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Strain and stress relationships for optical phonon modes in monoclinic crystals
with β-Ga2O3 as an example
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Strain-stress relationships for physical properties are of interest for heteroepitaxial material systems, where
strain and stress are inherent due to thermal expansion and lattice mismatch. We report linear perturbation
theory strain and stress relationships for optical phonon modes in monoclinic crystals for strain and stress
situations which maintain the monoclinic symmetry of the crystal. By using symmetry group analysis and
phonon frequencies obtained under various deformation scenarios from density-functional perturbation theory
calculations on β-Ga2O3, we obtain four strain and four stress potential parameters for each phonon mode.
We demonstrate that these parameters are sufficient to describe the frequency shift of the modes regardless of
the stress or strain pattern which maintain the monoclinic symmetry of the crystal. The deformation potentials
can be used together with experimentally determined phonon frequency parameters from Raman or infrared
spectroscopy to evaluate the state of strain or stress of β-Ga2O3, for example, in epitaxial heterostructures.
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The state of strain and its resulting stress imposes char-
acteristic modifications to fundamental physical properties,
such as electronic structure and phonons of solid state matter.
Relationships for, e.g., band-gap energies, electronic states,
and phonon modes are of fundamental interest for heteroepi-
taxial material systems, where strain and stress are inherent
due to thermal expansion and lattice mismatch. Strain/stress
leads to deviation of the lattice parameters from their equilib-
rium position. A range of lattice parameter deviations exists
within which the strain/stress-induced modifications of the
electronic and vibrational states can be described as first-order
(linear) perturbations of the quantum states of the strain-free
crystal. It is convenient to express the strain/stress induced
modifications using deformation potentials, which are defined
from joint considerations of group theory and quantum me-
chanics by application of the theory of invariants for the
specific crystal lattice [1]. Knowledge of deformation poten-
tials is put to use to determine accurately and precisely the
state of strain or stress by measuring, for example, changes
in phonon mode frequencies in comparison with shifts cal-
culated using deformation potentials and thereby identifying
the strain/stress parameters existent with the sample under in-
vestigation. For many decades, group-theoretic methods have
provided useful insights into strain-induced modifications
of crystal band structure related properties [1]. Experimen-
tally, deformation potentials can be determined by combining

*rkorlacki2@unl.edu
†schubert@engr.unl.edu; http://ellipsometry.unl.edu

optical spectroscopic techniques to assess the optical and vi-
bration modes and x-ray diffraction measurements of lattice
parameters.

Strain and stress relationships for phonons in materials
with high crystal symmetry have been extensively investi-
gated. In a seminal work, Tekippe et al. demonstrated the use
of perturbation theory utilizing deformation potentials linear
in strain and group theory to identify deformation potential
constants for the effect of uniaxial stress on the Raman-
active modes of α-quartz (trigonal, space group P3221) [2].
Briggs and Ramdas later extended the concept for Raman-
and infrared-active modes of CdS (hexagonal, space group
P63mc) under uniaxial stress [3]. Since then, significant
research efforts have been devoted to establishing the defor-
mation potentials of Raman- and infrared-active phonons in
the area of heteroepitaxy of, for example, diamond-structure
(e.g., Si, Ge, GeSn, cubic ZrO) [4–10], zinc-blende struc-
ture (e.g., GaAs, InSb, CdTe, In1−xGaxAs) [11–14], cubic
tetrahedrally bonded (e.g., BN, AlN, GaN, InN) [15,16],
wurtzite-structure (e.g., BN AlN, GaN, InN, ZnO) [16–35],
hexagonal (e.g., SiC) [36], corundum-structure (e.g., sap-
phire) [37], perovskite-structure (e.g., PbZrTiO3, BaTiO3)
[38,39], and trigonal symmetry (e.g., LiNbO3) [40] semicon-
ductors.

Notably, monoclinic symmetry β-Ga2O3, a new ultra-
wide band-gap material, has attracted significant research
attention due to its high potential for high-power switching
devices for a sustainable energy economy [41]. In addition,
β-Ga2O3 is very promising for harsh environment electronics
and for optoelectronic applications in the deep ultraviolet
spectral range [42–44]. Strain effects are very important in
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TABLE I. Character table for the monoclinic group C2h.

