the atoms with significant
displacements are shown (red spheres). The green cube is the va-
cancy and the blue spheres represent the self-interstitial defect. The
blue lines show the trajectories of diffusing atoms. The remaining
atoms are semitransparent.

Supplemental Material [39] for the videos illustrating such
processes. Movie S1 highlights the process shown in Fig. 5.
Movies S2 and S3 demonstrate similar process for the Ko et al.
potential at 1500 K.

Sangiovani et al. [13] observed similar motion of atoms
and proposed the special concerted diffusion coefficient Dc

associated with this mechanism. They also determined the
equilibrium concentration of vacancies and interstitials at
different temperatures and estimated the corresponding free
energies of defect formation from the linear regression of
ln(ce) vs 1/T : 1.0 and 3.5 eV. They concluded the resultant
free energy of Frenkel pair formation 4.5 eV is too high to ex-
plain the concerted migration. However, such regression gives
only the enthalpies (or energies at zero pressure) of defect
formation. The formation free energy should be calculated at
each temperature from the absolute values of concentrations.
For example, from their absolute concentrations of defects at
T = 1500 K one obtains Gvac

f = 1.1 eV and Gint
f = 1.24 eV.

The resultant free energy of Frenkel pair formation is equal to
2.34 eV, which does not prohibit the spontaneous formation
of the pairs for the Ko et al. potential.

IV. CONCLUSION

In summary, I show that there are two competing diffusion
mechanisms in bcc Ti. In addition to the standard monova-
cancy mechanism, the interstitialcy mechanism contributes
to self-diffusion, that has been considered improbable for a
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long time. The vacancy mechanism dominates in the whole
temperature range, while the self-interstitials mainly con-
tribute to the high-temperature region. That contribution of the
self-interstitials gives the slight curvature of the self-diffusion
coefficient in the Arrhenius plot.

The self-interstitials in temperature-stabilized bcc Ti have
the fairly low formation energy E int

f compared to other stable
bcc metals. The concentration of self-interstitials is close to
the vacancy concentration near the melting point. This leads

to the low formation energy of Frenkel pairs, which act as an
additional source of point defects.
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