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The weak-coupling renormalization group method is an asymptotically exact method to find superconduct-
ing instabilities of a lattice model of correlated electrons. Here we extend it to spin-orbit coupled lattice
systems and study the emerging superconducting phases of the Rashba-Hubbard model. Since Rashba-type
spin-orbit coupling breaks inversion and spin symmetry, the arising superconducting phases may be a mixture
of spin-singlet and spin-triplet states. We study the two-dimensional square lattice as a paradigm and discuss
the symmetry properties of the arising spin-orbit coupled superconducting states including helical spin-triplet
superconductivity. We also discuss how to best deal with split energy bands within a method which restricts
paired electrons to momenta on the Fermi surface.
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I. INTRODUCTION

The discovery of quantum spin Hall and topological in-
sulators [1,2] as well as Weyl and Dirac semimetals [3]
has brought spin-orbit coupling (SOC) into the spotlight of
condensed matter research. SOC constitutes the most cru-
cial ingredient for this rich and diverse family of materials.
Topological superconductivity [4–7] can also be stabilized
in spin-orbit coupled metals via proximity-induced super-
conductivity [8–10]; alternatively, it arises as an intrinsic
many-body instability in correlated electron systems. The lat-
ter requires odd-parity spin-triplet pairing, as realized in the
chiral p-wave state with its Majorana zero modes at defects
or sample boundaries [11,12]. SOC is not a requirement for
such exotic instabilities, but today it is apparent that SOC is
beneficial for triplet pairing [13,14]. Most of the few can-
didate materials for triplet superconductivity contain heavy
elements and thus significant SOC, e.g., Sr2RuO4 [15,16],
CePt3Si [13,17], CuxBiSe2 [18,19], and most recently UTe2

[20]. Nonetheless, the role of spin-orbit coupled superconduc-
tivity is surprisingly under-represented in the literature.

Quite generally, we distinguish between different types of
SOC in solids. �L · �S corresponds to centrosymmetric SOC;
it preserves not only inversion symmetry but also the spin
degeneracy of the SOC-free systems (while spin symmetry is
broken). Rashba and Dresselhaus terms are stemming from
the breaking of inversion symmetry and correspond thus to
noncentrosymmetric SOC. They break the spin degeneracy.
Material examples of the latter type include the doped Weyl
semimetals WTe2, MoTe2 [21,22], and YPtBi [23–25], as well
as the heavy-fermion compound CePt3Si [7,17]; these mate-
rials are unconventional superconductors at sufficiently low
temperatures, and CePt3Si has even been claimed to realize
triplet pairing [7,13,17].

There are several notable works in the literature using
various methods to study the effect of Rashba SOC to corre-
lated electrons and the resulting superconducting instabilities.

In particular, these include a “Shankar RG” approach [26]
for a continuum model [27,28], random phase approximation
(RPA) studies on the square lattice [29–31], as well as work
tailored for the materials CePt3Si and Li2PdxPt3−xB [32].
Moreover, there are several works using Bardeen-Cooper-
Schrieffer (BCS) theory for continuum systems [33] and
specifically for CePt3Si [34–37]. The common conclusion
from these works is that the breaking of inversion symmetry
due to Rashba SOC causes mixed singlet-triplet supercon-
ducting states to appear. Furthermore, strong SOC suppresses
chiral states; i.e., the only topologically nontrivial states that
may arise in the superconducting condensate are helical ones
characterized by a Z2 invariant. The mixing of singlet and
triplet states can be understood as follows: When spin sym-
metry in a superconductor is broken, parity still remains well
defined. That is, the momentum part of the superconducting
order parameter is either an even, i.e., symmetric function in
momentum (even parity, spin singlet) or an odd, i.e., anti-
symmetric function in momentum (odd parity, spin triplet).
Once inversion symmetry is broken, parity is no longer a
good quantum number and the resulting states can be mixtures
of even- and odd-parity functions, thus allowing for singlet-
triplet mixtures.

