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Polarization of domain boundaries in SrTiO3 studied by layer group and order-parameter symmetry
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Based on a recently developed combination of layer group analysis with order-parameter symmetry, we study
the polarity of antiphase domain boundaries (APBs) and ferroelastic twin boundaries (TBs) in SrTiO3. In addition
to the celebrated layer group analysis of domain twins, the present method allows us to investigate tensor
properties of domain walls also for the case where order-parameter variables other than the spontaneous ones
are active. We find that antiphase boundaries in SrTiO3 can carry a polarization if in addition to the spontaneous
order parameter (0, 0, φs ) a second component, i.e., (φ1, 0, φs ), develops within the domain wall. This result,
which is solely based on symmetry arguments, strongly suggests that polarization in APBs is possible if a
phase transition from an Ising-type wall to a Néel- or Bloch-like wall occurs. This is in very good agreement
with previous calculations based on Landau-Ginzburg free energy expansions including biquadratic (∝PiPjφkφl )

[A. K. Tagantsev et al. Phys. Rev. B 64, 224107 (2001)] and flexoelectric (∝Pk
∂ui j

∂ξ
) coupling terms [A. N.

Morozovska et al. Phys. Rev. B. 85, 094107 (2012)]. The present results also unveil a close connection between
the recently discovered macroscopic polarization in antiferrodistortive cycloids of ferroelastic domain walls of
SrTiO3 and a mechanism for explaining polarization of APBs.

DOI: 10.1103/PhysRevB.102.184101

I. INTRODUCTION

Since the discovery of novel domain wall (DW) properties,
like conducting DWs in insulating BaTiO3 [1] or polarity in
nonpolar perovskites CaTiO3 [2–4], SrTiO3 [5], and LaAlO3

[6], domain walls have attracted much attention [7] for their
potential use in nanoelectronic devices [8]. Translational an-
tiphase boundaries below antiferrodistortive phase transitions
have been considered specifically interesting due to their
ability to carry DW polarization [9]. In the antiferroelectric
PbZrO3 there is experimental evidence that antiphase bound-
aries (APBs) are polar [10,11]. Moreover, based on ab initio
calculations the authors claimed [10] that the DW polariza-
tion there can be switched, supporting the ferroelectric nature
of the APB. Since APBs are an order of magnitude thinner
(few unit cells) than magnetic domain walls, this would make
APBs enormously interesting for building high-density (nano-
ferroelectric) memories.

SrTiO3 is another example where polarization inside APBs
was predicted by Tagantsev et al. [12] below ∼40 K. These
authors have created the terms “easy” and “hard” APBs, for
domain walls perpendicular or parallel to the tetragonal c
axis, respectively. They found [12] that “easy” APBs are of
Ising type (only one component of the order parameter is
involved) with zero polarization inside the wall, whereas the
order-parameter profile of “hard” APBs develops already be-
low Tc = 105 K a second component, like in Néel walls. The

*wilfried.schranz@univie.ac.at

authors have further shown that “hard” APBs can host a po-
larization component P3 (parallel to the tetragonal c axis) as a
result of a local ferroelectric transition below ≈40 K, which is
induced by biquadratic coupling terms bi jkl PiPjφkφl between
the primary order parameter (OP) φk and the polarization Pi in
the free energy expansion.

Later it was shown [9] that flexoelectric coupling terms
fi jkl Pk

∂ui j

∂xl
between the polarization and the strain-gradient

∇ui j can induce a DW polarization in SrTiO3 already below
Tc = 105 K.

Ab initio calculations [13] have confirmed the existence
of a polarization component P3 in “hard” APBs of SrTiO3,
though obtaining a different structure of the DWs (nearly Ising
type) as compared to the results from a phenomenological
approach [9] including flexoelectric coupling terms, which
where found to be of Néel type.

In line with earlier work of Eliseev et al. [14], Schiaffino
and Stengel [15] identified two further mechanisms that con-
tribute to DW polarity in ferroelastic twin walls of SrTiO3: A
direct “rotopolar” coupling of the type WrsPr ( ∂φr

∂s φs − ∂φs

∂r φr )
(r is parallel to the twin wall and s is perpendicular to the twin
wall) and a trilinear coupling ∝PruTi

3 φs (s points along the
DW normal) that is mediated by the antiferroelectric displace-
ments uTi

3 of the Ti atoms. Such terms break the macroscopic
inversion symmetry and allow for a macroscopic polarization
of a system of parallel twin walls in SrTiO3, thus opening
a promising perspective for DW engineering. Interestingly
enough, the present analysis shows that similar coupling terms
are important for the description of polarization in APBs
also.
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FIG. 1. Relation between cubic Pm3̄m and tetragonal I4/mcm
unit cells of SrTiO3. Note that we are working entirely in the cubic
reference frame, i.e., (x1, x2, x3). Sometimes we use also the notation
(xc, yc, zc ). The origin (0,0,0) is chosen at Ti atoms (light blue), Sr
atoms (green) at ( a

2 , a
2 , a

2 ), and O atoms (red) at ( a
2 , 0, 0) and equiv-

alent positions. This and similar drawings were made with VESTA

[33].

Although predicted by various theoretical methods, up to
now there exists no direct measurement of a DW polarization
in SrTiO3. However, experimental observations of piezo-
electric resonance [5] starting below ≈80 K and becoming
stronger below ≈40 K have been interpreted as a signature of
the polar character of the DWs. Perhaps the most direct proof
for the polar character of twin boundaries below ≈40 K in
SrTiO3 comes from recent measurements [16] of the current
flow from individual twin walls in response to an applied local
stress.

From what is said above, it is clear that DWs in SrTiO3

are interesting candidates for future applications. Given the
above-mentioned variety of coupling mechanisms for DW
polarization, we felt it is the right time to apply our re-
cently developed methods [17] to SrTiO3. In the present
work we show that a combination of OP symmetries with
layer group analysis [18] yields valuable information on
the symmetry-allowed polarization components of individual
DWs. In addition we identify the minimal coupling terms
which are needed for modeling polarity of translational APBs
and ferroelastic twin boundaries (TBs) of SrTiO3. The present
method can be useful to link microscopic DW theories to
phenomenological models.

II. GROUP-THEORETICAL CONSIDERATIONS
OF THE PHASE TRANSITION IN SrTiO3

SrTiO3 undergoes an antiferrodistortive structural
phase transition [19] at Tc = 105 K from a simple cubic
room-temperature phase with space group G = Pm3̄m to
a tetragonal phase F = I4/mcm, where F < G. The cubic
space group is symmorphic, i.e., G = ∪g∈m3̄mTc(g|000),
where Tc = {n1ac

1 + n2ac
2 + n3ac

3} is the translation group
with ac

1 = (a, 0, 0), ac
2 = (0, a, 0), and ac

3 = (0, 0, a), with
a = 3.905 Å. The phase transition is due to static rotations
(0, 0, φ3) of the TiO6 octahedra around the tetragonal c-axis,
which are alternating (0, 0,±φ3) along all three cubic direc-
tions (see Fig. 1 for the present setting). Due to these staggered

rotations the translations (2n1 + 1)(a, 0, 0), (2n2 +
1)(0, a, 0), and (2n3 + 1)(0, 0, a) are lost.

