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Topological superconductivity induced by a triple-q magnetic structure
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We demonstrate that the recently discovered triple-q (3q) magnetic structure, when embedded in a magnet-
superconductor hybrid (MSH) system, gives rise to the emergence of topological superconductivity. We
investigate the structure of chiral Majorana edge modes at domain walls, and show that they can be distinguished
from trivial in-gap modes through the spatial distribution of the induced supercurrents. Finally, we show that
topological superconductivity in 3q MSH systems is a robust phenomenon that does not depend on the relative
alignment of the magnetic and superconducting layers, or on the presence of electronic degrees of freedom in
the magnetic layer.
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Introduction. The non-Abelian braiding statistics of Majo-
rana zero modes represent a new paradigm for the realization
of topological quantum computing and topology-based de-
vices [1]. While these modes have been observed in one- [2–6]
and two-dimensional (2D) [7–10] topological superconduc-
tors, their engineering at the atomic level and unambiguous
experimental identification have remained an outstanding
problem. Magnet-superconductor hybrid (MSH) systems have
emerged as a promising class of materials to overcome this
problem as they (a) allow for the design of topological su-
perconductivity using atomic manipulation [6] and interface
engineering techniques [8,11], and (b) allow one to investi-
gate Majorana modes using scanning tunneling spectroscopy
(STS). MSH systems with noncollinear magnetic structures,
such as magnetic skyrmions [12,13], have become of great
interest as they might not only exhibit topological supercon-
ductivity [14–18] even in the absence of a Rashba spin-orbit
interaction, but also provide the experimental ability to easily
tune between different topological phases [18]. The recent
experimental breakthrough in creating such a MSH system
by depositing a noncollinear triple-q (3q) magnetic struc-
ture [19] on the surface of an s-wave superconductor [20]
in Mn/Re(0001), has raised the intriguing question whether
this system will exhibit topological superconductivity be-
low the superconducting critical temperature. Moreover, the
observation of domain walls in Mn/Re(0001) provides an
unprecedented opportunity to investigate what type of domain
wall—electronic, magnetic, or structural—is best suited to
engineer Majorana modes, and how to distinguish them from
trivial in-gap states, an important outstanding question for the
unambiguous identification of topological states.

In this Rapid Communication, we address these open ques-
tions and demonstrate that MSH systems containing a 3q

magnetic layer not only realize topological superconductivity,
but also exhibit a rich topological phase diagram. Under-
lying the emergence of topological superconductivity is a
uniform Rashba spin-orbit interaction that is induced by the
3q magnetic structure. We show that ribbons of the 3q mag-
netic structure exhibit Majorana edge modes, that despite the
complex 3q structure, still exhibit a well-defined chirality.
Moreover, we demonstrate that domain walls at which the
magnetic 3q structure is inverted (spin domain walls) give
rise to Majorana modes that traverse the superconducting gap.
In contrast, domain walls at which the superconducting order
parameter undergoes a π -phase shift (π -phase domain walls)
induce only trivial in-gap modes. However, while the local
density of states (LDOS) at these two types of domain walls
shows only some quantitative differences, we demonstrate
that the induced supercurrents at the domain walls, which
can be imaged using a scanning superconducting quantum
interference device (SQUID) [21], provide a qualitative sig-
nature that allows one to differentiate between trivial and
topological in-gap states. Finally, we show that topological
superconductivity in 3q MSH systems is a robust phenomenon
that does not depend on the relative alignment of the magnetic
and superconducting layers, or on the presence of electronic
degrees of freedom in the magnetic layer. Our results provide
guidance for the engineering and unambiguous experimental
identification of chiral Majorana edge modes in general and
for the search of Majorana modes in the recently observed
triple-q structure in Mn/Re(0001) in particular.

Theoretical model. To study the topological phase diagram
of an MSH system containing a 3q magnetic layer, we begin
by considering a model, in which the magnetic moments are
located above the sites of the underlying s-wave supercon-
ductor, and couple to the surface electrons via an exchange
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FIG. 1. (a) Schematic picture of the 3q magnetic layer (red
arrows) placed on the surface of an s-wave superconductor (blue
spheres). (b) Topological phase diagram representing the Chern num-
ber in the (μ, JS) plane for a 3q MSH system with � = 0.4t . The
solid, dashed, and dotted lines denote gap closings at the �, M, and
(K, K ′) points, respectively.

field only [see Fig. 1(a)] (a more complex model motivated
by recent experiments [6,8], will be discussed below). Such a
system is described by the Hamiltonian H1 = H0 + Hm with