In this paper, we study the superconducting states on the
square lattice as a paradigm for two-dimensional (2D) sys-
tems in the presence of noncentrosymmetric, i.e., Rashba,
SOC. Considering infinitesimal repulsive interactions allows
us to calculate the arising superconducting instabilities exactly
using the weak-coupling renormalization group (WCRG)
approach [38–45]. We choose this method since it poses sev-
eral advantages: First, the results are asymptotically exact
in the limit of vanishing interaction. Second, compared to
mean-field methods, we obtain the resulting superconducting
instabilities in an unbiased way, i.e., without assumptions on
their properties. This is particularly advantageous here, since
breaking of inversion symmetry [7] may lead to mixed singlet
and triplet states, which yields a large variety of possible
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pairing states. Third, compared to functional renormaliza-
tion group methods, which are widely accepted to perform
well at stronger interactions [46,47], the WCRG approach is
computationally very efficient. Especially the doubling of the
number of bands due to the Rashba SOC demands a very
efficient method to make the numerical integrations feasible.

The paper is organized as follows: In Sec. II, we give
a description of how Rashba SOC is implemented in the
WCRG framework and what kind of mixed superconducting
instabilities one can generally expect to find on the square
lattice. In Sec. III we study the competing superconducting
pairing channels of the square lattice Rashba-Hubbard model,
followed by a thorough discussion on how to interpret the
results and an outlook in Sec. IV. Section V contains the
paper’s conclusion, followed by four Appendixes with further
details.

II. MODEL AND METHOD

A. Hamiltonian and band structure

We consider the Hubbard Hamiltonian including SOC in
the form of an additive Rashba term, HR. For simplicity, we
restrict ourselves to systems where there is only one orbital
per unit cell. The Hamiltonian can be written as

H = H0 + Hint + HR (1)

with

H0 =
∑
i, j

∑
σ

ti jc
†
iσ c jσ , (2)

Hint =
∑

i

∑
σ,σ ′

U0,σσ ′c†
iσ c†

iσ ′ciσ ′ciσ , (3)

HR =
∑
i, j

∑
σ,σ ′

i αR ti j c†
iσ c jσ ′ (�σ × �ri j )z,σσ ′ , (4)

where ciσ is the annihilation operator of an electron with spin
σ at lattice site i. The hopping amplitude is denoted by ti j ;
throughout the paper we only consider ti j ≡ t1 (ti j ≡ t2) for
i and j being nearest (next-nearest) neighbors. U0 denotes
the on-site interaction strength, αR denotes the dimensionless
strength of Rashba SOC, �σ is the vector of Pauli matrices, and
�ri j measures the distance between sites i and j. The Fourier
transform of the noninteracting part,

H0 + HR =
∑

k

(c†
k↑, c†

k↓) ĥ(k)

(
ck↑
ck↓

)
, (5)

yields the Bloch matrix ĥ,

ĥ = γνσ
ν, ν ∈ {0, x, y, z}, (6)

where k denotes the momentum vector (kx, ky, kz )T . In Eq. (6)
we used the 4-vector notation and γ0(k) is the energy spectrum
without SOC.

The full energy spectrum E (k, ζ ) of the noninteracting
system is readily obtained by diagonalizing ĥ via unitary
transformation,

ξ (k) = Û †(k) ĥ(k) Û (k) =
(

E (k,−) 0
0 E (k,+)

)
, (7)

E (k, ζ ) = γ0(k) + ζ |�γ (k)|. (8)

The unitary matrix Û (k) has the eigenvectors, �v(k, ζ ), of ĥ(k)
as column vectors, which are given by

�v(k, ζ ) = 1√
2

(
θζ (k)

ζeiφk θ−ζ (k)

)
(9)

with

θζ (k) =
√

1 + ζγz/|�γ |, eiφk = γx + iγy√
γ 2

x + γ 2
y

. (10)

The diagonalization effectively transforms from spin to helic-
ity basis, with helicity quantum numbers ζ = ±1.

