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Macroscale nonlocal transfer of superconducting signatures to a ferromagnet in a cavity
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Cavity spintronics recently heralded nonlocal magnonic signal transfer between magnetic samples. Here we
show that by including superconductors in the cavity, we can make use of these principles to bring composite
superconductor-ferromagnet systems to the macroscale. We analyze how a superconductor’s ac conductivity
influences the spin dynamics of a spatially separated magnet, and we discuss the potential impact on spintronic
applications.
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The field of superconducting spintronics has been gather-
ing pace in the last decade as the promise of achieving low
dissipation spin and charge transport has been increasingly
refined and realized [1–3]. It relies on the proximity effect,
whereby properties of one material can persist in an adjacent
thin film. This places a tight nanometer constraint on the
operational range in most cases. The most anomalously long-
ranged persistence of superconductive signatures is reportedly
up to the micrometer range [4,5]. However, in this Rapid
Communication we highlight the untapped potential of com-
posite superconductor-ferromagnet systems to make use of
advances in cavitronics, and that photon-mediated processes
can enable the detection of centimeter-ranged superconduc-
tive signatures. We provide a readily accessible example to
establish the proof of concept, and discuss multiple directions
for exploration to highlight the potential for innovation in
superconducting spintronic applications.

Cavity spintronics, or cavitronics, is an emerging in-
terdisciplinary field in which microwave or optical cavity
photon modes can couple to magnons (also called spin
waves). Experiments have shown strong coupling of cavity
modes to both ferri- and ferromagnets [6,7]. This is ob-
served as a hybridization of the photon and magnon modes,
indicated by avoided crossings/Rabi splitting in the nor-
mal mode frequency spectrum. It was recently shown that
magnonic interactions between two nonlocal magnetic sam-
ples can be mediated by the cavity modes [8–10]. This
means information encoded in the magnitude and phase of the
spin waves (i.e., spintronic information) can be transmitted
nonlocally over macroscopic length scales. We explore the
question of magnons coupling nonlocally to excitations in a
superconductor.

Light with frequencies above the superconducting gap
breaks Cooper pairs and thus weakens the superconductivity.
However, light can also enhance or induce superconduc-
tivity [11–13]. In-cavity manipulation of a superconductive
component might appear restrictive, demanding effective
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screening of the contact wires while maintaining the quality
factor of the cavity, but also this has been achieved experi-
mentally recently [14]. In that case, researchers succeeded in
driving a black box transmon qubit inside a cavity, coupling
the oscillations between the two levels of the qubit to the
microwave cavity modes. The transmon qubit is engineered
by using the nonlinearity of a superconducting Josephson
junction to create an effective two-level system, as in cir-
cuit quantum electrodynamics (QED) [15]. Consequently, this
qubit-cavity coupling generated excitement about the po-
tential prospect of unifying quantum optics and solid state
quantum computing [16,17].

Qubit-cavity coupling demonstrated the feasibility of
screening wiring to a superconducting system inside mi-
crowave cavities. However, superconductivity in that case is
used as a means to generate a two-level system, i.e., realize a
qubit, and not as a means to probe and use the superconductive
signatures themselves. By combining standard approaches for
the electrodynamics of superconductivity, cavity coupling,
and magnetism dynamics, we will here provide a proof of
principle that there is considerable potential to do just that.

We begin by considering the setup illustrated in Fig. 1. It
depicts a microwave cavity containing an electrically screened
thin wire, which has a small exposed superconducting seg-
ment (SC) held at temperature T , connected to an alternating
current (ac) source, as well as a small ferromagnetic sphere
(FM). The internal current density J and electric field ESC of
the SC are treated as uniform; i.e., internal spatial variations
are neglected. The SC and the FM are placed in regions
of maximum electric and magnetic field Ecav and Bcav of a
selected cavity mode, respectively. The dimensions of the SC
and the FM are assumed sufficiently small for the local fields
across their respective regions to be approximately uniform,
and their spatial extension is effectively taken to be linelike
and pointlike at positions rSC and rFM, respectively.

The SC is directed along the y direction, and has a criti-
cal temperature Tc. The ac source produces signal frequency
ω, which is resonant with the cavity frequency and the fre-
quency of the precessing FM magnetization. By lowering T ,
we pass through the superconducting transition and induce
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FIG. 1. The proposed model for inducing macroscale photon-
mediated superconducting signatures in a magnet (not to scale). The
photonic microwave resonator of dimensions {dx, dy, dz} contains a
short, thin superconducting wire segment (SC) along the y direction
and with a cross-sectional area A, connected to an alternating current
source via screened wiring through the cavity walls, as well as a small
ferromagnetic sphere (FM) with a uniform magnetization m. The FM
and SC are positioned at rFM and rSC, respectively, corresponding
to extrema of the magnetic and electric components of the cavity
modes Bcav and Ecav. Across the SC, Ecav is directed along the y
axis, and across the FM, Bcav is directed along the x axis. The FM
is additionally subjected to a strong external magnetostatic field Bext

such that |Bext| � |Bcav|, which fixes the precessional axis of m along
the z direction. We use the TE201 cavity mode as an example. The SC
current, cavity mode, and FM mode couple resonantly at the input
ac frequency ω. The relative amounts of supercurrent and resistive
currents passed through the SC is modulated by the temperature T .

