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Simulating the spectral gap with polariton graphs
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Polariton graphs were recently proposed and validated as a novel platform for solving hard optimization
problems that can be mapped into the Ising or XY models. Here, we elucidate a relationship between the energy
spectrum of the XY Hamiltonian, Hermitian and non-Hermitian, and the total number of condensed polariton
particles. Using a hexagonal unit lattice we show that the lower-energy states of the XY Hamiltonian are faithfully
reproduced by mean-field simulations. We further confirm experimentally a possibility of finite spectral gaps near
the condensation threshold for the triangular lattice configurations of polariton condensates. Our study paves the
way to simulating the spectral gap of Hermitian and non-Hermitian XY models using polariton graphs.
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It is hard to identify a physical concept as important in
condensed matter physics as the notion of the spectral gap.
Often physical behaviors can be understood through anal-
ysis of energy spectra and the difference between the two
lowest-energy levels, known as the spectral gap, determines
the phase diagram of physical systems. When the spectral
gap vanishes, phase transitions occur. Whereas critical be-
havior is associated with gapless systems, wherein long-range
correlations are supported by low-energy excitations that be-
have as massless particles, noncritical behavior is associated
with gapped systems, wherein long-range correlations are
prevented through massive low-energy excitations [1]. In adi-
abatic quantum computation that can be as powerful as the
usual circuit model for quantum computation [2], the spec-
tral gap is a crucial quantity that defines the efficiency of a
quantum algorithm. Such an algorithm is efficient only if there
exists a Hamiltonian path for which the minimal spectral gap
is lower bounded by an inverse polynomial in the system size
[3]. Finding a method that allows one to determine whether or
not a quantum many-body Hamiltonian is gapped, or even cal-
culate the size of the gap, is one of the fundamental questions
for condensed matter systems. Even for some simple spin
models on one- and two-dimensional (1D and 2D) lattices,
there are famous outstanding problems on the existence of the
spectral gap [4,5]. Recently, the undecidability of the spectral
gap problem was rigorously proven, meaning that it is algo-
rithmically impossible to say whether a general Hamiltonian
is gapped or gapless [6]. Hence, one cannot extrapolate the
discovered patterns in large, but still computable systems,
to larger systems that are incomputable. An alternative way
to determine if a given large system, for which the spectral
gap cannot be calculated using the classical Turing algorithm
and classical hardware, is to use unconventional computing
systems. Such systems have been explored with proposals
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ranging from the universal quantum computations and quan-
tum simulators (for a review, see Ref. [7]) to, more recently,
analog Hamiltonian simulators [8–13].

Various physical systems have been proposed and realized
to a various degree of scalability and efficiency. Ultracold
atoms in optical lattices [14–17], trapped ions [18,19], pho-
tons [20], superconducting qubits [21], network of optical
parametric oscillators (OPOs) [8,9], coupled lasers [11], mul-
timode cavity QED [12], and photon condensates [13] are
among the most promising systems proposed to overcome the
limitations of the classical Turing computation. The existence
of universal spin Hamiltonians, such as the two-dimensional
Ising model on a square lattice with next-neighbor interactions
and fields [22], implies that the successful emulation of certain
simple Hamiltonians on unconventional computing platforms
could be generalized to simulations of any other classical spin
model with arbitrary long-range many-body interactions.

