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In spin chains with local unitary evolution preserving the magnetization Sz, the domain-wall state
| . . . ↑↑↑↑↑↓↓↓↓↓ . . . 〉 typically “melts.” At large times, a nontrivial magnetization profile develops in an
expanding region around the initial position of the domain wall. For nonintegrable dynamics, the melting is
diffusive, with entropy production within a melted region of size

√
t . In contrast, when the evolution is integrable,

ballistic transport dominates and results in a melted region growing linearly in time, with no extensive entropy
production: The spin chain remains locally in states of zero entropy at any time. Here we show that, for the
integrable spin-1/2 XXZ chain, low-energy quantum fluctuations in the melted region give rise to an emergent
Luttinger liquid which, remarkably, differs from the equilibrium one. The striking feature of this emergent
Luttinger liquid is its quasiparticle charge (or Luttinger parameter K), which acquires a fractal dependence
on the XXZ chain anisotropy parameter �.

DOI: 10.1103/PhysRevB.102.180409

Introduction. The phenomenon of domain-wall (DW) melt-
ing in quantum magnetism is a simple example of quantum
many-body dynamics. It has a long history in the context
of quantum spin chains, dating back to early experimental
work on CoCl2 · 2H2O chains [1], which provided the ini-
tial motivation for many subsequent theoretical developments.
Those include studies of the dynamical stability of domain
walls [2–5], exact calculations of magnetization profiles in
free fermion chains [6–16], and approximate and numerical
analyses both in integrable and nonintegrable spin chains
[17–32].

On the analytical side, the 2016 discovery of a hydrody-
namic approach to quantum integrable systems [33,34], now
dubbed generalized hydrodynamics (GHD), has provided the
ultimate analytical tool to analyze inhomogeneous dynamics
of integrable systems [35–43], even in the classical context
[44–46]. Its application to domain-wall melting in integrable
spin chains has been particularly effective, providing the exact
magnetization profile at large time for the XXZ chain [47] (see
below).

Much effort has been spent to extend such a power-
ful method and include diffusive or superdiffusive effects
[48–52], nonballistic phenomena [53], and integrability
breaking [54–56] so as to codify correlations [57–62] and
entanglement [63–66]. Indeed, due to its own coarse-grained
nature, GHD in its original form cannot account for en-
tanglement generation and quantum correlation spreading
following the quantum unitary evolution. As a matter of fact,
an uncorrelated initial state—e.g., a product state with zero
entanglement—does develop entanglement when it evolves
under a nontrivial unitary evolution. Recently, a low-energy

description in terms of multicomponent Luttinger liquids (LL)
[67–69] has been put forward [70]; such refined “quantum”
adaptation of the GHD has been tested for integrable quan-
tum gases [70]. Here we further develop this intuition and
explore the nonequilibrium dynamics from a domain-wall
(DW) state in the XXZ spin-1/2 chain, a genuinely interacting
integrable model. Despite the simple structure of the initial
state, the dynamics is highly nontrivial [47]; interestingly,
the emerging local quasistationary state (LQSS) [33,71–73]
admits a description in terms of two species of particles, each
supporting a single Fermi point. In the spirit of the quantum
GHD picture [70], we show that the quantum fluctuations in
the LQSS can be exactly encoded in a LL, whose Luttinger
parameter is nontrivial and differs from the standard low-
energy equilibrium one [74,75] governing the transport at low
temperature [76,77].

Model and GHD solution of domain wall. We consider the
unitary dynamics generated by the one-dimensional spin-1/2
XXZ Hamiltonian

H =
∞∑

x=−∞
Sx

x Sx
x+1 + Sy

x Sy
x+1 + �Sz

xSz
x+1, (1)

where Sα
x are spin-1/2 operators acting on the site x. We focus

on the regime −1 < � < 1 which exhibits ballistic transport
[47,78,79]. (It is known that for |�| > 1 the domain wall
does not melt—see, e.g., the energetic argument given in
Refs. [80,81]—and � = 1 is pathological [51,82].) Moreover,
we focus on the “rational case” where the anisotropy � is
parameterized as