a change in the superconductors conductivity. This in turn
alters the excitation of the cavity, and the resultant effect
on the spin dynamics in the magnet can be harnessed as a
nonlocal detector. That is, by exploiting the mutually resonant
coupling to the cavity, it is possible to probe the supercon-
ducting transition via a change in the magnonic precession
response. We consider the weak-coupling approximation, in
which the back-action does not alter the physical response
of either system (the back-action cannot alter the established
electromagnetic response of the superconducting transition).

As a concrete example, we consider the TE201 cavity mode,
where Ecav is directed along the y axis over the SC, and Bcav

along the x axis over the FM. Bcav then couples predominantly
to the Kittel mode of the FM, i.e., the uniform mode of
the spherical spin field, quantified by the unit magnetization
vector m. The FM is additionally exposed to a relatively strong
external magnetic field Bext such that |Bext| � |Bcav|, which
fixes the precessional axis of m along the z direction. |Bext|
also regulates the resonance frequency of the spin field mode,
and reduces the impact of Bcav to small perturbations on the
motion of m. The resonance frequency of the TE201 mode
is determined by {dx, dz}, which one may thus match to the
resonance frequency of the Kittel mode and the frequency of
the input ac by adjusting |Bext| and ω.

The current response of a superconductor to an ap-
plied electric field, taking into account both frequency and
temperature, may be derived from microscopic theories
of superconductivity, such as BCS or Eliashberg theory.

Mattis-Bardeen theory is derived from the former [19,20], and
provides accurate descriptions of the optical conductivity of
BCS superconductors. However, these theories are generally
cumbersome to deal with analytically, and will be reserved
for numerical calculations. To analytically model the tran-
sition from resistive to superconducting current in the SC,
we employ the well established framework of the two-fluid
model [21].

The SC is treated as two parallel channels carrying normal
(n) and superconducting (s) electrons, respectively. The su-
perconducting channel is characterized by an asymptotically
infinite relaxation time τs −→ ∞, and the normal channel
assumes a low input frequency ωτn � 1 relative to the relax-
ation time of n electrons. In this case,

dJs(ω, T, t )

dt
= Ns(T )e2

me
ESC(ω, T, t ), (1)

Jn(ω, T, t )

τn
= Nn(T )e2

me
ESC(ω, T, t ), (2)

where me is the electron mass, and Ji and Ni are the current
and electron densities of the respective channels. For sinu-
soidal time dependencies there is therefore a relative phase
difference of ±π/2 between the contributions of Js and Jn

to ESC in a current-driven system. ESC thus acquires a phase
relative to the net current density J = Jn + Js between 0 and
±π/2. We argue that this phase shift can be used to bridge
superconducting and spintronic circuits via nonlocal coupling
to magnons. In this case it can monitor the superconducting
transition, and be implemented as a superconducting switch.
More broadly, it opens the door for wider investigations of
macroscale effects in superconducting circuits.

Upon connecting the SC to an ac source, the net current
density magnitude J (ω, t ) = I exp(iωt )/A, where I is the cur-
rent amplitude, A the SC cross-sectional area, and ω the input
frequency. Inserting into Eqs. (1) and (2), we have

ESC(ω, T, t ) = I

Aσ (ω, T )
exp(iωt ), (3)

where

σ (ω, T ) = e2

me

(
Nn(T )τn − i

Ns(T )

ω

)
≡ σ1(T ) − iσ2(ω, T ).

(4)

The phenomenological temperature dependency of Ni, and by
extension σ1 and σ2, is

Ns(T ) = N[1 − (T/Tc)4], Nn(T ) = N (T/Tc)4, (5)

where N is the total electron density, and T � Tc [21]. For
the purpose of analytic insight we retain this simple form,
although we include the standard temperature modification
of the gap in the numerics [21]. Above Tc, σ reduces to
the normal metal direct current conductivity σ0 ≡ Ne2τn/me.
Note that according to the Mattis-Bardeen theory, σ1 is fre-
quency dependent; near Tc, it has a pronounced coherence
peak at lower frequencies, and a kink at higher frequencies
due to optical excitations across the superconducting gap (see
Fig. 2) [19,20]. Neither feature is captured by the two-fluid
model. Nevertheless, in terms of the relative magnitudes of σ1

and σ2, and their point of intersection marking the boundary
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FIG. 2. Intersections of the real (σ1) and negative imaginary
(σ2) part of the SC conductivity σ = σ1 − iσ2, as a function of
T , for frequency inputs ω. Material parameters for Nb are used
(Tc = 9.26 K) [18]; σ0 is the normal state direct current conductiv-
ity. These plots are generated numerically using the Mattis-Bardeen
theory [19].