E C2 I σh

Ag 1 1 1 1
Bg 1 −1 1 −1
Au 1 1 −1 −1
Bu 1 −1 −1 1

heterostructures of β-Ga2O3 and its alloys with Al2O3 and
In2O3, envisioned as key components of next-generation elec-
tronic devices. In contrast to the extensive investigations of
high-symmetry crystalline materials, no theoretical and no ex-
perimental studies on the strain-stress relationships of Raman-
and infrared-active phonons in crystals with monoclinic sym-
metry can be found in the literature presently. Therefore, in
this work, we report the linear perturbation theory strain and
stress relationships for infrared- and Raman-active phonon
modes in crystals with monoclinic (C2h) symmetry for strain
and stress situations which maintain the monoclinic symmetry
of the crystal, and we determine the strain and stress defor-
mation potentials using density-functional perturbation theory
(DFPT) calculations for β-Ga2O3 as an example.

The symmetry of a crystal under a general stress is de-
termined by the symmetry elements common to both the
unstrained crystal and the symmetry elements of the strain
and the stress tensors [3,45]. We use linear perturbation theory
[2], and derive simple relationships between phonon mode
energies and the strain/stress parameters for a monoclinic
crystal under strain/stress. The symmetry of a crystal un-
der a general strain/stress is determined by the symmetry
elements common to both the unstrained crystal and the sym-
metry elements of the strain/stress tensors [3,45]. Here we
consider only strain/stress which does not change the sym-
metry of the crystal. We consider a usual quantum system
H |Sn〉 = En|Sn〉, where H, |Sn〉, and En are Hamiltonian oper-
ator, its nth eigenstate (here: phonon mode), and eigenenergy
(here: phonon energy), respectively. A small perturbation,
δHn|Sn〉 = �En|Sn〉 causes an energy shift �En, which fol-
lows from the secular equation,

∑N
i j ({Vn}i j − �Enδi j ) = 0.

The operator δHn is related to the nth eigenstate. The ma-
trix {Vn}i j = 〈ui|δHn|u j〉 contains the deformation potentials
obtained by the usual bracket operations, |ui〉 and 〈ui| are
the usual ket and bra notations of a complete set of func-
tions with dimension N sufficient to describe all states of
the quantum system, and δi j is the Kronecker symbol. The
irreducible �-point representation for optical phonon modes
in β-Ga2O3 is 10Ag + 4Au + 5Bg + 8Bu. Modes Ag and Bg

are Raman active, and modes Au and Bu are infrared active.

Table I lists the characters of all modes. We seek to construct
the matrix {Vn}i j by using symmetry considerations. We show
here for demonstration the case of strain (for stress, replace
ε with σ ). We require that, by first-order Taylor expansion,
functionals in δHn factorize with the monoclinic strain/stress
tensor elements

δHn = δH0 + {
vxx

n εxx, v
xy
n εxy, v

yy
n εyy, v

zz
n εzz

}
, (1)

where we introduce by writing functionals vxx
n , v

xy
n , v

yy
n , vzz

n ,
and δH0 is dropped since it does not affect �En. The brackets
{·} indicate certain yet unknown arrangements of functionals
within a representation of the operator δHn. Seeking a matrix
representation, the dimension and structure of the Hilbert
space for δHn can be constructed with the help of a dyadic
representation,

δHn = vn ⊗ ε, (2)

where vn contains functionals and ⊗ is the Kronecker prod-
uct. The solutions to the secular equation must contain terms
represented by basis functions. At least third-order basis
functions are needed to render elements in Eq. (2) when vn

represents a rank one dyadic, and fourth-order basis functions
are needed when vn represents a rank two dyadic.