Another novel platform for simulating spin Hamiltonians
is based on polariton networks [10]. Polaritons are the com-
posed light-matter bosonic quasiparticles formed in the strong
exciton-photon coupling regime in semiconductor microcavi-
ties [23]. Due to bosonic stimulation polaritons condense in
the same quantum mechanical state [24–26]. Using spatial
modulation and nonresonant optical excitation, polaritons can
be made to condense at any location of a planar microcavity
forming a two-dimensional graph of condensates [27]. When
the coherence lifetime of polaritons exceeds the time of flight
between neighboring sites (graph vertices), polariton interac-
tions lead to the development of phase relationships across the
vertices [28–30]. As polaritons condense to the same quantum
mechanical state, the phases of polaritons at the pumping
sites become either locked with particular phase differences or
oscillate between unstable fixed points. Such phase difference
behavior represents many oscillator models [31] including
Kuramoto, Stuart-Landau, Lang-Kobayashi, and others de-
pending on the system parameters: lattice and pump geometry
and microcavity structure. For a certain range of param-
eters, the phase configurations of polariton networks may
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correspond to the ground state of the XY Hamiltonian. The
connection between the minimization of the XY Hamiltonian
and the maximization of the number particles at the conden-
sation threshold was first established for simple geometrically
coupled polariton graphs [10] and further generalized to sim-
ulations of discrete and continuous spins Hamiltonians with
polariton pillars and remote couplings [32,33]. The process of
identifying the ground state of the XY Hamiltonian through
bosonic stimulation is very similar to that of coupled lasers
[11,34].

In this Rapid Communication, we establish that polariton
graphs are not only capable of finding the ground state of the
XY model, but also the low-energy spectrum of the excited
states, and therefore can become an efficient tool for retriev-
ing the spectral gap of various oscillator models and the XY
Hamiltonians. The energy landscape of the XY Hamiltonian is
set by the interaction strengths Ji j that depend on the pumping
intensity and the graph geometry. We show that higher-energy
levels of the XY Hamiltonian have a progressively lower occu-
pancy while showing up on the energy spectrum of polaritonic
systems both above or below the state that corresponds to the
ground state of the XY Hamiltonian. We shall refer to the state
with the second largest particle number as “the first excited
state,” where the difference in the number of particles between
the ground and first excited state represents the spectral gap
of the XY model. If the system parameters are such that inter-
action couplings of the XY Hamiltonian are complex, which
happens when a Josephson type of coupling is combined with
a dissipative one [31], the XY Hamiltonian is non-Hermitian.
Studies of non-Hermitian XY models were addressed using
three-level atoms in a variety of setups, including trapped ions,
cavity QED, and atoms in optical lattices [35]. Such systems
attracted attention as they provide the opportunity to discover
new classes of phase transitions beyond the framework of
Hermitian critical phenomena. In this case, the energy gap
provides the information about the exceptional and bifurcation
points of a non-Hermitian Hamiltonian [31,36]. Such points
manifest themselves through the emergence of sidebands and
intensity peaks [37]; their position is important, for instance,
in heteroclinic computing [38–40].

The XY model on different types of lattices, such as tri-
angular [41], square [42–44], and honeycomb [45–47], is
usually considered in terms of the frustration parameter J2/J1

representing the ratio of the strength of the next-neighbor
interactions J2 to the nearest-neighbor interaction J1. A sys-
tem may exhibit different phase configurations depending on
this value: collinear ordering (i.e., antiferromagnetic ordering,
Néel state I, classical order), the state of a quantum spin liquid
(i.e., Bose metal), collinear ordering when two of the three
nearest-neighboring spins are antiparallel, and the other are
parallel (i.e., Néel state II, anti-Néel, collinear spin wave).
The XY model on a honeycomb lattice has attracted much
attention of experimental and theoretical physicists, since
a small number of neighbor interactions enhances quantum
fluctuations, and therefore it seems to be a promising system
for obtaining spin-liquid states. It was initially believed [45]
that for a simple XY spin model, a specific spin-liquid ground
state, a Bose liquid, appears for a particular range of the frus-
tration parameter, while a surprising antiferromagnetic Ising
phase was detected [46] for the same range by examining

FIG. 1. (a), (c) The three lowest-energy levels of the XY model
(squares) and the particle mass residues of polariton condensates (cir-
cles) as functions of the hexagon side d . The particle mass residues
are calculated by numerical integration of Eqs. (3) and (4) as de-
scribed in the main text. The color of the circles represents different
phase configurations with the description given in the legend. The
first three energy levels for the (a) J1-J2 model and (c) J1-J2-J3 model
are found by the direct minimization of the XY Hamiltonian using the
gain-dissipative algorithm and shown with red, orange, and yellow
squares. Their phase configurations are similar to the phases shown
with circles over which the squares are plotted. The coupling ratios
with respect to the hexagon side d found from Eqs. (3) and (4),
as described in the text, are plotted for the (b) J1-J2 model and (d)
J1-J2-J3 model.

much larger lattices without finding any spin-liquid ground
state. By considering models with second-neighbor J1-J2 or
even third-neighbor J1-J2-J3 interactions, possible symmetry-
breaking ground states were shown on a honeycomb lattice
[47,48].