between the superconducting and resistive regimes, the two-
fluid model and Mattis-Bardeen theory coincide very well at
the experimentally relevant lower frequencies. Figure 2 thus
shows the predicted temperatures for the transition between
normal and superconducting current [22].

ESC and Ecav are assumed to be purely tangential to the
SC-cavity interface in our setup (see Fig. 1). Thus, by the
continuity of the tangential electric field across any interface,
ESC(rSC, ω, T, t ) = Ecav(rSC, ω, T, t ) at the surface of the SC.
Upon computing the cavity modes by imposing rectangular
boundary conditions on the fields, one finds that across the FM
and specifically for the TE201 mode, Bcav at the FM is [23,24]

Bcav(rFM, ω, T, t ) = Bcav(rFM, ω, T, t )x̂

= −πEcav(rSC, ω, T, t )

iωdz
x̂. (6)

Furthermore, the resonance frequency of the TE201 mode is

ω = c

√(
2π

dx

)2

+
(

π

dz

)2

, (7)

where c is the speed of light in vacuum. With dx and dz given,
this equality for resonant coupling is ensured by tuning ω.

The precessional motion of the FM magnetization vector m
is adequately described by the Landau-Lifshitz-Gilbert (LLG)
equation:

∂m(ω, T, t )

∂t
= −γ m(ω, T, t ) × B(ω, T, t )

+ αm(ω, T, t ) × ∂m(ω, T, t )

∂t
. (8)

Here, γ and α are the gyromagnetic ratio and the phenomeno-
logical damping parameter of the LLG equation, respectively.
B is the effective magnetic field inside the FM, including
the external, the demagnetization, and the magnetocrystalline
anisotropy field [25,26]. The latter two are generally influ-
enced by the geometry and crystal structure of the FM, and
may influence ω and the orbit of m. We assume an easy axis

such as 〈111〉 for YIG [27], coinciding with the z direction;
and negligible demagnetization and anisotropy fields relative
to Bext. The latter is reasonably expected to hold down to an
input frequency of 5 GHz [27–30]. The effective magnetic
field across the FM is then

B(ω, T, t ) = Bcav(rFM, ω, T, t ) + Bext ẑ

= −πESC(rSC, ω, T, t )

iωdz
x̂ + Bext ẑ. (9)

When |Bext| � |Bcav|, mz ≈ 1 � |mx|, |my|, to first order.
In Eq. (8), terms of higher order than linear in Bcav, mx,
and my, may then be neglected. In addition, the coupling
between the cavity mode and the FM is resonant by design.
Solving the LLG equation with complex time dependencies
exp (iωt ) in B and m, one finally extracts the real parts as
physical solutions [33]. Note that Bcav oscillates exclusively
along the x axis, which breaks the symmetry of the linearized
LLG equation. The resulting orbits are consequently elliptical.
The expression for m therefore has the form m(ω, T, t ) ≈
ẑ + mp(ω, T, t ), with precessing component

mp(ω, T, t ) = [mx(ω, T )x̂ + my(ω, T )ŷ] exp(iωt ). (10)

Solving Eq. (8) for mx and my and assuming weak damping
α � 1, one finds the phases relative to the input ac [34]:

ϕmx (ω, T ) ≡ arg [mx(ω, T )] ≈ arctan
σ2(ω, T )

σ1(T )
+ α

2
, (11)

ϕmy (ω, T ) ≡ arg [my(ω, T )] ≈ arctan
σ2(ω, T )

σ1(T )
− α

2
− π

2
.

(12)

Reinserting the solutions for mx and my into Eq. (8), then
taking the absolute value of both sides, yields ω = |γ Bext|.
For a given ω, this equality for resonant coupling is ensured
by tuning Bext.