The tetragonal lattice is then related to the cu-
bic one (Fig. 1) as Tt = {ac

1 + ac
2,−ac

1 + ac
2, ac

2 + ac
3} =

{(a, a, 0), (−a, a, 0), (0, a, a)}. The phase transition occurs at
the R point of the Brillouin zone, with the active irrep R+

4 and
kR = 2π

a ( 1
2

1
2

1
2 ). Since we perform the calculations entirely in

order-parameter space, we give the explicit form of R+
4 in

Table I.
Due to the symmetry reduction at the phase transition, the

distorted phase can appear in N = 6 domain states (DSs),
which can be calculated from the following simple formula
[20]:

N = |G|
|F | × |VF |

|VG| = 3 × 2 = 6, (1)

where |G|, |F | is the order of the point group of G and F ,
respectively and |VG|, |VF | are the volumes of the primitive
unit cells of the groups G and F , respectively. In the present
case |G| = 48, |F | = 16 and the tetragonal primitive unit cell
is twice the cubic unit cell, hence N = 6.

We can therefore designate the six DSs of SrTiO3 as
11, 12, 21, 22, 31, 32, where the first number denotes the three
different orientation states 1, 2, 3 (Fig. 2) and the subscript
specifies one of the two different translational states within
each orientation state.

In Fig. 3 the six domain states are represented as points
in order-parameter space, i.e., 11 = (φ, 0, 0), 21 = (0, φ, 0),
31 = (0, 0, φ), etc. The corresponding domain walls which
connect the various DSs are shown as lines.

Let us denote the symmetry group of 11 = (φ, 0, 0) by F1.
These are all symmetry elements of Pm3̄m, that leave (φ, 0, 0)
invariant. Using Table I we find

F1 = Tt {(1/000) (2x/000) (2y/00a) (2z/00a)

(4+
x /000) (4−

x /000) (2yz/00a) (2yz̄/00a)

(1̄/000) (mx/000) (my/00a) (mz/00a)

(S−
4x/000) (S+

4x/000) (myz/00a) (myz̄/00a)}. (2)

All other DSs are obtained by application of the symmetry
elements of G\F1, i.e., those which are lost at the transition.
They can also be easily found from Table I by grouping the
symmetry elements which transform (φ, 0, 0) into (−φ, 0, 0),
(0, φ, 0), etc. Table II shows the corresponding decomposition
of G = Pm3̄m into left cosets of F1 = I4x/mxcyzmy.

III. SYMMETRY OF DOMAIN PAIRS
AND DOMAIN TWINS

In this section we present the main steps for the calculation
of all nonequivalent domain twins (DTs) for SrTiO3. We start
with the calculation of all nonequivalent domain pairs (DPs).
DPs represent an intermediate step [21] between DSs and
DTs. For the present purpose, we will consider unordered
DPs, which we denote as

{Si, S j} = {S j, Si}, i �= j (i, j = 1–6). (3)
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TABLE I. Active irreducible representation R+
4 of the cubic space group Pm3̄m = O1

h.

(1/000) (2x/000) (2y/000) (2z/000) (C−
31/000) (C−

32/000) (C−
33/000) (C−

34/000)
(x y z) (x ȳ z̄) (x̄ y z̄) (x̄ ȳ z) (y z x) (y z̄ x̄) (ȳ z x̄) (ȳ z̄ x) OP⎛
⎜⎝1 0 0

0 1 0
0 0 1

⎞
⎟⎠

⎛
⎜⎝1 0 0

0 −1 0
0 0 −1

⎞
⎟⎠

⎛
⎜⎝−1 0 0

0 1 0
0 0 −1

⎞
⎟⎠

⎛
⎜⎝−1 0 0

0 −1 0
0 0 1

⎞
⎟⎠

⎛
⎜⎝0 1 0

0 0 1
1 0 0

⎞
⎟⎠

⎛
⎜⎝ 0 1 0

0 0 −1
−1 0 0

⎞
⎟⎠

⎛
⎜⎝ 0 −1 0

0 0 1
−1 0 0

⎞
⎟⎠

⎛
⎜⎝0 −1 0

0 0 −1
1 0 0

⎞
⎟⎠φ1

φ2

φ3

(C+
31/000) (C+

34/000) (C+
32/000) (C+

33/000) (2x̄y/000) (4+
z /000) (4−

z /000) (2xy/000) OP

(z x y) (z x̄ ȳ) (z̄ x ȳ) (z̄ x̄ y) (ȳ x̄ z̄) (ȳ x z) (y x̄ z) (y x z̄)⎛
⎜⎝0 0 1

1 0 0
0 1 0

⎞
⎟⎠

⎛
⎜⎝ 0 0 1

−1 0 0
0 −1 0

⎞
⎟⎠

⎛
⎜⎝0 0 −1

1 0 0
0 −1 0

⎞
⎟⎠

⎛
⎜⎝ 0 0 −1

−1 0 0
0 1 0

⎞
⎟⎠

⎛
⎜⎝ 0 −1 0

−1 0 0
0 0 −1

⎞
⎟⎠

⎛
⎜⎝0 −1 0

1 0 0
0 0 1

⎞
⎟⎠

⎛
⎜⎝ 0 1 0

−1 0 0
0 0 1

⎞
⎟⎠

⎛
⎜⎝0 1 0

1 0 0
0 0 −1

⎞
⎟⎠ φ1

φ2

φ3

(2yz̄/000) (2yz/000) (4+
x /000) (4−

x /000) (2zx̄/000) (4−
y /000) (2zx/000) (4+

y /000) OP

(x̄ z̄ ȳ) (x̄ z y) (x z̄ y) (x z ȳ) (z̄ ȳ x̄) (z̄ y x) (z ȳ x) (z y x̄)⎛
⎜⎝−1 0 0