For the Raman-active modes, third-order functions do not
exist (see Table II). Hence, representation of Eq. (2) requires
fourth-order basis functions, hence

δHAg =
⎡
⎣

a′ a′′ 0
a′′ a′′′ 0
0 0 a′′′′

⎤
⎦ ⊗

⎡
⎣

εxx εxy 0
εxy εyy 0
0 0 εzz

⎤
⎦, (3)

δHBg =
⎡
⎣

0 0 u′
0 0 u′′
u′ u′′ 0

⎤
⎦ ⊗

⎡
⎣

εxx εxy 0
εxy εyy 0
0 0 εzz

⎤
⎦, (4)

where a′, a′′, a′′′, a′′′′ and u′, u′′ represent sets of functionals
vi j . For the infrared-active modes, third-order functions exist
(see Table II), hence

δHAu = [ã] ⊗
⎡
⎣

εxx εxy 0
εxy εyy 0
0 0 εzz

⎤
⎦, (5)

δHBu = [ũ] ⊗
⎡
⎣

εxx εxy 0
εxy εyy 0
0 0 εzz

⎤
⎦, (6)

where ã and ũ represent sets of functionals vi j . We note

that [ã] transforms as (x, y) and [ũ] transforms as (z) under
symmetry operations in Table I. It can be easily seen that all
matrices δHn above transform with the respective character for

TABLE II. Basis functions for irreducible representation C2h, where 	 indicates all possible combinations of products between elements of
the first parentheses with elements of the second parentheses.

Order First Second Third Fourth

Ag Rz x2, y2, z2, xy (x2, y2, z2, xy) 	 (x2, y2, z2, xy)
Bg Rx, Ry xz, yz (xz, yz) 	 (x2, y2, z2, xy)
Au z (z) 	 (x2, y2, z2, xy)
Bu x, y (x, y) 	 (x2, y2, z2, xy)
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FIG. 1. DFPT-derived (squares) and best-match linear strain de-
formation potentials calculated (crosses) frequencies for mode Ag-1
versus strain tensor elements εxx, εxy, εyy, and εzz under various
deformations (see text).

every mode as indicated in Table I. The expansion of δHn and
its corresponding coefficient matrix {Vn}i j is shown and dis-
cussed in more detail in the Supplemental Material [46]. For
the Raman- and infrared-active modes, {Vn}i j is a 9 × 9 and
3 × 3 dyadic, respectively, where the Kronecker product in
Eq. (2) identifies structure and location of coefficients within
{Vn}i j . The eigenvalues of {Vn}i j then provide the solutions.
We further require that coefficients with higher orders in the
strain/stress parameters vanish. Thereby, we obtain a linear
relationship for all modes with all strain parameters

�En = Pn,xxεxx + Pn,yyεyy + Pn,zzεzz + Pn,xyεxy, (7)

where Pn,i j = 〈Sn|vi j |Sn〉 are the strain deformation potentials,
with n ∈ {Ag, Bg, Au, Bu} and i j ∈ {xx, xy, yy, zz}. Hence, four
strain (Pn,i j) and four stress deformation potentials (P̃n,i j) are
required for every phonon mode to calculate its energy shift,
�En for small strain/stress parameters. For β-Ga2O3, for
10Ag, 4Au, 5Bg, and 8Bu modes 216 potential parameters exist,

FIG. 2. Same as Fig. 1 for mode Bg-1.

FIG. 3. Same as Fig. 1 for mode Au-1.

and none have been reported so far from experiment. We note
that we only calculated here the potential parameters for the
transverse optical IR-active modes, and 48 additional potential
parameters exist for the longitudinal optical modes.

A series of DFPT calculations of phonon mode frequen-
cies for β-Ga2O3 under different deformation scenarios were
performed. We have recently reported on strain-free phonon
mode properties in β-Ga2O3 [47–49]. A definition of the
unit cell, crystal axes, and coordinate system for β-Ga2O3