The phase and magnitude of the magnon precession allows
us to extract measurable spintronic responses to changes in the
superconductor. The magnitude of the precessing component
|Re(mp)| relates to the cone angle of the precession, and is
given by [35].

|Re[mp(ω, T, t )]|

≈ |my(ω, T )|
√

2α cos2

(
ωt + ϕmy + α + π

2
− θ

)
− α + 1,

(13)

where

|my(ω, T )| ≈ |γ |π I

2A|σ (ω, T )|ω2dzα
, (14)

θ ≈ 3π + α

4
. (15)

Within experimental limits such as the critical current of the
SC, |Re(mp)| � 0.1 may easily be achieved by regulating
the input current amplitude I . Above this value, second- and
higher-order corrections of the orbit become significant, and
the full LLG must be employed. Note that for a negligible
α, |Re(mp)| becomes independent of time; the orbit is then
circular with ϕmy −→ ϕmx − π/2.
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FIG. 3. Phase of the magnon precession ϕmx , as a function of T ,
for frequency inputs ω, using the Mattis-Bardeen theory to compute
the SC conductivity. Material parameters for Nb and YIG are used,
with Tc = 9.26 K and α = 10−5 [18,26,31,32]. This phase may be
measured relative to the input signal passed through the SC, and
its value indicates the relative presence of supercurrent and resistive
current in the SC. For this α, ϕmy ≈ ϕmx − π/2.

Plots of ϕmx and |Re(mp)| with realistic parameters using
the Mattis-Bardeen theory are presented in Figs. 3 and 4.
Equations (11) and (12) show as expected that in passing from
a superconducting regime, i.e., σ2 � σ1, to a resistive regime,
i.e., σ2 � σ1, the phase of Re(mp) will shift by −π/2, exactly
corresponding to the simultaneous shift in ESC. Moreover, it
becomes clear from Eqs. (11)–(13) that as the FM damping
α increases, the orbit becomes tilted in the xy plane with
respect to its principal axes, and becomes progressively more
eccentric [34]. The tilting angle between the x axis and the

FIG. 4. The magnitude of the precessing component of the mag-
netization vector |Re(mp)|, as a function of T , for frequency inputs
ω, using the Mattis-Bardeen theory to compute the SC conductiv-
ity. Material parameters for Nb, a microwave cavity, and YIG are
used, with Tc = 9.26 K, α = 10−5, γ = 176 GHz/T, I = 0.6 A,
A = 10−11 cm2, and dz = 5 cm [18,26,31,32]. Within experimental
limits such as the critical current of the SC, the decrease in magnitude
for increasing frequencies may be counteracted by increasing the
input current.

major axis of the elliptic orbit is θ as given by Eq. (15). This
phenomenon may be of particular interest in future works
if one couples the FM and the SC by circularly instead of
linearly polarized light, and if one operates with triplet instead
of singlet superconductivity.

The above coupling mechanism shows clearly that a transi-
tion from the resistive to the superconducting state translates
directly to a measurable nonlocal phase shift in the magnon
precession frequency, with an experimentally resolvable per-
turbation of m of a few percent expected to be possible for
various choices of magnetic and superconducting materials.
The magnon excitations can be incorporated into extended
spintronic circuitry outside the cavity, with no proximity cou-
pling to the SC required. The shift in ϕmx and ϕmy may be
measured, e.g., via Faraday rotation [36,37], or via ac spin
pumping [25,38–41]. The method of Faraday rotation has
sufficient resolution to detect single oscillations in the res-
onance frequency regimes of interest. The phase can then
be measured relative to the ac input signal, as a function of
the input frequency ω. Alternatively, ac spin pumping would
be more easily achieved by changing the geometry of the
ferromagnetic sphere to a film with deposited platinum layer.
The analytics would then require the inclusion of the demag-
netization field and associated shift in resonance, but it would
not otherwise alter the physics.

This work shows that photon-mediated superconducting
signatures are a feasible way to provide a bridging circuit for
spintronic applications. In device design this can feature as a
superconductive switch, but also to monitor the superconduct-
ing transition and critical temperature of the superconductor
directly.

However, the importance of the result also goes beyond
these applications as it opens up a plethora of interesting
investigative avenues. For example, by switching from a con-
ventional singlet superconductor to a triplet source (either
intrinsically p wave or odd-frequency s wave), then there
are no longer two simple coupling relationships to the cav-
ity as in the case of the ac-driven oscillators in Eqs. (1)
and (2). The nature of this coupling remains to be explored,
but it seems plausible in that case that one may employ the
cavity setup to probe and differentiate between the different
current components. This may make cavity spintronics with
superconductors—or super cavitronics—an interesting new
tool for probing unconventional superconductors.

For the physical picture presented above, it is sufficient to
consider a classical description of the coupling. However, it
would be interesting to explore a microscopic picture along
the line of cavity QED as outlined in Ref. [42]. In that case
we can of course not neglect the details of the mesoscopic
circuit by tracing over the mesoscopic degrees of freedom,
meaning the mathematical approach becomes rather involved.
Nevertheless, it is expected to yield valuable insight into the
case of fermionic reservoirs in a cavity.
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knowledge funding via the “Outstanding Academic Fellows”
programme at NTNU, the Research Council of Norway Grant
No. 302315, as well as through its Centres of Excellence
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