The total number of condensed polaritons in the system
with l equally pumped spots can be expressed as [10]

N =
∫

|ψ (r, t )|2dr ≈ lN0 +
∑
i< j

Ji j (kc, di j ) cos θi j, (1)

where ψ (r, t ) is the condensate wave function, and N0 rep-
resents the number of polaritons of one isolated pumping
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FIG. 2. The polariton densites for the hexagons with the sides (a)–(c) d = 11 μm and (d)–(f) d = 13 μm found by numerical integration
of Eqs. (3) and (4). The first row shows (a) an AF ordering for the ground state (Néel’s ordering), (b) a double vortex, and (c) a spin wave for
the two lowest excited states (Néel state II). The second row depicts (d) a F ordering, (e) a single vortex state, and (f) a different spin-wave
state (Néel state III). The arrows correspond to the phases of the condensates. The indices j and k stand here for the short notation of i + 1 and
i + 2 neighbor condensates, respectively.

spot. Ji j stands for the interaction strength between polariton
spots at positions r = ri and r = r j , separated by the distance
di j = |ri − r j | with outflow velocities kc. Here, θi j = θi − θ j

is the relative phase difference between the polaritons at ri

and r j . From Eq. (1) we can define the particle mass residue
M = lN0 − N that represents the change in the number of
particles in the system due to the interaction of the conden-
sates among different pumping spots. The expression for M
from Eq. (1) approximates the definition of the XY Hamilto-
nian, HXY = −∑

i< j Ji j cos θi j . The particle mass residue of
polariton states corresponds to the energy spectra of the XY
model, while the particle mass residue difference between the
ground and first excited state approximates its spectral gap.

We elucidate this argument by considering a hexagon
unit cell with size d = |ri − ri+1| and the pumping profile
P = ∑6

i=1 P0 exp(−α|r − ri|2), where α is the inverse width
of the Gaussian. The particle mass residue becomes
M = 6N0 − Nhex, where Nhex is the number of particles in
the hexagon of polariton condensates and the XY Hamiltonian
becomes

HXY = −J1

6∑
i=1

cos θii+1 − J2

6∑
i=1

cos θii+2 − J3

3∑
i=1

cos θii+3,

(2)

where the summation is cyclic in i (e.g., i + 1 is set to 1
for i = 6) and where we included all pairwise interactions
between vertices. Experimentally, the number of particles in
the system and therefore the particle mass residues of the

ground and then the lower excited states are determined as the
pumping intensity P0 approaches the condensation threshold
from below and then exceeds it. This constitutes the speedup
in comparison with the classical computer minimization that
requires an extensive search of the minima of an energy con-
figuration of a high dimensionality fixed by the lattice size.
For only six pumping spots we can compute the particle mass
residues for the lower-energy states numerically from the
mean-field equations based on the complex Ginzburg-Landau
equation (GLE) written for the condensate wave function ψ

[49,50]. In Ref. [10] we established the set of parameters of
the mean-field model of the polariton condensate that repro-
duces the experimental data across the full range of distances.
In what follows, we use the same dimensionless model

i
∂ψ

∂t
= − (1 − iηR)∇2ψ + |ψ |2ψ + gRψ

+ i(R − γ )ψ, (3)