� = cos(γ ), γ = π Q/P, (2)

2469-9950/2020/102(18)/180409(8) 180409-1 ©2020 American Physical Society

https://orcid.org/0000-0003-2615-8140
https://orcid.org/0000-0001-7678-3185
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.102.180409&domain=pdf&date_stamp=2020-11-23
https://doi.org/10.1103/PhysRevB.102.180409


COLLURA, DE LUCA, CALABRESE, AND DUBAIL PHYSICAL REVIEW B 102, 180409(R) (2020)

where Q and P are two coprime integers with 1 � Q < P.
The initial state is the classical DW state in the z direc-
tion, |DW〉 = | · · · ↑↑↑↓↓↓ · · · 〉 and it undergoes unitary
evolution generated by the Hamiltonian (1), i.e., |�(t )〉 =
e−itH |DW〉. In Ref. [47], the exact large-time magnetization
profile was calculated using GHD, as we now briefly recall.
GHD is a hydrodynamic approach valid at large distances
and on long timescales, where the local state of the system
in a space-time cell [x, x + dx] × [t, t + dt] is represented
by a Fermi filling factor ϑ j (x, t, λ) ∈ [0, 1] for each species
j of quasiparticles, or string, with rapidity λ [33]. For the
XXZ chain in the rational case, the index j is an integer
ranging from 1 to 	 = ∑δ

k=1 νk , where the ratio Q/P has been
represented as a finite continued fraction Q/P = 1

ν1+ 1
ν2+...

of

length δ [83]. The GHD equations then read [33,41]

∂tϑ j (λ; x, t ) + veff
j (λ)∂xϑ j (λ; x, t ) = 0, (3a)

veff
j (λ) = ∂λε(λ)

∂λ p(λ)
, (3b)

where ε j (λ) and p j (λ) are the energy and momentum of a
quasiparticle of species j with rapidity λ. Their explicit ex-
pressions is not essential for us and can be found in Ref. [84].
For general initial states, the GHD equations have to be solved
numerically [33,34], but for the special case of the DW initial
state they admit an analytical solution [47]. This stems from
two remarkable observations: (i) In the initial state, all filling
factors are identically zero or one, i.e., ϑ j (λ; x, t = 0) = 1
for j ∈ {	 − 1, 	} and λ < 0 and vanishes otherwise; and (ii)
in those local macrostates the effective velocity takes a very
simple form independent of space and time,

veff
j (λ) = sin(πQ/P)

sin(π/P)
sin(σ j p j (λ)), j ∈ {	, 	 − 1}, (4)

where σ j = sgn(p′
j (0)) is the “sign” of the string, defined

so that σ j p j (λ) is a strictly increasing function of λ ∈
[−π/P, π/P]. Then Eq. (3a) is easily solved [47],

ϑ j (λ; x, t ) =
{

1 if x/t > veff
j (λ) and j ∈ {	 − 1, 	}

0 otherwise.
(5)

The local macrostate parameterized by the filling factor
ϑ j (x, t, λ) thus depends only on the ratio ζ = x/t ; this is, of
course, expected since the problem of domain-wall melting
is a particular case of the more general Riemann problem in
hydrodynamics [85]. The velocity does not depend explicitly
on x/t , but the effect of the interactions is such that the light-
cone is shrunk as x/t ∈ [− sin(γ ), sin(γ )]. This led to analytic
formulas for the profiles of the stationary magnetization and
spin current [47] (see also Ref. [84] for a short summary).

Effective LL for quantum fluctuations in the melted region.
The goal of this paper is to investigate quantities that go
beyond the classical Euler-scale GHD equations [(3a) and
(3b)], such as the bipartite entanglement entropy or the quan-
tum fluctuations of the magnetization. This requires us to
describe quantum fluctuations around the GHD solution. The
dynamics from the DW state is fully characterized by the
last two strings. In particular, for any ray ζ = x/t , each of
them has one single Fermi point λ∗ where the filling factor
ϑ (λ∗; x, t ) jumps from 0 to 1. Quite generally, in this kind of

zero-entropy states, one can expect that quantum fluctua-
tions can be captured by an effective inhomogeneous LL
[70,86,87]. The action of this effective field theory is of the
form

S = 1

8π

∫ √−detgdxdt

K
gab(∂ah)(∂bh), (6)

where a, b = x, t and h(x, t ) is the height field related to the
fluctuations of the local magnetization as Sz

x − 〈Sz
x〉 = 1

2π
∂xh.