H0 = −
∑

〈r,r′〉,σ
trr′c†

rσ cr′σ − μ
∑
r,σ

c†
rσ crσ

+
∑

r

(�0c†
r↑c†

r↓ + H.c.),

Hm = J
∑
r,α,β

c†
rα (Sr · σ)αβcrβ, (1)

where −trr′ is the hopping amplitude between nearest-
neighbor sites on a triangular lattice, μ is the chemical
potential, and �0 is the superconducting s-wave order param-
eter. J is the magnetic exchange coupling, and c†

rσ creates
an electron with spin σ at site r. Sr represents the magnetic
moment’s spin S at site r, encoding the spatial form of the 3q
magnetic structure. It possesses a 2 × 2 unit cell with the four
spins pointing from the center of a tetrahedron to its corners
[see Fig. 1(a) and Supplemental Material (SM) Sec. 1 [22]].
As the hard superconducting gap suppresses Kondo screening,
we consider Sr to represent classical spins. Note that the spins
within a unit cell can be exchanged via a unitary transfor-
mation, which leaves the superconducting order parameter
unchanged, and hence implies that it is spatially uniform. Due
to the particle-hole symmetry of the superconducting state,
and the broken time-reversal symmetry arising from the pres-
ence of magnetic moments, the topological superconductor
belongs to the topological class D [23,24].

To characterize the topological superconducting phases of
the system, we compute the topological invariant – the Chern
number C – given by

C = 1

2π i

∫
BZ

d2k Tr(Pk[∂kx Pk, ∂ky Pk]);

Pk =
∑

En(k)<0

|	n(k)〉〈	n(k)|, (2)

where En(k) and |	n(k)〉 are the eigenenergies and the eigen-
vectors of the Hamiltonian in Eq. (1), with n being a band
index, and the trace is taken over Nambu and spin space.

Topological phase diagram. In addition to a hard su-
perconducting gap and a magnetic order, the emergence of
topological superconductivity in MSH systems usually re-
quires the presence of a Rashba spin-orbit (RSO) interaction
[11,25], which is absent in the Hamiltonian of Eq. (1).
However, an effective RSO interaction is induced by the non-
collinear 3q magnetic structure, as can be seen by applying a
local unitary transformation to Eq. (1) that rotates the local
spin into the z axis. This transformation results in a ferro-
magnetic spin order, perpendicular to the layer, and a RSO
interaction with spatially uniform magnitude |α| = √

2 / 3 t
(see SM Sec. 1 [22]), thus satisfying all requirements for the
emergence of topological superconductivity.

The topological phase diagram in the (μ, JS) plane, result-
ing from the Hamiltonian in Eq. (1), exhibits a rich structure
[see Fig. 1(b)]. The topological phases possess only even-
numbered Chern numbers, which is a direct consequence of
the symmetry of the 3q magnetic structure that leads to doubly
degenerate electronic bands (see SM Sec. 2 [22]). The phase
boundaries are determined by the closing of the gap at the
time-reversal invariant �, M, (K, K ′) points in the Brillouin
zone [26] (see solid, dashed, and dotted lines, respectively, in
Fig. 1(b)], and are determined by the conditions

μ = ±
√

J2 − �2
0 + μ0 (3)

with μ0 = 2t for the � point, and μ0 = −t at the (K, K ′)
points, and

μ = ±
√

J2 − �2
0 + 4t2 ±

√
16
3

(
J2 − 3�2

0

)
t2 (4)

at the M point. While the gap closing at the � and (K, K ′)
points yields phase transition lines that are symmetric around
μ = 0.5t , those at the M point are symmetric around μ = 0.
As a result, the topological phase with C = 2 (for μ > 0) is
fully surrounded by one with C = −4, while their counter-
parts (for μ < 0) only partly overlap, giving rise not only to
C = −2 and C = 4 phases, but also to a C = −6 phase. We
note that the gap closing at the (K, K ′) and M points occurs via
a Dirac cone, which together with a multiplicity of the (K, K ′)
and M points of m = 4, 6, respectively, leads to a change in
the Chern number by �C = 4, 6. In contrast, the gap closing
at the � point leads to a quadratic dispersion, Ek ∼ ±k2,
which together with its multiplicity of m = 2 implies a change
in the Chern number by �C = 4 at the phase transition. Note
that the phase diagram is invariant under uniform rotations of
the spin structure (up to an overall change in the sign of C).
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FIG. 2. (a) Spatial plot for a 3q ribbon periodic along a2 with
width L = 40a0 along a1, located on the surface of the s-wave
superconductor (upper panel), and the zero-energy LDOS (lower
panel) showing Majorana edge modes. (b) Electronic dispersion as
a function of momentum k‖ along the ribbon. (c) Linecut (along
a1) through the ribbon of the energy-resolved LDOS. (d) LDOS at
the left (upper panel) and right edges (lower panel) of the ribbon,
momentum resolved along the ribbon, i.e., N (r1, k‖, E ). The ribbon
is in the C = 4 phase with parameters (μ,�0, JS) = (−1, 0.4, 1)t .