∂R
∂t

= −(1 + b|ψ |2)R + P(r), (4)

and the same set of the parameters and nondimensionalization
as in Ref. [10]. Here, R is the dimensionless density profile
of the exciton reservoir, g corresponds to the blueshift due to
interactions with noncondensed particles, γ represents the de-
cay rates of condensed polaritons, b is proportional to the ratio
of the rate at which the exciton reservoir feeds the condensate
and the strength of effective polariton-polariton interaction,
and η is the energy relaxation coefficient specifying the
rate at which gain decreases with increasing energy. The
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FIG. 3. The comparison of the lowest-energy levels of the four
different XY models, depicted with rectangles, with the polariton
particle mass residues found from the GLE, depicted with blue solid
lines, for the hexagon with the lattice constant 11.5 μm. The first
column shows energy levels in case of the XY model including
nearest-neighbor interactions J1, the second and the third columns
include second-neighbor interactions J1-J2 and the second- and the
third-neighbor interactions J1-J2-J3, respectively. These three models
are based on the coupling strengths that are found through the anal-
ysis of the hexagon of polariton condensates. The last column shows
the energy states of the XY model with nearest-neighbor interactions
J1 (2 spots) based on the couplings obtained from the analysis of the
two isolated polariton condensates.

nondimensionalization is chosen so that the unit length is
1 μm. For a hexagon side d between 8 and 16 μm, we
find the stationary states by numerically integrating Eqs. (3)
and (4) starting from a hundred randomly distributed fields
ψ (r, t = 0) = ∑

ak exp(ik · r), where the phases of the
complex amplitudes ak are distributed uniformly on
[0, 2π ] [51]. The corresponding particle mass residues
are shown in Figs. 1(a) and 1(c) with solid circles,
where the different colors correspond to various phase
differences between the hexagon vertices. For the parameters
and distances considered, the polariton ground state has
always 0 [ferromagnetic (F)] or π [antiferromagnetic
(AF)] phase differences. For a F ground state the first
and the second excited states are always a single vortex
with θi j = π/3 and a spin wave with θi jk = {π, 0, 0},
respectively, where j and k stand for the short notation
of adjacent condensates i + 1 and i + 2, respectively.
For an AF ground state, these are a double vortex with
θi j = 2π/3 and a spin wave with θi jk = {0, π, π},
respectively.

We can accurately estimate the coupling strengths for
each hexagon side d by solving the matrix equation
M = BJ, where M = [M0,M1,M2]T , J = [J1, J2, J3]T ,
and the matrix B has elements bm j = q j

∑6
i=1 cos θm

ii+ j ,
q1 = q2 = 1, q3 = 1/2. Here, the elements of M are the
particle number residues for the ground, the first and the
second excited states of the polariton graph, respectively, and
m indexes the phases of the corresponding states. First, we
neglect J3 interactions (J1-J2 model) and calculate the ratios
of J1/|J1| and J2/|J1|, that are shown in Fig. 1(b) with blue
and green circles, respectively. We use the obtained J1 and
J2 for each d to minimize the XY Hamiltonian by running
the gain-dissipative algorithm [52] on 1000 random initial
conditions. The resulting energies of the ground state and
the two lowest excited states are denoted by solid squares in
Fig. 1(a) and show a good correspondence between the GLE
and the XY model for the ground and the first excited states
in terms of both the observed phase configurations and the

FIG. 4. (a), (b) Real space and (c), (d) energy dispersion of
the false color plots for two densities of a triangular lattice of
condensates. (a), (c) For P = 1.01Pth the system is in a single sta-
ble configuration. (b), (d) For P = 1.05Pth a second energy state
emerges. The color scale in (c) and (d) is logarithmic while the
dispersion replicas are due to imaging through the substrate. For
an increased lattice size d = 10 μm, the dependence of the two
lowest-energy levels and their difference (energy gap) on the pump-
ing intensity above the condensation threshold is shown in (e).

energy values. The phase configurations for the second excited
states are generally predicted correctly and the energies are in
a fair agreement. Figures 1(c) and 1(d) show the results for
the solution of the full matrix equation (the J1-J2-J3 model),
where a good agreement between all three states is illustrated.
The six distinct phase configurations that were observed for
different hexagon sides d in Figs. 1(a) and 1(c) are shown in
Fig. 2 superimposed on the polariton densities.