The effective action (6) contains two free parameters: the
metric g with Lorentzian signature [more precisely, S depends
only on the conformal class of the metric g, since the action
is invariant under Weyl transformation g → λ(x, t )g], and the
Luttinger parameter K . Since the system is inhomogeneous,
both g and K may depend on the spacetime coordinate (x, t ).

We start by fixing the metric in Eq. (6): It must be of the
form ds2 = (v	dt − dx)(v	−1dt − dx), where v	 and v	−1 are
the velocities of quasiparticle excitations around the Fermi
point λ∗ for the quasiparticle species j = 	 and j = 	 − 1
respectively. Here the quasiparticles are all emitted from the
domain wall at x = 0 at time t = 0, and therefore in order
to arrive at position x at time t they must be traveling at
the same velocity v	 = v	−1 = x/t . Thus, the metric is ds2 =
( x

t dt − dx)2. This metric is degenerate (see also Ref. [86] for a
discussion of the particular case � = 0); however, in practice
one can compute correlation functions assuming v	 �= v	−1,
such that the metric is nondegenerate, and then take v	 →
v	−1 at the end of all calculations.

Then, we fix the Luttinger parameter K in Eq. (6). As in
standard Luttinger liquid theory, the excess density of parti-
cles or magnetization ρ(x) = 1

2π
∂xh is related to the excess

density of quasiparticles ρ̃ traveling freely through the system
by ρ(x, t ) = √

K ρ̃(x, t ) [74], so the Luttinger parameter K
may be viewed as the square of the quasiparticle charge [88].
K can be extracted from finite-size energy corrections around
the ground state (see for instance Eq. (9.18) in Chapter I or
Eq. (5.3) in Chapter II of Ref. [89]) but also more generally
around zero-entropy states [68] which include our local qua-
sistationary states. When the latter quasistationary state has
only two Fermi points, the Luttinger parameter is the square
of the dressed magnetization evaluated at any of the two Fermi
points [68,89]. A direct calculation of the dressed magnetiza-
tion in our quasistationary states leads to the following value
of K [84], independently of x and t :

K = P2

4
. (7)

Remarkably, since K depends only on the denominator of
γ /π , it exhibits a fractal (i.e., nowhere continuous) depen-
dence on the anisotropy parameter � = cos(γ ). Also, since
the Luttinger parameter does not depend on x and t , this is a
particularly simple version of an inhomogeneous LL where
conformal invariance is not broken [87]. Consequently, the
correlation functions of primary fields φ1, ..., φn with scaling
dimensions �1, ..., �n obey the scaling relation

〈φ1(x1, t1) . . . φn(xn, tn)〉

=
n∏

i=1

(τ/ti )
�i〈φ1(τx1/t1, τ ) . . . φn(τxn/tn, τ )〉 (8)
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for any fixed τ . In other words, all correlation functions can
be expressed in terms of equal-time correlations at some fixed
time τ . However, we cannot yet fully determine the correlation
functions at time τ , as this would require an exact lattice
calculation. In the free fermion case � = 0, such a calculation
is possible [86] using a clever Euclidean-time regularization
which connects to a two-dimensional inhomogeneous statisti-
cal problem [90]. In principle, a similar regularization should
also be possible for � �= 0 [91], but presently we do not know
how to do this calculation. Nevertheless, the scaling relation
(8) is sufficient to derive a number of nontrivial results about
quantum correlations in the long-time behavior of the system
which we summarize in the following.