Ribbon geometry. In order to investigate the emergence of
Majorana edge modes in 3q MSH systems, we next consider a
ribbon of the 3q magnetic layer placed on the surface of an s-
wave superconductor, as shown in the upper panel of Fig. 2(a).
In a topological phase with Chern number C, adjacent to a
trivial phase, the bulk-boundary correspondence requires that
each edge possesses |C| chiral Majorana edge modes [26].
These modes traverse the superconducting gap and disperse
linearly near the Fermi energy as a function of the momentum
along the ribbon edge, as shown in Fig. 2(b) for the C = 4
phase. A plot of the zero-energy LDOS [see lower panel in
Fig. 2(a)] reveals that the Majorana modes are as expected
localized at the edges of the 3q ribbon. The Majorana modes
remain localized at the ribbon’s edges with increasing energy,
as shown in Fig. 2(c), where we present a linecut of the
energy-resolved LDOS, N (r, E ), along a1 through the ribbon.
However, with increasing energy, the modes extend further
away from the edges, which is a direct result of the mode’s
localization length which increases with increasing energy
and diverges at the band edges. Figure 2(c) also reveals that
the superconducting gap inside the ribbon is suppressed by
the presence of the 3q magnetic structure [11]. Moreover, con-
sidering the LDOS momentum resolved along the ribbon and
summed over both spin states, i.e., N (r1, k‖, E ) [see Fig. 2(d)],
we find that all four Majorana modes at the right edge (r1 =
rR) are right movers (∂E/∂k‖ > 0) while those at the left edge
(r1 = rL) are left movers (∂E/∂k‖ < 0). This implies, that
despite the complex magnetic structure of the 3q layer, the
Majorana edge modes still possess a well-defined chirality.

Domain walls. The recent observation of a dispersing Ma-
jorana mode at a domain wall [27] in the putative topological
superconductor FeSe0.45Te0.55 [10,28] raises the question of
what types of domain walls induce chiral Majorana modes.
To investigate this question, we consider two different types of
domain walls: a spin domain wall at which the spin structure
of the 3q layer is inverted, i.e., Sr → −Sr [see Fig. 3(a),
case I], and a π -phase domain wall at which the supercon-
ducting order parameter experiences a π -phase shift, i.e.,
�0 → −�0 [see Fig. 3(b), case II]. For a spin domain wall,
the domains possess Chern numbers C and −C, leading to
the emergence of �C = 2|C| Majorana modes at the domain
wall (here, C = 4). The modes traverse the superconducting
gap, as shown in Fig. 3(c) (see red solid and dashed lines),
where we present the electronic dispersion as a function of
momentum k‖ along the domain wall. As we employ periodic
boundary conditions, our system possesses two domain walls,
leading to a total of 4|C| Majorana modes in the electronic dis-
persion. In contrast, for a π -phase domain wall, the domains
possess the same Chern number, and hence the bulk-boundary
correspondence does not require the emergence of Majorana
modes. Indeed, while the π -phase domain wall induces in-
gap modes [see Fig. 3(d)], they do not connect the upper
and lower bands, and are thus not topological. However, for
both domain walls, the in-gap states are localized near the
domain boundary, as follows from the plot of the zero-energy
LDOS, N (r, E = 0), shown in Figs. 3(e) and 3(f) for cases
I and II, respectively. In addition, a plot of the LDOS at
the domain wall reveals substantial spectral weight inside
the gap for both cases, with a nearly flat LDOS for case I
[see Fig. 3(g)], and a strong peak near zero energy for case
II [see Fig. 3(h)]. Therefore, it is difficult to experimentally
distinguish these two cases, and the ensuing topological or
trivial character of the induced in-gap states, based solely on
the LDOS.