We summarize the differences between the energies and
phase configurations of states found by a polariton graph
and those predicted by the direct minimization of the XY
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Hamiltonian in Fig. 3 for a particular hexagon side d . On
this figure the polariton particle mass residues (blue lines) are
compared with the energy levels of the XY model (squares)
taking into account various many-body interactions: nearest
J1, nearest and next-nearest J1-J2, all pairwise J1-J2-J3, as
well as nearest-neighbor interactions obtained from the GLE
model for two pumping spots only. The phase configurations
(shown by various colors) coincide in all cases. The agreement
between excited states becomes better when the further cou-
plings J2 and J3 beyond the nearest neighbors are introduced.
The discrepancy between the energies of the ground states of
the polariton particle mass residues and the XY model, based
on the coupling strengths J1 of two isolated pumping spots, is
contributed to the density enhancement from the remaining
spots that change the outflow velocity kc and therefore the
coupling strength.

Energy gap experiment. In order to experimentally elu-
cidate the appearance of the gap as the system is pumped
well above the threshold, we create a triangular lattice of
15 interacting polariton condensates and probe the energy
state of the system. We excite the system nonresonantly with
an ultranarrow linewidth continuous-wave coherent optical
source spatially shaped into the desired lattice arrangement
with the use of a phase spatial light modulator, while the
phase pattern has been calculated with the use of an itera-
tive Fourier-transform algorithm [53]. The spatially patterned
light source is then projected on a high q-factor microcavity
sample, that we have previously used to demonstrate polariton
condensation [54], at a detuning of 	 = −2 meV. We then
image the real space and energy dispersion of the polariton
emission in transmission. For an optical excitation density
around threshold (P1 = 1.01Pth) where all our excitation spots
are above threshold [Fig. 4(a)] we observe as we expect
a single energy state with a resolution-limited linewidth of
	E1 = 30 ± 25 μeV [Fig. 4(c)]. Increasing the polariton
density by tuning the optical density to P2 = 1.05Pth, we ob-
serve the emergence of an additional interferometric pattern
in the condensate lattice [Fig. 4(b)]. The energy disper-
sion for this configuration reveals the emergence of a
resolution-limited energy level at an energy difference of
	E12 = 334 ± 42 μeV. Once one changes the lattice size, the
nonzero energy gap could be observed even at the condensa-

tion threshold. In Fig. 4(e) the energy gap exhibits a nonlinear
behavior with respect to the pumping intensity and does not
close near Pth. Such a gapped system forms when the distance
between the condensates is away from the center of a F or AF
zone in Fig. 1 and represents an oscillatory state between the
two lowest-energy levels, as was observed experimentally for
a polariton dyad [55].

In conclusion, the “particle mass residues” of successive
states in polariton graphs, that occur with increasing excita-
tion density above the condensation threshold, could fairly
approximate the XY Hamiltonian’s energy spectrum. We con-
firm it by calculating phase configurations and spectra of
polariton condensates for a range of hexagonal lattice sizes
using a mean-field theory (GLE), which are found to be in a
good agreement with the energy spectra derived from the XY
model. The established correspondence between the driven-
dissipative condensate system and the XY model paves the
way for using such a platform for analog Hamiltonian sim-
ulations. We have experimentally implemented a triangular
lattice of polariton condensates and have shown the emer-
gence of a spectral gap as the pumping increases above the
threshold. We have also found the regime in which the gapped
state could be observed even at the condensation threshold.
The spectral gap depends on the number of lattice sites, on
how far above the threshold the pumping is, and what kind
of coupling is established. The nonlinear behavior of the
coupling strength as a function of pumping and the distance
between the sites leads to the nonlinear dependence of the gap
size on the gain. The further understanding of the influence of
all these parameters on the gap size is a subject of our future
theoretical and experimental work. The system is scalable and
limited only by the size of the sample, which is typically a
couple of square millimeters, and the distance between the
condensates, which can be as small as 10 μm, so up to few
thousand lattice sites can be realized in the present experi-
mental conditions. With a resolution-limited energy level of
40 μeV we can expect to resolve the spectral gap for large
systems.
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