Entanglement entropy. We consider the entanglement
entropy for the bipartition A = (−∞, x − 1] and B =
[x,∞), i.e., Sα (x, t ) = 1

1−α
ln(Tr[ρα

A (t )]), where ρA(t ) =
TrB|�(t )〉〈�(t )| is the reduced density matrix of subsystem
A. In the effective Luttinger liquid description, the trace
Tr[ρα

A (t )] can be obtained as the expectation value of a twist
field 〈φ(x, t )〉 in a theory with replicas [92]. The twist field
φ is a primary operator with scaling dimension � = 1

12 (α −
1/α); therefore, the scaling relation (8) leads to

Sα (x, t ) = 1

1 − α
ln(〈φ(x, t )〉/ε)

= 1

1 − α
ln((τ/t )

1
24 (α− 1

α
)〈φ(τx/t, τ )〉/ε)

= 1

12

(
1 + 1

α

)
ln(t/τ ) + fα (x/t ), (9)

where ε is a UV length scale which appears when one takes
the continuum limit of the lattice model. While for homo-
geneous systems ε is simply a constant, in inhomogeneous
setups it depends on the LQSS; in particular, in our setup
it can depend on the ratio ζ = x/t . We thus set fα (ζ ) =

1
1−α

ln [〈φ(τζ , τ )〉/ε(ζ )], which is an unknown function of ζ .
When evaluated at fixed x and in the limit t → ∞, the

entanglement entropy therefore exhibits a leading logarithmic
universal behavior. For the von Neumann entropy (α → 1),
this gives

S1(x, t ) ∼
t→∞
x fixed

1
6 ln t + c0(�) + o(1), (10)

where the subleading term c0(�) eventually depend on �.
In the top left panel of Fig. 1, we show the entanglement
entropy S1(x = 0, t ). The perfect logarithmic behavior, with
a prefactor independent of the value of the anisotropy �

and compatible with the predicted value 1/6, nicely confirms
the expectations from the LL description of the melted re-
gion. The equilibration occurs much more quickly for smaller
values of the denominator P; for Q/P = 1/2 and 1/3, the
large-time stationary regime has been reached at accessible
times and the entanglement entropy perfectly matches the
logarithmic growth (10). Also for Q/P = 1/4, the approach
to the LL regime is evident, despite the presence of slowly
decaying oscillations. Remarkably, for Q/P = 2/5, although
the value of the anisotropy is relatively small, � � 0.309, the
relaxation toward the asymptotic regime is very slow. Notice
finally that for Q/P = 1/5 and 2/5, the entanglement entropy
approaches the LL asymptotics oscillating around the same

FIG. 1. (Top panel) The time evolution of the entanglement en-
tropy between the two halves of the system, namely [−L/2,−1]
and [0, L/2 − 1], is plotted in log-linear scale. Different colors rep-
resent the Time Evolving Block Decimation (TEBD) simulations
for different values of the anisotropy �. The black dashed line is
a guide for the eyes, representing the asymptotic leading behavior
∼ ln(t )/6. The black dot-dashed line shows the behavior for γ /π =
49/100 = 0.49, which completely differs from the noninteracting
case (γ /π = 1/2). (Bottom panels) The profiles of the entanglement
entropy as a function of the ray x/t for different times t and γ = π/3
(left), π/4 (right). The black dashed lines are the phenomenological
approximation (11).

curve, implying that the nonuniversal additive constant c0(�)
is the same for the two cases. This observation suggests that
c0(�) may depend only on P (i.e., K), although we do not
have a field-theory explanation supporting this. Finally, to
shed further light on the entanglement dynamics, we show
the case � = cos(π49/100) � 0.031 in Fig. 1. It completely
differs from the noninteracting case: The entanglement en-
tropy grows much more quickly, confirming that it has not yet
reached the asymptotic logarithmic behavior.