0 0 −1
0 −1 0

⎞
⎟⎠

⎛
⎜⎝−1 0 0

0 0 1
0 1 0

⎞
⎟⎠

⎛
⎜⎝1 0 0

0 0 −1
0 1 0

⎞
⎟⎠

⎛
⎜⎝1 0 0

0 0 1
0 −1 0

⎞
⎟⎠

⎛
⎜⎝ 0 0 −1

0 −1 0
−1 0 0

⎞
⎟⎠

⎛
⎜⎝0 0 −1

0 1 0
1 0 0

⎞
⎟⎠

⎛
⎜⎝0 0 1

0 −1 0
1 0 0

⎞
⎟⎠

⎛
⎜⎝ 0 0 1

0 1 0
−1 0 0

⎞
⎟⎠ φ1

φ2

φ3

(1̄/000) (mx/000) (my/000) (mz/000) (S+
61/000) (S+

62/000) (S+
63/000) (S+

64/000) OP

(x̄ ȳ z̄) (x̄ y z) (x ȳ z) (x y z̄) (ȳ z̄ x̄) (ȳ z x) (y z̄ x) (y z x̄)⎛
⎜⎝1 0 0

0 1 0
0 0 1

⎞
⎟⎠

⎛
⎜⎝1 0 0

0 −1 0
0 0 −1

⎞
⎟⎠

⎛
⎜⎝−1 0 0

0 1 0
0 0 −1

⎞
⎟⎠

⎛
⎜⎝−1 0 0

0 −1 0
0 0 1

⎞
⎟⎠

⎛
⎜⎝0 1 0

0 0 1
1 0 0

⎞
⎟⎠

⎛
⎜⎝ 0 1 0

0 0 −1
−1 0 0

⎞
⎟⎠

⎛
⎜⎝ 0 −1 0

0 0 1
−1 0 0

⎞
⎟⎠

⎛
⎜⎝0 −1 0

0 0 −1
1 0 0

⎞
⎟⎠φ1

φ2

φ3

(S−
61/000) (S−

64/000) (S−
62/000) (S−

63/000) (mx̄y/000) (S−
4z/000) (S+

4z/000) (mxy/000) OP

(z̄ x̄ ȳ) (z̄ x y) (z x̄ y) (z x ȳ) (y x z) (y x̄ z̄) (ȳ x z̄) (ȳ x̄ z)⎛
⎜⎝0 0 1

1 0 0
0 1 0

⎞
⎟⎠

⎛
⎜⎝ 0 0 1

−1 0 0
0 −1 0

⎞
⎟⎠

⎛
⎜⎝0 0 −1

1 0 0
0 −1 0

⎞
⎟⎠

⎛
⎜⎝ 0 0 −1

−1 0 0
0 1 0

⎞
⎟⎠

⎛
⎜⎝ 0 −1 0

−1 0 0
0 0 −1

⎞
⎟⎠

⎛
⎜⎝0 −1 0

1 0 0
0 0 1

⎞
⎟⎠

⎛
⎜⎝ 0 1 0

−1 0 0
0 0 1

⎞
⎟⎠

⎛
⎜⎝0 1 0

1 0 0
0 0 −1

⎞
⎟⎠ φ1

φ2

φ3

(myz̄/000) (myz/000) (S−
4x/000) (S+

4x/000) (mzx̄/000) (S+
4y/000) (mzx/000) (S−

4y/000) OP

(x z y) (x z̄ ȳ) (x̄ z ȳ) (x̄ z̄ y) (z y x) (z ȳ x̄) (z̄ y x̄) (z̄ ȳ x)⎛
⎜⎝−1 0 0

0 0 −1
0 −1 0

⎞
⎟⎠

⎛
⎜⎝−1 0 0

0 0 1
0 1 0

⎞
⎟⎠

⎛
⎜⎝1 0 0

0 0 −1
0 1 0

⎞
⎟⎠

⎛
⎜⎝1 0 0

0 0 1
0 −1 0

⎞
⎟⎠

⎛
⎜⎝ 0 0 −1

0 −1 0
−1 0 0

⎞
⎟⎠

⎛
⎜⎝0 0 −1

0 1 0
1 0 0

⎞
⎟⎠

⎛
⎜⎝0 0 1

0 −1 0
1 0 0

⎞
⎟⎠

⎛
⎜⎝ 0 0 1

0 1 0
−1 0 0

⎞
⎟⎠ φ1

φ2

φ3

FIG. 2. Scheme of the 3 orientational domain states 11, 21, 31

of SrTiO3. The cubic reference system (xc, yc, zc ) is depicted in the
center.

FIG. 3. Six domain states of SrTiO3 in order-parameter space.
The dashed and full lines indicate some selected domain wall
trajectories between translational domain states 31, 32 (pink) and
orientational domain states 11, 21 (violet). I = Ising wall, N = Néel
wall, TB = twin boundary.
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TABLE II. Decomposition of G = Pm3̄m into left cosets of F1 = I4x/mxcyzmy, yielding d sixSs of SrTiO3.

G = Pm3̄m gj ∈ G\F1 11 → Sj (S=1, 2, 3) ( j=1, 2) DSs in OP space Symmetry group Hermann-Mauguin symbol
G = (1/000)F1 + 11 (φ, 0, 0) F1 I4x/mxcyzmy

(1/00a)F1 + 12 (−φ, 0, 0)
(4+

z /000)F1 + 21 (0, φ, 0) F2 I4y/myczxmz

(4+
z /00a)F1 + 22 (0, −φ, 0)

(4−
y /000)F1 + 31 (0, 0, φ) F3 I4z/mzcxymx

(4−
y /00a)F1 32 (0, 0, −φ)

The symmetry group Ji j of an unordered DP consists of sym-
metry elements f ∈ Fi j = Fi ∩ Fj < G, that leave both DSs,
i.e., Si and S j unchanged, united with all transposing opera-
tions ĵi j ∈ G, that simultaneously exchange Si and S j . Thus,
we can write

Ji j = Fi j ∪ ĵi jFi j (4)

The group Ji j can be treated as a dichromatic (e.g., black and
white) space group [22]. If we color the DSs, the symmetry
elements ∈ Fi j are color preserving, whereas all symmetry
elements ∈ ĵi jFi j (marked with a “hat”) are color changing.

A. Translational domain pairs

Translational DPs consist of two DSs that share the same
orientational state, but differ in their translational state. It
can be easily seen that all three translational DPs {11, 12},
{21, 22}, and {31, 32} are symmetrically equivalent. Indeed,
they can be transformed into each other (see Table II)
by (4+

z /000){11, 12} = {21, 22}, (4−
z /000){11, 12} = {31, 32},

and (4+
x /000){21, 22} = {31, 32}, respectively.

In the following we will consider the DP {31, 32} in
some detail, to compare our results with previous calculations
[9,12] that have been done for such orientation. Since a DP
corresponds to an overlap of homogeneous DSs coexisting
independently of each other in whole real space, we can
represent the DP {31, 32} in order-parameter (OP) space as
{(0, 0, φ), (0, 0,−φ)}. As shown in Ref. [17], the symmetry
elements that leave a DP invariant can be easily found by in-
specting how the order-parameter (OP) components transform
under the action of the irreducible representation (Table I).

The symmetry elements that leave 31 and 32 unchanged
thus form the symmetry group F3132 = F3 = I4z/mzcxymx.
Those symmetry elements that simultaneously exchange 31

and 32 (color changing operations) are given by (0, 0, a)F3.
Thus, the symmetry group of the DP {31, 32} can be written as

J3132 = F3 + (0, 0, a)F3

= I4z/mzcxymx + (0, 0, a)I4z/mzcxymx. (5)

B. Orientational domain pairs

Pure orientational (ferroelastic) DPs consist of two DSs
that share the same translational state, but differ in their ori-
entational state. Interestingly enough, all orientational DPs
{Si, S j} i �= j (i, j = 1–6) are equivalent. To make contact
with other theoretical work [9,15] on ferroelastic DWs in
SrTiO3 we consider here the orientational (ferroelastic) DPs
{11, 21} and {11, 22}. Note that {11, 21} is a pure orientational

DP, whereas the DP {11, 22} differs in orientational and trans-
lational state and will be called a mixed DP [23].

Inspecting Table I one can easily find the symmetry ele-
ments F1121 = F1 ∩ F2 which leave 11 and 21 unchanged. They
consist of those operations which keep invariant (φ, 0, 0)
and (0, φ, 0). Those elements which simultaneously exchange
(color changing operations) 11 and 21 transform (φ, 0, 0) ↔
(0, φ, 0). They are collected in the set ĵ1121 F1121 .

Thus, we can write

J1121 = F1121 + ĵ1121 F1121

= {(1/000) (1̄/000) (mz/00a) (2z/00a)

(2̂x̄y/00a) (2̂xy/000) (m̂x̄y/00a) (m̂xy/000)}. (6)

For the DP {11, 22} ≡ {(φ, 0, 0), (0,−φ, 0)} we get, using
Table I,

J1122 = F1122 + ĵ1122 F1122 =
= {(1/000) (1̄/000) (mz/00a) (2z/00a)

(2̂x̄y/000) (2̂xy/00a) (m̂x̄y/000) (m̂xy/00a)}. (7)

C. Translational domain twins: Antiphase domain boundaries

The symmetry group Ti j (n, p) of a domain twin (DT)
(Si|n, p|S j ) at position p with the vector n oriented normal
to the boundary plane is a layer group [24], i.e., a space group
with two-dimensional periodicity.