is given in the Supplemental Material. Here, we used the
plane-wave code QUANTUM ESPRESSO [50] with a combina-
tion of generalized-gradient-approximation density functional
of Perdew, Burke, and Ernzerhof [51] and norm-conserving
Troullier-Martins pseudopotentials originally generated using
FHI98PP [52,53] available in the QUANTUM ESPRESSO pseu-
dopotentials library. The pseudopotential for gallium did not
include the semicore 3d states in the valence configuration.
In order to minimize the impact of Pulay stresses and to
ensure numerical convergence of phonon frequencies to at
least <0.1 cm−1, all calculations were performed with a very
high electronic wave-function cutoff of 400 Ry, and a dense
shifted 8 × 8 × 8 Monkhorst-Pack [54] grid for sampling of
the Brillouin zone. A convergence threshold of 1 × 10−12 Ry
was used to reach self-consistency. We considered a range
of different deformation scenarios: hydrostatic pressure (with
equal diagonal components of the stress tensor); uniaxial
stress (with a single nonzero component of the stress tensor);
and uniaxial strain (with a single nonzero component of the
strain tensor). In all scenarios we ensured that the symmetry
of the monoclinic cell was not further reduced to triclinic,
i.e., all deformation scenarios studied did not induce shear
stresses and/or shear strains involving the monoclinic axis b.
All structures were relaxed with tight convergence thresholds
of 1 × 10−6 Ry for energy and 1 × 10−5 Ry/bohr for forces.
The case of hydrostatic pressure was obtained by setting the
target pressure during the structural relaxation as implemented
in the code. The case of uniaxial stress was obtained by
varying the length of one principal lattice vector at a time
(or lattice vector component in the case of c) followed by
a constrained structural relaxation, during which the element
initially strained was kept constant and all the remaining cell
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FIG. 4. Same as Fig. 1 for mode Bu-1.

parameters were allowed to relax. During such a constrained
structural relaxation, all stress tensor elements except one di-
agonal component relaxed to zero. This procedure is described
in greater detail in the Supplemental Material. Finally, for the
case of uniaxial strain we adapted half of the structures that the
Thermo_pw code [55] uses to compute the complete elastic

tensor, which is described in the Supplemental Material. In
short, a simple strain tensor with a single nonzero diagonal
component was applied to each lattice vector, followed by a
relaxation of ionic positions in a fixed strained cell. In all de-
formation scenarios we rely on the stress tensor values printed
by the code (QE). It is worth noting here that in the case of
uniaxial stress, the simple uniaxial stress tensor is a result of
constrained structural relaxation and the resulting strain tensor
is not simple, as all unit cell parameters differ from their equi-
librium values. In contrast, in the case of uniaxial strain, the
initial simple single-component strain tensor does not change
during the ionic relaxation, while the resulting stress tensor
has nonzero values of all four of its independent components.
All the fully relaxed cells were used for subsequent DFPT
phonon calculations [56], as implemented in the code (QE),
with the convergence threshold for self-consistency of 1 ×
10−18 Ry. The lattice parameters for all structures included in
the present study, and the corresponding phonon frequencies,
are provided in the Supplemental Material.

Figures 1–4 depict DFPT-derived frequencies for the Ag-
1, Bg-1, Au-1, and Bu-1 phonon modes versus strain tensor
elements, respectively. Thereby, a four-dimensional data set
is obtained with either strain or stress tensor elements as
base. Hence, each figure contains four panels, where the
frequencies are plotted versus one of the strain tensor el-
ements. Note that in order to present the four-dimensional

TABLE III. DFPT-derived frequency (ω0), linear strain (Pη,...), and stress (P̃η,...) potentials for phonon modes in β-Ga2O3 in units of cm−1,
cm−1/(unit strain), and cm−1/kbar, respectively. The permitted maximum strain was limited to ±0.0035. The maximum permitted stress was
limited to ±12.5 kbar.