Next, we study the entanglement entropy S1(x, t ) for fixed
ζ = x/t when t → ∞. As explained above, the profile func-
tion f1(ζ ) is hard to compute because it gets contributions
both from the field theory and from the lattice regularization.
Nevertheless, we can calculate it numerically, as shown in
Fig. 1. The numerical results are well approximated by the
phenomenological formula

f1(ζ ) � 1

6

(
1 + 1

P

)
ln

[
1 −

(
ζ

sin(γ )

)2]
, (11)

designed such that for Q/P = 1/2 it reproduces the exact re-
sult for � = 0 [86]. We do not have a theoretical justification
of Eq. (11), but nonetheless it undeniably provides a rather
good approximation.
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In Fig. 1 (left bottom panel), we show the profile of the en-
tanglement entropy for Q/P = 1/3 and different times [larger
than 50 for which system is in the LQSS from the measure
of S1(0, t )]. The profile is well approximated by Eq. (11), ex-
cepts from tiny regions close to the light cone x/t � ± sin(γ ).
For Q/P = 1/4 (right bottom panel in Fig. 1), the largest time
accessible by time-evolving block decimation (TEBD) [93]
simulations is not sufficient to observe a complete relaxation
to the large-time stationary behavior. For this reason, oscil-
lations on top of the asymptotic profile are present, but the
agreement with Eq. (11) is fairly good.

Full counting statistics. We now turn to the fluctuations of
the magnetization M[x1,x2] = ∑x2

x=x1
Sz

x in an interval [x1, x2]
inside the melted region. The generating function of the cu-
mulants is

F[x1,x2](λ, t ) = 〈
exp

( − iλM[x1,x2]
)〉

t

= 〈
ei λ

2π
h(x1,t )e−i λ

2π
h(x2,t )

〉
, (12)

where in the second line we used that the local magnetization
is related to the height field as Sz

x − 〈Sz
x〉 = 1

2π
∂xh. We are

interested in the case of an interval [x − l/2, x + l/2] with
fixed length l � 1, in limit of large time t � l , keeping
ζ = x/t fixed. In that limit, the point x − l/2 and x + l/2 look
very close to each other, so we may use the operator product
expansion of the primary field e±iαh(x,t ) to evaluate the scaling
behavior of the generating function: e−iαh(x+l/2,t )eiαh(x−l/2,t ) ∼
l−2� + · · · , where � = α2K is the scaling dimension of the
primary field. Thus, at large times the generating function
behaves as

F[x−l/2,x+l/2](λ, t ) �
(

l

ε′(x/t )

)− λ2

2π2 K

, (13)

where ε′ is a UV length scale, similar to but different from ε,
which may also depend on ζ .

The numerical study of the full counting statistics in the
LQSS is tricky due to its dependence on the subsystem size
l . Indeed, Eq. (13) works only if the actual time reached
by the unitary evolution is sufficiently large to guarantee
a complete generalized thermalization of the entire subsys-
tem [x − l/2, x + l/2]. The dependence on ε′ is canceled by
considering the logarithm of the ratio between two different
subsystem sizes, specifically,

F (λ) ≡ log2

[
F[x−l,x+l](λ, t )

F[x−l/2,x+l/2](λ, t )

]
�

t�l�1
− K

2π2
λ2. (14)

Since both subsystems should be almost stationary, we focus
on relatively small intervals, namely l = 4, 8, and 16. In
Fig. 2, we plot F (λ) for the subsystem at x = 0 for Q/P =
1/2, 1/3, 1/4, and 1/5 at the maximum accessible time t �
200. Notice that the approach to the asymptotic behavior is
not monotonic in l (since the information spreads out from
the junction, the subsystem of size 2l takes longer to reach
stationarity). Interestingly, all curves approach the stationary
behavior from the neighborhood of λ = 0. For this reason, it
is more instructive to analyze the variance of the subsystem
magnetization, i.e., the second cumulant, as a function of the
subsystem size, both in the center of the system at ζ = 0 and
away from it.

FIG. 2. The logarithm of the ratio of generating functions at the
largest time t � 200 for different subsystem sizes l and parameter γ .
The black dashed lines represent the LL quadratic prediction (14).

Fluctuations of subsystem magnetization. The variance of
the magnetization in the interval [x − l/2, x + l/2] follows
from Eq. (13) as〈

M2
[x−l/2,x+l/2]

〉
t − 〈M[x−l/2,x+l/2]〉2

t

= −1

2
∂2
λ log F[x−l/2,x+l/2]|λ=0 �

t�l�1

K

π2
log(l ) + O(1).