As for the DPs, in the following we will consider such
particular DTs which are interesting in the context of some
previous work.

Let us first consider a horizontal APB (n = [100])
between the domain states 31 and 32, as sketched in
Fig. 4. The corresponding DT is (31|[001], (0, 0, 0)|32) or
(31|[001], ( 1

2 , 0, 0)|32). The DWs corresponding to such a
DT have been called easy APBs [9,12], since their presence
does not require any disruption in the oxygen position and no
distortion of the oxygen octahedra (Fig. 4). Indeed, electron
diffraction studies in SrTiO3 [25] revealed that these APBs
are atomistically thin (1–2 unit cells thick) and planar (see
Fig. 10 of Ref. [25]), as a result of the structural coherency of
the oxygen octahedra. However, interactions between APBs,
or between APBs with other defects, APB splitting, etc., as
shown, e.g., in Fig. 4 of Ref. [10] can lead to deviations from
the planar shape. In this sense, our approach here—assuming
planar domain walls—is an approximation.

The other prominent orientation of the APB, which is par-
allel to the tetragonal axis (with n = [100], Fig. 5) has been
called [9,12] hard APB, since—for the case of an atomistic
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FIG. 4. Schematics of two easy APBs (n = [001]) in tetragonal
SrTiO3 at p = (0, 0, 0) and p = (0, 0, 1

2 ).

thin wall—it could not be drawn without severe distortions
of the octahedra. However, hard APBs in SrTiO3 were found
[13] to be about 10 unit cells (ca. 40 Å) thick. In that case the
octahedra can rotate smoothly from one DS to the other DS
along the domain wall.

The symmetry elements that leave such a twin invariant
consist of two parts [26,27]:

T3132 = F̄3 + t̂3132 F̄3, (8)

where F̄3 consists of all operations ∈ F3 that leave 31, 32, n, p
invariant while t̂3132 F̄3 consists of all operations (color
changing, marked with hat) ∈ (0, 0, a)F3 that simultaneously
exchange 31 and 32 and transform (at the position p) n =
[001] into −n = [00 − 1] (the latter property is marked by
underlining the symbols of such operations). As shown in
Ref. [17] the symmetry elements of the layer group of a twin
can be conveniently found from the active irrep (Table I),
with additionally taking into account how the DW normal
n transforms at the position p. The procedure is described
in detail in Ref. [17]. Inspecting the symmetry group J3132

together with Table I we find for the translational domain twin

FIG. 5. Representation of a hard APB (n = [100]) in tetragonal
SrTiO3 at p = ( 1

2 , 0, 0). The symmetry elements of the layer group
of the twin (for a Neél-type wall) are also shown underneath. Note,
that in real SrTiO3 crystals hard APBs are not atomistically thin, but
have an extension [13] of about 10 unit cells. This however, does not
alter the symmetry elements of the layer group.

(Fig. 4) with n = [001] (easy APB)

T3132 (n = [001], p = (000))

= T{(1/000) (4+
z /000) (4−

z /000) (2z/000)

(mx/0a0) (my/0a0) (mxy/0a0) (mx̄y/0a0)

(2̂x/000) (2̂y/000) (2̂xy/000) (2̂x̄y/000)

( ˆ̄1/0a0) (m̂z/0a0) (Ŝ
+
4z/0a0) (Ŝ

−
4z/0a0)}. (9)

The symmetry elements of Eq. (9) form a layer group,
i.e., a three-dimensional (3D) space group with 2D periodicity
with T = (na, ma, 0), n + m = 2k. The corresponding point
group is tetragonal, i.e., D4h = 4/mmm. From the symmetry
elements of 4/mmm we can draw the following conclusion
about a possible polarization P(x3) of easy APBs: P1(x3) =
P2(x3) = 0 for −∞ � x3 � ∞, where x3 defines the position
x3n in the DW. For P3, the layer group symmetry, Eq. (9),
allows only for odd polarization profiles, i.e., only P3(−x3) =
−P3(x3) is possible, which implies P3 = 0 in the center (x3 =
0) of the wall. For comparison, Morozovska et al. [9] obtained
odd and even solutions from a Landau-Ginzburg-Devonshire
(LGD) theory of DWs in SrTiO3.

As we have shown in detail in Ref. [17], the layer group
symmetry of a domain twin can also be used to get a clue
about the order-parameter (OP) profile. Inspecting Table I
together with Eq. (9), we find that for easy APBs in SrTiO3

only one-dimensional solutions are compatible with the layer
group symmetry, i.e., those where φ1(x3) = φ2(x3) = 0 and
φ3(−x3) = −φ3(x3) �= 0 (see Fig. 3). Here it is important to
note that the layer group symmetry of a twin is independent
of the thickness of the corresponding DW, i.e., it is the same
for thick and atomistically thin DWs. For this reason we can
sketch the profiles of DW properties which are compatible
with the corresponding layer group of the twin even if the DW
is not infinitely thin.

Following the same procedure as before, we find that
the layer group symmetry T3132 for easy walls (i.e., with
n = [001]) is the same for p = (000) and p = (00 1

2 ). It
is only lowered if we move the center of the wall to a
general position p = (00z). In this case, we get T3132 (n =
[001], p = (00z)) = T{1/000) (mx/0a0)}, which is compat-
ible with P1 = 0, P2, P3 �= 0. Since this layer group does
not contain symmetry elements (hat and underlined) that si-
multaneously reverse the domain states and the normal, the
corresponding twin is called an “asymmetric twin” [18,26].
Since for asymmetric twins the OP components along the do-
main wall are not related by symmetry, we shall not consider
such a situation further.

Let us now check what happens if we allow for an addi-
tional OP component to emerge in the vicinity of an easy APB.
It is clear that any additional appearance of an OP component
(except for special high symmetry points in OP space) can
only lower the layer group symmetry of the twin. By combin-
ing the layer group methods with order-parameter symmetry
as proposed in Ref. [17] we can easily calculate [28] the new
symmetry group of the DT and see what restrictions on the
components of polarization in the wall are lifted.

Let us start with an easy wall (n = [001]), assuming
(φ1, 0, φ3) → (φ1, 0,−φ3) along the path (Fig. 3) −∞ �
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x3 � ∞. Inspecting Table I, we find that the following sym-
metry elements are compatible with this profile:

T3132 = T{(1/000) (my/0a0) (2̂x/000) (m̂z/0a0)}, (10)

where T = (na, ma, 0), n + m = 2k. A comparison with
Eq. (9) shows that the point group symmetry which cor-
responds to the layer group T3132 is now lowered from
D4h = 4/mmm to the orthorhombic point group C2v = mm2,
which is compatible with P1(−x3) = P1(x3), P2(x3) = 0, and
P3(−x3) = −P3(x3).

However, since it was shown by Tagantsev et al. [12], that
easy APBs are stable against the development of an additional
OP component in the wall, this consideration is only of limited
interest for easy walls. However, it becomes of considerable
importance for the case of hard APBs, as we shall see in the
next part.

Inspecting the symmetry group J3132 of Eq. (5) together
with Table I, we find for the translational domain twin at p =
(000) with n = [100] (hard APB, Fig. 5), for φ1 = 0, φ2 =
0, φ3 �= 0,

T3132 (n = [100], p = (000))

= T{(1/000) (2x/00a) (my/00a) (mz/000)

(2̂y/000) (m̂x/000) (2̂z/00a) ( ˆ̄1/00a)}, (11)

where

T = (0, na, ma), n + m = 2k.