However, a significant and qualitative difference between
spin and π -phase domain walls emerges when considering the
supercurrents induced by the domain walls (see SM Sec. 3
[22]). For a spin domain wall, the opposite Chern numbers
imply that the chirality of the supercurrents associated with
the two domains is reversed. As a result, the supercurrents
possess an even symmetry across the domain wall, leading
to a nonvanishing net supercurrent flowing along the domain
wall [see Fig. 3(i)]. In contrast, for a π -phase domain wall, the
domains possess the same Chern number, and their associated
supercurrents have the same chirality. As a result, the super-
currents possess an odd symmetry across the domain wall,
and the net supercurrent along the domain wall vanishes. We
thus conclude that by imaging the net supercurrent flowing
along the domain wall, for example, using a SQUID [21], it is
possible to distinguish the existence of Majorana modes, as in
case I, from the presence of trivial in-gap states, as in case II
(for additional examples, see SM Sec. 4 [22]).

Experimentally motivated model. While the above model
has demonstrated the general existence of topological super-
conductivity in 3q MSH systems, the question naturally arises
as to how this result depends on material specifics. In par-
ticular, recent realizations of MSH systems have shown [6,8]
that the magnetic adatoms reside in the hollow sites of the
underlying superconducting substrate lattice [shaded triangles
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FIG. 3. Schematic picture of (a) a spin domain wall where Sr → −Sr (case I), and (b) a π -phase domain wall with superconducting order
parameter �0 → −�0 (case II). Electronic structure as a function of momentum k‖ along the domain wall for (c) case I (Majorana modes
are shown as red lines), and (d) case II (trivial in-gap states shown in blue). Zero-energy LDOS for (e) case I, and (f) case II. LDOS at the
domain wall for (g) case I and (h) case II. Spatial structure of the supercurrent near the domain wall for (i) case I and (j) case II. Parameters
are (μ, �0, JS) = (−1.0, 0.4, 1.0)t yielding a C = 4 phase.

in Fig. 4(a)], in contrast to the assumption of on-top adsorp-
tion sites made so far [Fig. 1(a)]. Moreover, the magnetic
layer itself possesses an electronic structure, which interacts
with the magnetic moments through an exchange field and is
coupled to the superconducting surface layer via electronic
hopping. To study the effects of these more material-specific
properties on the topological phase diagram of 3q MSH sys-
tems, we consider the Hamiltonian H = H0 + H′

m + Hhyb,
where

H′
m = − tm

∑
r,r′∈M,σ

d†
rσ dr′σ − μm

∑
r∈M,σ

d†
rσ drσ

+ J
∑

r∈M,α,β

d†
rα (Sr · σ)αβdrβ, (5)

Hhyb = −thyb
∑

r,r′,σ (c†
rσ dr′σ + H.c.), and H0 given in

Eq. (1). Here, d†
rσ creates an electron with spin σ at site

r in the magnetic layer M, which possesses a triangular
lattice structure with −tm being the electronic hopping
between nearest-neighbor sites in M, and Hhyb describes the
electronic hopping between a site in the magnetic layer and
its nearest-neighbor sites on the superconducting surface. The

FIG. 4. (a) 3q magnetic layer with electronic degrees of free-
dom and adatoms located above the surface’s hollow sites (shaded
triangles). (b) Topological phase diagram in the (μ, JS) plane, with
thyb = tm = t , μm = μ, and �0 = 0.3t .

resulting topological phase diagram in the (μ, JS) plane [see
Fig. 4(b)] reveals not only a significantly larger number of
topological phases than shown in Fig. 1(b), but also larger
magnitudes of the Chern number. These results are robust
against changes in the band parameters (see SM Sec. 5 [22]),
demonstrating that the general emergence of topological
superconductivity in 3q MSH systems is independent of
material-specific properties. As before, the electronic bands
of the system are doubly degenerate, resulting in topological
phases with even Chern number only.

Conclusions. We have shown that a two-dimensional non-
collinear 3q magnetic layer in a MSH system induce a
spatially uniform Rashba spin-orbit interaction that gives rise
to a rich topological phase diagram. We demonstrated that a
spin domain wall leads to topological Majorana modes, while
a π -phase domain wall induces trivial in-gap states only. Both
types of domain walls possess a qualitatively similar LDOS,
making it difficult to distinguish between them experimentally
solely based on STS measurements. In contrast, the spatial
distribution of the induced supercurrents differs qualitatively,
allowing one to distinguish topological domain walls giving
rise to Majorana modes from trivial ones. Finally, we show
that the emergence of topological phases in the 3q MSH
system is a robust phenomenon that does not depend on the
relative alignment of the magnetic and superconducting lay-
ers, or the presence of electronic degrees of freedom in the
magnetic layer. Our results open new possibilities for the cre-
ation of topological superconductivity and the manipulation
of the concomitant edge modes in MSH systems contain-
ing complex magnetic structures. The long-term vision is to
control and to modify electronic circuits of edge modes by
manipulating domain walls as proposed for magnonic edge
modes [29].
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