Mode ω0 Pη,xx Pη,xy Pη,yy Pη,zz P̃η,xx P̃η,xy P̃η,yy P̃η,zz

Au-1 632.4 −589 −27 −376 −637 0.217 0.095 0.012 0.118
Au-2 431.4 −28 137 −773 −570 −0.263 −0.121 0.297 0.208
Au-3 293.7 −485 −5 −351 −967 0.109 0.164 0.009 0.246
Au-4 148.6 43 62 −116 −9 −0.067 −0.073 0.059 0.017
Bu-1 708.6 −658 342 −1339 −658 0.037 −0.049 0.376 0.111
Bu-2 659.2 −886 98 −614 −983 0.311 0.109 0.033 0.182
Bu-3 536.2 −1155 422 −1270 −733 0.371 −0.085 0.244 0.046
Bu-4 410.3 −952 −58 −550 −255 0.541 0.406 −0.015 −0.115
Bu-5 343.5 −301 11 −402 −489 0.050 0.113 0.079 0.108
Bu-6 266.3 −309 236 −283 −254 0.051 −0.294 0.066 0.054
Bu-7 248.6 −402 47 −34 −306 0.211 0.003 −0.075 0.037
Bu-8 195.9 547 −163 122 301 −0.257 −0.201 0.057 −0.023
Ag-1 731.7 −773 384 −1239 −656 0.122 −0.132 0.317 0.095
Ag-2 624.6 −939 223 −871 −1006 0.335 0.049 0.129 0.068
Ag-3 596.7 −996 151 −805 −1014 0.346 0.126 0.080 0.165
Ag-4 458.3 −705 111 −770 −403 0.263 0.169 0.136 −0.002
Ag-5 396.9 −115 176 −505 −140 −0.068 −0.077 0.170 0.033
Ag-6 333.0 −619 209 −735 −822 0.098 −0.092 0.155 0.185
Ag-7 303.4 −488 95 −454 −126 0.226 0.091 0.066 −0.053
Ag-8 188.5 −189 176 −404 −285 −0.042 −0.202 0.128 0.081
Ag-9 160.7 −185 114 −149 −75 0.061 −0.106 0.026 0.010
Ag-10 106.7 20 −34 −89 −57 −0.028 0.083 0.033 0.017
Bg-1 620.8 −615 −11 −289 −694 0.245 0.131 −0.030 0.132
Bg-2 458.5 −309 178 −852 −635 −0.111 −0.081 0.267 0.181
Bg-3 344.1 −644 133 −249 676 0.268 −0.028 −0.049 0.124
Bg-4 140.1 −182 95 −287 −372 −0.012 −0.051 0.071 0.105
Bg-5 109.7 10 −67 154 156 0.067 0.0774 −0.062 −0.060
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data set, for every data point {ωs, (xx, yy, zz, xy)}, the same
frequency is plotted four times, once versus each of its
strain coordinates. The data set comprises DFPT calculations
with various scenarios of different hydrostatic stress, uniaxial
stress, and uniaxial strain. We have included all available data
points (provided explicitly in the Supplemental Material), and
thereby different slopes appear because of the mixed strain
parameter situations. Nonetheless, the four deformation po-
tential parameters still reproduce all DFPT calculated data.
Frequencies for all modes versus stress tensor elements are
also shown within the Supplemental Material. Included in
Figs. 1–4 are the results from a best-match model analy-
sis using Eq. (7) with four deformation potentials. In our
best-match model analysis, we limited the permissible strains
(stresses) to a maximum of ±0.0035 (±12.5 kbar). At higher
values, lattice deformations lead to nonlinear changes of the
phonon mode frequencies, which cannot be described by
our linear deformation theory model. Within the permissible
strain/stress values, the DFPT-calculated phonon frequencies
show a linear shift. All frequencies were analyzed using
Eq. (7), and the resulting deformation potentials are listed
in Table III. The strain-free values ω0 are consistent with
those reported by us recently [49]. It is worth noting that
while some of the phonon modes exhibit very little sensi-
tivity to an external perturbation, the frequencies of some
phonon modes shift significantly as reflected by the large
absolute values of the potentials in Table III. In particular,
IR-active modes Bu-1, Bu-2, and Bu-3 as well as Raman-active
modes Ag-1 to Ag-4, and Ag-6 could be identified as potential
candidates for estimating strain in epitaxial films and device
heterostructures.

In summary, we have presented the effects of symmetry-
conserving lattice deformations in linear approximation onto
the phonon modes in monoclinic symmetry crystals using

a group-theory analysis, and we have determined the strain
and stress deformation potentials by density-functional per-
turbation theory calculations for monoclinic β-Ga2O3. We
conclude that the group-theoretical approach we presented
here leads to correct and thereby valuable parametrization
of phonon modes in monoclinic symmetry crystals, and we
anticipate its use for determination of strain and stress in het-
erostructures for future electronic materials such as β-Ga2O3

and related alloys.
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