It is easy to see that the orthorhombic point group (D2h =
mmm), which corresponds to the layer group T3132 of Eq. (11)
is compatible with the polarization components P1(−x1) =
−P1(x1), P2(x1) = 0, and P3(x1) = 0. Moreover, by inspection
of Table I we find that the symmetry elements (11) constrain
the OP profile to a one-dimensional solution, i.e., (0, 0, φ3) →
(0, 0,−φ3) along the path −∞ � ξ � ∞, which could be
called an Ising-type solution.

Very similar symmetry behavior is found for hard APBs
at p = ( 1

2 00). The layer group of the corresponding twin
forms the same orthorhombic point group symmetry (mmm),
the profile is constrained to Ising type, and the polarization
components are the same as for p = (000).

From these considerations we can conclude that, for the
case of a one-dimensional OP profile (Ising walls), APBs in
SrTiO3 are not expected to carry a polarization, regardless of
whether they are of hard or easy type.

However, since Tagantsev et al. [12] have shown that hard
APBs in SrTiO3 develop (already at Tc = 105 K) a component
of φ perpendicular to the boundary plane, similar to Néel walls
in magnetic systems, we want to check how the corresponding
symmetry of Eq. (11) is lowered for the case of (φ1, 0, φ3) →
(φ1, 0,−φ3) along the path −∞ � x1 � ∞.

From Table I we find that, due to the appearance of the
component φ1 in the wall (see path N in Fig. 3), the symmetry
(11) is lowered to

T3132 (n = [100], p = (000))

= T{(1/000) (my/00a) (m̂x/000) (2̂z/00a)} (12)

with T = (0, na, ma), n + m = 2k. Thus, the appearance of
φ1 �= 0 in the vicinity of a hard APB breaks the point-group

symmetry from D2h = mmm (for φ1 = 0) to C2v = mm2,
which allows for the development of the (even) polarization
component P3(−x1) = P3(x1). The other two components are
again constrained by this symmetry to P1(−x1) = −P1(x1),
P2(x1) = 0, as before.

D. Orientational domain twins: Ferroelastic domain boundaries

In this section we show the results of our symmetry
approach for ferroelastic domain boundaries. To make con-
tact with previous calculations, we will consider here only
those orientational twins T1121 (pure orientational) and T1122

(mixed orientational/translational) which correspond to the
DPs {11, 21} and {11, 22}. In OP space (Fig. 3) the corre-
sponding domain states are represented as points, i.e., 11 =
(φ, 0, 0), 21 = (0, φ, 0), and 22 = (0,−φ, 0). The domain
walls can then be represented as lines which connect the
corresponding domain states 11 → 21 and 11 → 22.

In other theoretical work [9,15] these twin boundaries
(TBs) have been named hard TBs or head-to-head (HH)
TBs and easy TBs or head-to-tail (HT) TBs. This notation—
inspired by the cases of easy and hard APBs—comes from
the fact that, for easy (HT) TBs, the vector φ = (φ1, φ2, 0) of
oxygen octahedra rotations in the DW’s center is parallel to
the DW normal n (Figs. 6 and 7), whereas for hard (HH) TBs
φ is perpendicular to n (parallel to the DW plane). For orien-
tational DWs the terms easy and hard can be misleading, i.e.,
unlike in APBs they do not correlate with the DW energies. In
fact, it was shown [15] that easy TBs can have higher energy
than hard ones.

We will show below that the character (easy or hard, HH
or HT) of a TB depends on the orientation n of the TB
([11̄0] or [110]), and also on the corresponding DSs, which
are connected by the DW. Due to mechanical compatibility
[29] there exist two possible orientations of ferroelastic TBs,
i.e., with n = [110] and n = [11̄0], respectively. Let us start
with a TB [Fig. 7(a)], which connects the DSs 11, 21 with
n = [110] at p = (000).

The symmetry elements which leave this DT invariant are

T1121 (n = [110], p = (000))

= T{(1/000) (mz/00a) (m̂xy/000) (2̂x̄y/00a)}, (13)

where T = (−na, na, 2ma).
To check the character (easy or hard) of such a TB, we pro-

ceed as follows: Inspecting Fig. 6(a), we find that in OP space
the trajectory of this TB leads from (φ, 0, 0) to (0, φ, 0), via
φ = (φ, φ, 0) in the TB center (independently of the real path
in OP space). Since φ = (φ, φ, 0) is parallel to n = [110], this
is an easy (HT) TB. The real space structure of such a TB is
shown in Fig. 7(a).

For the TB orientation n = [11̄0], the rotation vector φ =
(φ, φ, 0) is perpendicular to n, implying that the correspond-
ing TB is a hard (HH) one. The symmetry elements which
leave such a twin invariant are

T1121 (n = [11̄0], p = (000))

= T{(1/000) (mz/00a) (2̂xy/000) (m̂x̄y/00a)}, (14)

where T = (na, na, 2ma).
Similarly, one can show that the character of the TB de-

pends also on the domain states. That is. for the twin (11|22)
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FIG. 6. (a) Representation of four domain states 11, 21, 12, 22 in order-parameter space, together with a sketch of possible pathways
between them, represented as broken lines. The grey arrows indicate the rotation vectors φ of oxygen octahedra rotations in the center of the
corresponding TB. If such a vector is parallel to the TB normal n it is an easy wall, if it is perpendicular to n, it is a hard wall. (b) Orientations
of ferroelastic TBs in present (xc, yc, zc ) and rotated (x̃1, x̃2, x̃3) coordinate system.

the OP passes from (φ, 0, 0) to (0,−φ, 0), via φ = (φ,−φ, 0)
in the center [Fig. 6(a)]. Thus, for (11|n = [110]|22), φ is per-
pendicular to n, implying that it is a hard (HH) twin boundary
[Fig. 7(b)]. The corresponding symmetry of the twin is

T1122 (n = [110], p = (000))

= T{(1/000) (mz/00a) (m̂xy/00a) (2̂x̄y/000)}. (15)

For similar reasons the TB (11|n = [11̄0]|22) is an easy (HT)
one and its symmetry elements are

T1122 (n = [11̄0], p = (000))

= T{(1/000) (mz/00a) (m̂x̄y/000) (2̂xy/00a)}. (16)

IV. COMPARISON WITH PREVIOUS
THEORETICAL RESULTS

A. Antiphase boundaries

Since the present setting corresponds to the settings of
Refs. [9,12], we can directly compare our findings with those
previous results. For easy APBs, Tagantsev et at. [12] found
that they are of Ising type (φ1 = 0, φ2 = 0, φ3 �= 0) and sta-
ble against the development of any polarization component,
i.e., P = 0, in agreement with the present symmetry consid-
erations. By way of contrast, hard APBs of the Néel type
(φ1 �= 0, φ2 = 0, φ3 �= 0) become unstable [12] with respect
to a development of a ferroelectric polarization P3. These
results are based on a LGD free energy expansion with a
set of 22 thermodynamic parameters obtained from exper-
iments. The most important coupling term for ferroelectric

FIG. 7. Representation of two different ferroelastic twins with n = [110] at p = (0, 0, 0) in tetragonal SrTiO3, together with the symmetry
elements of the corresponding layer groups. (a) Pure orientational twin (11|21). The corresponding twin wall is an easy (HT) wall. The twin
in (b) is of mixed type, i.e., (11|22), where the corresponding twin wall is a hard (HH) one. Note, that the layer group symmetry elements
(mxy|00a) and (2x̄y|000) are not clearly visible in the atomistic structure, since only one (x, y) layer is shown for clarity. The thick black arrows
indicate the changes of the vectors φ of oxygen octahedra rotations, when passing from one DS to the other one via the corresponding TB. If
this vector in the center of the TB in parallel to n it is an easy TB, if it is perpendicular to n it is a hard one. The character, i.e., easy or hard, is
changed if the orientation of the wall changes from n = [110] to n = [11̄0].
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TABLE III. Characterization of the orientational TBs in the two coordinate systems (x1, x2, x3) and (x̃1, x̃2, x̃3), which are rotated by 45◦

with respect to each other.