(15)

In Fig. 3, we show the results obtained at ζ = x/t = 0 and
ζ � 1/4 for l ∈ [2, 50] and at t � 200. For nonzero ζ , the
numerical analysis is slightly more difficult: The convergence
is unavoidably poorer than at ζ = 0 because the approach
to the LQSS requires more time as we move away from
the junction. Some comments are due: (1) The numerical

FIG. 3. The TEBD data for the variance of the subsystem mag-
netization (symbols) at the largest accessible time t � 200 are
compared with the LL predictions (full lines). The subsystems are
centered around ζ = 0 (left) and ζ � 1/4 (right). For comparison,
the black dot-dashed line is the γ /π = 49/100 case, which is not yet
stationary.
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data for all ζ manifest an asymptotic tendency toward the
right logarithmic behavior also with the same nonuniversal
constant; the full lines are indeed the same in both panels.
(2) For ζ � 1/4, the data show larger finite-size/finite-time
effects because the subsystem is closer to the propagating
front (the center of the subsystem is located at x = 50 for
t = 200); hence, the subsystem is not relaxed for large l when
the numerical data deviate from the scaling prediction. (3)
Very remarkably, the numerical simulations, both for ζ = 0
and ζ � 1/4, show the same asymptotic behavior for two very
different values of the anisotropy, namely � = cos(π/5) �
0.809 and � = cos(2π/5) � 0.309, confirming that the only
parameter entering in the large-scale/large-time description of
the local quasistationary state is the square of the quasiparticle
charge (7), which depends only on P, the denominator of γ /π ;
see Eq. (2). Again, in order to further support this scenario,
we also show data for � = cos(π49/100) � 0.031, which are
far from equilibrated and very different from the γ /π = 1/2
case.

Discussions and conclusions. In this Rapid Communica-
tion, we analytically showed that the stationary state resulting
from the melting of a domain wall in an XXZ chain is de-
scribed at low energy (i.e., large times and distances) by an
emergent Luttinger liquid with Luttinger parameter nowhere
continuous in �. We corroborate this surprising prediction by
accurate numerical tensor network simulations which strongly
support our finding, manifested in the central charge of the
underlying field theory being 1 (from the measure of the
entanglement entropy) and in the Luttinger parameter being
K = P2/4 (from measures of the magnetization statistics).
We stress that it is a nontrivial consequence of the emergent
conformal invariance that we demonstrate here, that two-time
correlation functions can be related from equal-time ones.

As a consequence, the fractal behavior already observed in
genuinely dynamical quantities (e.g., the spin Drude weight
[79,94–97]) appears also in the Luttinger parameter and con-
sequently in equal-time correlators.

In spite of these robust and intriguing findings, there are
still many open questions. First, it would be interesting to
determine correlation functions in the LQSS to provide fur-
ther predictions to be tested numerically also to have further
confirmations of the fractal Luttinger scenario; unfortunately,
this is still beyond our technical capabilities. Another im-
portant question concerns the generality of our scenario: Are
there in more complicated integrable models (such as higher
spin chains or Hubbard models, studied already with GHD
[98–100]) zero entropy initial states with an LQSS being a
fractal Luttinger liquid? What is the nature of the LQSS at the
isotropic point � = 1 with pathological transport [81]?

Finally, we note that the domain-wall problem resembles
the spatiotemporal quench protocol [101] for fast prepara-
tion of quantum critical systems. The idea is that, contrary
to low-energy states of gapless systems—which cannot be
reached easily by cooling because temperatures would have to
be prohibitively low—product states can be engineered easily
in cold atom experiments [102] and then be evolved unitarily.
Thus, the domain-wall melting problem can be viewed as a
realistic protocol for fast preparation of a Luttinger liquid,
similarly to the protocol of Ref. [101]. Our results show that
the critical system engineered in this way will indeed be a
Luttinger liquid, but it will be very different from the one
corresponding to the ground state of the XXZ chain.
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