TBs n = [110], (φ1, φ2, φ3) nr = [100], (φr, φs, φt ) n = [11̄0], (φ1, φ2, φ3) nr = [010], (φr, φs, φt )

(11|21) (φ, 0, 0) → (0, φ, 0) via (φ, φ, 0) → (−φ, φ, 0) (φ, 0, 0) → (0, φ, 0) via (φ,−φ, 0) → (φ, φ, 0) via
(φ, φ, 0) easy (HT) wall via (0,

√
2φ, 0) easy (φ, φ, 0) hard (HH) wall (

√
2φ, 0, 0) hard (HH)

(HT) wall wall

(21|12) (0, φ, 0) → (−φ, 0, 0) (−φ, φ, 0) → (−φ,−φ, 0) (0, φ, 0) → (−φ, 0, 0) via (φ, φ, 0) → (−φ, φ, 0)
via (−φ, φ, 0) hard (HH) via (−√

2φ, 0, 0) hard (−φ, φ, 0) easy (HT) wall via (0,
√

2φ, 0) easy
wall (HH) wall (HT) wall

(12|22) (−φ, 0, 0) → (0,−φ, 0) (−φ,−φ, 0) → (φ,−φ, 0) (−φ, 0, 0) → (0,−φ, 0) (−φ, φ, 0) → (−φ,−φ, 0)
via (−φ,−φ, 0) easy via (0,−√

2φ, 0) easy via (−φ,−φ, 0) hard via (−√
2φ, 0, 0) hard

(HT) wall (HT) wall (HH) wall (HH) wall

(22|11) (0,−φ, 0) → (φ, 0, 0) (φ,−φ, 0) → (φ, φ, 0) via (0,−φ, 0) → (φ, 0, 0) via (−φ,−φ, 0) → (φ,−φ, 0)
via (φ,−φ, 0) hard (HH) (

√
2φ, 0, 0) hard (HH) (φ,−φ, 0) easy (HT) wall via (0,−√

2φ, 0) easy
wall wall (HT) wall

instability turned out to be the biquadratic (P2φ2) one. In a
recent paper [13] the authors have basically confirmed these
results by zero-kelvin ab initio calculations. They have shown
that easy APBs in SrTiO3 are very thin (only 1–2 unit cells
thick), the OP profile being indeed of Ising-type, and the DW
polarization P3 = 0. For the hard walls they found a thickness
of about 10 unit cells (ca. 40 Å), and an even polarization
distribution P3(x1) = P3(−x1), which perfectly corresponds
to their phenomenological results [12]. However, unlike the
earlier Landau-Ginzburg theory [12], which yielded that the
hard walls are nearly of Néel type (φ1 ≈ |φ3|), the ab initio
calculations indicate that they are rather close to the Ising type
(φ1 ≈ 0, φ3 �= 0).

These results are in basic accordance with our calculations.
As shown in Eq. (9), the layer group symmetry of easy APBs
(n = [001]) is so high that in the center of easy APBs no
polarization is allowed. The only possible component which
is allowed by this symmetry is the odd distribution P3(−x3) =
−P3(x3), and P1 = P2 = 0. Morozovska et al. [9] obtained
the same results for the polarization components by a phe-
nomenological theory including flexoelectric coupling terms,
with the exception that they did not discriminate (Fig. 2 of
Ref. [9]) between odd and even distribution of the polarization
P3(x3).

For hard APBs (n = [100]) the layer group symmetry (11)
is lower than for the easy ones (9). Nevertheless, it still con-
strains the polarization to be zero in the center, if an Ising-type
character of the wall is assumed. Similar to the case of easy
APBs, also in this case the only possible polarization distribu-
tion is the odd one, which is perpendicular to the domain wall,
i.e., P1(−x1) = −P1(x1), and P2 = P3 = 0.

In agreement with the results from previous calculations
[9,12], we obtain a DW polarization P �= 0 only if we allow
for the appearance of an additional OP component φ1 �= 0,
i.e., the hard APB to be of Néel type. In this case the layer
group symmetry (11) is lowered to (12) which is compati-
ble with the polarization profile, P1(−x1) = −P1(x1) (odd),
P2 = 0, and P3(−x1) = P3(x1) (even). Tagantsev et al. [12]
did not consider the component P1, but, for the important
component P3, they also obtained [13] the symmetric (even)

solution. However, their finding of a nearly Ising-type char-
acter of hard APBs calls for further investigation, since the
present layer group approach predicts P3 = 0 for a strictly
one-dimensional Ising wall (φ1 = 0). It will be interesting to
check whether P3 vanishes for φ1 → 0, as our present results
suggest.

Morozovska et al. [9], for comparison, found also an even
solution for P3 (assuming Néel-type hard APB), whereas for
P1—similar to the case of easy walls—they did not discrimi-
nate between odd and even solutions.

B. Ferroelastic domain boundaries

In earlier works some authors have introduced a 45◦ rotated
coordinate system [Fig. 6(b)]. Morozovska et al. [9] used
x̃1 = 1√

2
(x1 + x2), x̃2 = 1√

2
(−x1 + x2), and x̃3 = x3. The octa-

hedral tilt φ̃ = (φ̃1, φ̃2, φ̃3) in the rotated system is then given
as φ̃1 = 1√

2
(φ1 + φ2), φ̃2 = 1√

2
(−φ1 + φ2), and φ̃3 = φ3.

Schiaffino and Stengel [15] used a notation where r is
parallel to the wall and s, t are perpendicular to the wall, im-
plying that φs = φ̃1, φr = φ̃2 for n = [110] and φt = φ̃3 = φ3

(Fig. 6).
Table III gives an overview on the different orientational

TBs in SrTiO3, together with the OP pathways in normal and
rotated coordinate systems. Inspecting Table III, one observes
that the results of Ref. [9] for 90◦ TBs correspond to the
situations (11|21) (easy TB, HT) and (12|21) (hard TB, HH)
with n = [110].

Let us now compare the results of these authors with our
findings. First of all we notice that the TBs (11|21) and (12|21)
are crystallographically nonequivalent, i.e., there exists no
symmetry element ∈ Pm3̄m which would transform one TB
into the other. Thus, the microscopic structure of the two TBs
is different [17] (similar to Fig. 6), which then can lead to dis-
tinct properties of, e.g., DW polarization, etc. The layer group
symmetries of the two TBs [Eqs. (13) and (15)], constrain the
DW polarizations of both types of TBs to P̃1(−x̃1) = −P̃1(x̃1)
(odd solution), P̃2(−x̃1) = P̃2(x̃1) (even solution), P̃3(x̃1) = 0.
Since the point groups which correspond to both layer groups

184101-8



POLARIZATION OF DOMAIN BOUNDARIES IN … PHYSICAL REVIEW B 102, 184101 (2020)

are the same for both TBs (orthorhombic, i.e., mm2 = C2v),
the polarization components are subject to the same symmetry
restrictions, i.e., they can differ only in magnitudes. Indeed, in
Ref. [9] (see Figs. 4 and S1) the authors obtain even solutions
for P̃2(x̃1) for easy and hard TBs.

A very interesting result for ferroelastic TBs was re-
cently obtained by Schiaffino and Stengel [15]. These authors
found—based on a combination of DFT and Landau theory—
that a sequence of two different types (HH, HT) of 90◦ TBs
can lead to a macroscopic polarization of the sample (in the
direction r parallel to the DW). This can be easily understood
along the same lines as before. Let us for example take the
TB (11|21) followed by (21|12). Since, as above, there is no
symmetry operation ∈ Pm3̄m which transforms the two TBs
into each other, both TBs can carry a polarization component
Pr or P′

r in the same direction r, but with different magnitude.
Thus, the sequence (11|21|12) can carry a macroscopic net
polarization Pm = Pr − P′

r �= 0, even if the single DW con-
tributions are opposite in sign. In Ref. [15] such a sequence
of 90◦ TBs was called an antiferrodistortive (AFD) cycloid,
due to the fact, that the order parameter φ possesses a coun-
terclockwise rotation across the twin walls (with increasing
s). This cycloidal induced breaking of inversion symmetry
due to the rotation of the OP can be nicely seen in OP space
[Fig. 6(a)].

An interesting observation is the following: If instead of
the sequence (11|21|12) one would take (11|21|11), i.e., two
successive pure orientational (HT) TBs (or two HH TBs),
then the macroscopic polarization would be strictly zero.
This is because any transformation of the twin (11|21) into
the reversed twin (21|11) transforms Pr into −Pr and the
macroscopic polarization Pm = Pr − Pr = 0. In OP space
[Fig. 6(a)] this would mean that the path leads from (φ, 0, 0)
to (0, φ, 0) and back, which then restores the inversion
symmetry.

Thus, any sequence which contains two different
types (HH and HT, i.e., pure orientational and mixed
orientational/translational) of 90◦ TBs can carry a
macroscopic polarization Pm = Pr − P′

r �= 0. From these
considerations, we can conclude that any difference in
the magnitudes of Pr for (11|21) and P′

r for (21|12) must
be related to the difference in the translational state, i.e.,
somehow connected to the internal structure and properties
of the APBs. Indeed, inspecting Fig. 8(a), one observes that
in OP space an APB of Neél type can be seen as a sequence
(φ, 0, 0) → (φ, φ2, 0) → (−φ, φ2, 0) → (−φ, 0, 0), i.e.,
quite similar to the cycloidal sequence of TBs.

In the following we show, how this behavior is reflected in
the coupling terms of the free energy expansion.

V. DOMAIN WALL SYMMETRY AND ROTOPOLAR
COUPLING IN STRONTIUM TITANATE

Schiaffino and Stengel [15] have recently shown that in
addition to flexoelectricity a direct rotopolar coupling be-
tween polarization and the gradients of the oxygen rotations
contributes crucially to a macroscopic polarization of a spe-
cial (cycloidal) sequence of TBs. To show how this rotopolar
coupling simultaneously contributes also to the polarization

FIG. 8. (a) Sketch of the path between DSs 11 → 21 → 12 in
order-parameter space (φ1, φ2, φ3) and in 45◦ rotated coordinate
system (φ̃1, φ̃2, φ̃3). Note that the real trajectory may deviate from
this simplified straight lines. An antiphase boundary between the
DSs 11 and 12 follows approximately the pink broken line, if the
boundary is of Neél type. (b) Schematic illustration of the variation
of φ̃1 and φ̃2 and the polarization component P̃2(x̃1) across the two
TBs. Note that the flexoelectric term leads to alternating polarization
directions, whereas the rotopolar coupling contributes to P̃2 in the
same direction in adjacent TBs. (c) An antiphase boundary (APB) of
Neél type can be envisaged as a sequence of 11 → 21 → 12, where
the two TBs merge into one ABP, i.e., the DS 21 shrinks to zero.
Then the flexoelectric coupling yields an asymmetric contribution
P̃2(−x̃1) = −P̃2(−x̃1), whereas the rotopolar term gives a symmetric
contribution to the polarization, i.e., P̃2(−x̃1) = P̃2(−x̃1).

of APBs, we write all corresponding invariants, which are
added to the commonly used Landau-Ginzburg free energy
expansion FL (see, e.g., Ref. [9]) of SrTiO3. Using Table I we
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find all possible invariants of the type Wi jklPiφk
∂φl

∂x j
:

F = FL + W1

[
P1

(
∂φ1

∂x3
φ3 + ∂φ1

∂x2
φ2

)
+ P2

(
∂φ2

∂x3
φ3 + ∂φ2

∂x1
φ1

)
+ P3

(
∂φ3

∂x1
φ1 + ∂φ3

∂x2
φ2

)]

+W2

[
P1

(
∂φ2

∂x2
φ1 + ∂φ3

∂x3
φ1

)
+ P2

(
∂φ1

∂x1
φ2 + ∂φ3

∂x3
φ2

)
+ P3

(
∂φ1

∂x1
φ3 + ∂φ2

∂x2
φ3

)]

+W3

[
P1

(
∂φ3

∂x1
φ3 + ∂φ2

∂x1
φ2

)
+ P2

(
∂φ3

∂x2
φ3 + ∂φ1

∂x2
φ1

)
+ P3

(
∂φ1

∂x3
φ1 + ∂φ2

∂x3
φ2

)]

+W4

[
P1

∂φ1

∂x1
φ1 + P2

∂φ2

∂x2
φ2 + P3

∂φ3

∂x3
φ3

]
. (17)

Interestingly enough, there are four independent invariants of
the type Wi jkl Piφk

∂φl

∂x j
, since by symmetry W1111 = W2222 =

W3333 ≡ W4, W1122 = W2211 = W1133 = W3311 = W2233 =
W3322 ≡ W3, W1212 = W1313 = W2121 = W2323 = W3131 =
W3232 ≡ W2, and W1331 = W1221 = W2332 = W2112 = W3113 =
W3223 ≡ W1. Remaining components are 0. In the symmetric
case, W1 = W2, the invariants reduce to the type Wi jkl Pk

∂ (φiφ j )
∂xl

,
i.e., only flexoelectricity comes into play. As will be shown
below, the asymmetric case W1 �= W2 provides an additional
rotopolar term, that leads to the polarization of cycloidal
ferroelastic DWs and APBs in SrTiO3.

In the following we will restrict our calculations to the
sequence (11|21) and (21|12) with TB orientation n = [110],
which corresponds to the case of a HT wall followed by a HH
wall. Then, only the OP variables (φ1, φ2, 0) are contributing
and spatial variations in OP and polarization P̃2(x̃1) occur
only perpendicular to the wall, which in the rotated coordinate
system (x̃1, x̃2, x̃3) corresponds to x̃1 (Fig. 8). In the rotated
coordinate system the relevant part of Eq. (17) boils down to

F = FL + 2(W1 − W2)P̃2

[
φ̃1

∂φ̃2

∂ x̃1
− φ̃2

∂φ̃1

∂ x̃1

]

+ 2(W4 − W3)P̃2

[
φ̃1

∂φ̃2

∂ x̃1
+ φ̃2

∂φ̃1

∂ x̃1

]
. (18)

The first coupling term ∝(W1 − W2) is the rotopolar term
(with minus) found by Schiaffino and Stengel [15]. After
minimization of the free energy one obtains the following
contribution to the polarization P̃2:

P̃2(x̃1) ∝ (W1 − W2)

[
φ̃1

∂φ̃2

∂ x̃1
− φ̃2

∂φ̃1

∂ x̃1

]
. (19)

It yields the same magnitudes and signs for P̃2 of adjacent
DWs [Fig. 8(b)], and vanishes if W1 = W2.

The second coupling term in Eq. (18) ∝(W3 − W4),
which could be called a flexo-roto coupling, originates
from the well known flexoelectric coupling term fi jkl Pk

∂ui j

∂xl
.

Since the spontaneous strain due to rotostriction is propor-
tional to [9] ui j = Ri jmnφmφn, the flexoelectric term reads
fi jkl Ri jmnPk

∂
∂xl

(φmφn) = fi jkl Ri jmnPk (φm
∂φn

∂xl
+ φn

∂φm

∂xl
), which

leads to

P̃2(x̃1) ∝ (W4 − W3)

[
φ̃1

∂φ̃2

∂ x̃1
+ φ̃2

∂φ̃1

∂ x̃1

]
. (20)

The important point is that this term is symmetric (i.e., with
plus) and leads (Fig. 8) to opposite polarization P̃2 of adja-
cent TBs, irrespectively whether they are pure orientational
or mixed TBs. From Fig. 8 it becomes clear how such an
arrangement of ferroelastic twins can lead to a macroscopic
polarization, i.e., the flexoelectric contributions of consecutive
twin walls cancel, whereas the rotopolar ones add.

As Fig. 8 shows, the rotopolar coupling may also act as an
important mechanism for polarization of APBs.

To show it more clearly, let us return to the APB (31|32)
with n = [100] (Fig. 5) for which the polarization components
in the DW have been calculated [9,12] earlier by Landau-
Ginzburg theory. For such geometry the coupling terms of
Eq. (17) reduce to

F = FL + P3

(
W1

∂φ3

∂x1
φ1 + W2

∂φ1

∂x1
φ3

)
. (21)

Here we have included only terms which couple to the po-
larization component P3, i.e., in the direction of the wall.
In addition there is also a coupling to P1. It would lead
to P1(−x1) = −P1(x1), in agreement with the layer group
results. There is no coupling to P2 for this geometry, thus
P2 = 0, also in agreement with the present symmetry analysis
[Eq. (12)].

Similar to the ferroelastic cycloid, Eq. (21) can be split into
a rotopolar [∝(W1 − W2)] and a flexoelectric [∝(W1 + W2)]
contribution

F = FL + 1

2
(W1 − W2)P3

(
∂φ3

∂x1
φ1 − ∂φ1

∂x1
φ3

)

+ 1

2
(W1 + W2)P3

(
∂φ3

∂x1
φ1 + ∂φ1

∂x1
φ3

)
. (22)

After minimization of the free energy (22) we obtain

P3 ∝ (W1 − W2)

(
∂φ3

∂x1
φ1 − ∂φ1

∂x1
φ3

)

+ (W1 + W2)

(
∂φ3

∂x1
φ1 + ∂φ1

∂x1
φ3

)
. (23)

In Fig. 9 we show a sketch of the contributions to the polar-
ization profile according to Eq. (23). These plots were made
by assuming [Fig. 9(b)] a typical kink-type solution φ3(x1) ∝
tanh(x1) and a bump solution φ1(x1) ∝ 1/ cosh2(x1). We ob-
serve that, depending on the values and signs of the coupling
coefficients W1 and W2, Eq. (23) leads to a peak or double peak
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FIG. 9. (a) Schematics of a path between DSs 31 and 32 for
a Neél-type APB. (b) Sketch of a typical bump (1/ cosh2) and
kink (tanh) solution of φ1(x1) and φ3(x1), when crossing a hard
(Neél-type) APB (31|32) with n = [100]. The derivatives of oxygen
octahedra rotations ∂φ3

∂x1
and ∂φ1

∂x1
along the path x1 are shown in (c) and

(d) together with the contributions ∂φ3
∂x1

φ1 and ∂φ1
∂x1

φ3 to DW polariza-
tion P3(x1). The exact final shape of P3(x1) depends on the values and
signs of the coefficients W1 and W2. (e) P3(x1) for W2 � W1, as found
in Ref. [30].

of P3(x1). In any case P3(x1) is symmetric, in agreement with
the corresponding layer group symmetry. In Ref. [30] these
contributions were calculated for SrTiO3 by second-principle
methods. Unfortunately, the values of W1,W2 are not explicitly
given there, but the calculated shape (double peak of P3(x1)
in Fig. 5.5(b) of Ref. [30]) leads to the conclusion that for
SrTiO3, W2 � W1, because in that case P3 ∝ W2

∂φ1

∂x1
φ3 [see

Fig. 9(d)]. It also follows from Eq. (23) that the rotopolar and
flexoelectric terms contribute to P3 equally.

VI. SUMMARY AND CONCLUSION

Summarizing, the present group-theoretical considerations
yield polarization profiles of ferroelastic TBs and APBs in
SrTiO3 that are in excellent agreement with phenomenolog-

ical [9,12] and ab initio calculations [13,15]. The results show
the advantage of complementing layer group analysis with
order-parameter symmetry. In contrast to the crystallographic
layer group approach, we can study possible symmetry low-
ering effects on domain wall properties by switching on
specific OP components. In this way we have found that the
rotopolar coupling, which was recently identified [15] to con-
tribute to a macroscopic polarization of a cycloidal sequence
of ferroelastic TBs, provides an important mechanism also
for the polarization in APBs. It leads to a polarization of
APBs already below the structural phase transition tempera-
ture Ts ≈ 105 K, whereas the biquadratic coupling [9] induces
a domain wall polarization only around T ∗

c ≈ 50 K. Which of
the presently envisaged coupling terms is dominating cannot
be told at present. However, the following observation may
be helpful for future investigations: The biquadratic coupling
term leads to a single peak of polarization centered around
the middle part of the domain wall (see, e.g., Fig. 4 of
Ref. [13]), whereas rotopolar coupling can produce a double
peak [Fig. 9(e)] of the DW polarization (see, e.g., Fig. 5.5 of
Ref. [30]). In fact, a double peak structure of the DW polar-
ization was recently observed [10,11] in APBs of PbZrO3 and
we think it could indeed originate from a rotopolar coupling.
However, a detailed symmetry analysis of the problem has to
be performed before we can draw some conclusions about the
possible origin of APB polarization in PbZrO3.

It should be noted that the present symmetry analysis can
be readily applied to other DW systems, e.g., PbTiO3 [31],
CaTiO3 [32], etc. Since the approach is, by construction,
close to Landau theory of domain walls, we can classify the
domain wall profiles of various tensor properties according
to symmetry and compare them with the results obtained,
e.g., from Landau-Ginzburg theory. In this way, we can take
advantage of both methods, i.e., the crystallographic group
theoretical one and the order-parameter concept. The main
disadvantage of such symmetry considerations is of course
that quantitative results can only be obtained by solving the
equations describing the structures and properties of specific
domain walls either analytically or numerically. However, as
shown impressively [9,12,15] for SrTiO3 this can be a quite
challenging task, and symmetry considerations may thus be
helpful.
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