Until now the results are general for any 2 × 2 Bloch
matrix, since any Hermitian matrix can be written as Eq. (6).
Considering Rashba SOC, Eqs. (4) and (6) result in

�γ (k) ≡(γx, γy, γz )T = −αR(ẑ × ∇ )γ0(k) (11)

and

ĥ =
(

γ0 αR
[

∂γ0

∂ky
+ i ∂γ0

∂kx

]
αR

[
∂γ0

∂ky
− i ∂γ0

∂kx

]
γ0

)
. (12)

In particular, it follows that γz = 0 leading to θζ = 1 which
is a consequence of time-reversal symmetry and invariance
under π rotations around ẑ (see Appendix A).

B. Weak-coupling renormalization group

We employ the WCRG method to find the leading super-
conducting instability in the Hubbard model in the presence
of SOC. This method has been discussed in great detail for
fermions without spin mixing before [38–40], so only a brief
summary is given here, but we point out important differences
which arise when one includes spin mixing effects such as
spin-orbit coupling. Note that in the following we limit our-
selves to systems where the spin degeneracy has been lifted,
which is achieved for example by Rashba SOC. Furthermore,
we assume that time-reversal symmetry is conserved. This
offers a major simplification: we do not need to consider
the spin degree of freedom for the electron states, as this is
fixed already by the weak-coupling nature of the method. For
example, if we consider a scattering process of two electrons
that contributes to the Cooper channel in the weak-coupling
regime, their initial momenta have to be opposite and both on
the Fermi surface; i.e., the electrons have to be initially in the
same band. Since each band has only one spin polarization per
momentum, there is no freedom in choosing the spin of the
scattering particles; it is dictated by the helicity of the band:[

k, σ

−k, σ ′

]
⇒

[
k, ζ

−k, ζ

]
. (13)

In the following, we use the short notation for momentum
and helicity,

1 ≡ k1, ζ1, 1̄ ≡ −k1, ζ1. (14)

The important quantity for calculating the superconducting
instabilities in the WCRG method is the two-particle vertex �

in the Cooper channel. Since the method explicitly demands
weak coupling, we expand � in orders of the local electron-
electron interaction, U0, up to second order,

�(2, 1) =U0�
(1)(2, 1) + U 2

0 �(2)(2, 1) + · · · . (15)
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The first order, �(1), is given by [27]

�(1)(2, 1) = M(22̄1̄1) = ζ2ζ1ei(φk2 −φk1 ), (16)

where the last equality stems from the specific system outlined
above, and the factor M reads

M(4321) =〈�v(4), �v(1)〉〈�v(3), �v(2)〉
− 〈�v(4), �v(2)〉〈�v(3), �v(1)〉. (17)

The complex scalar product is herein denoted as 〈·, ·〉. The
second order, �(2), splits into three topologically distinct parts
[26,27],

�(2) = 1
2�BCS + �ZS + �ZS′ . (18)

The first contribution is referred to as the BCS diagram and
the other two contributions to zero sound (ZS) diagrams [26];
the vertices are given by

�BCS(2, 1) = −
∫

3
M(22̄3̄3)M(33̄1̄1)Xpp(3)

= − ζ1ζ2ei(φk2 −φk1 )ρ ln
(A

ε

)
, (19)

�ZS(2, 1) =
∫

3′
M(2̄431)M(2341̄)Xph(3, 4), (20)

�ZS′ (2, 1) = −
∫

3′
M(24′31)M(2̄34′1̄)Xph(3, 4′)

= − �ZS(2̄, 1), (21)

for which the respective Feynman diagrams are shown in
Fig. 1. Here, ε is an energy cutoff in the integral and A is a
system parameter which merely depends on the band struc-
ture,

ln(A) =
∫ Emax dE

2E

ρ(E )

ρ
+

∫ Emin dE

2E

ρ(E )

ρ
, (22)

with the density of states ρ(E ), ρ ≡ ρ(0), and Emin and Emax

the minimum and maximum of the band structure, respec-
tively. Note that we are showing here the diagrams used in the
review by Shankar [26]. We note that these diagrams seem to
be different from those previously introduced in Ref. [38]; the
relationship between the diagrams in Fig. 1 and in Ref. [38] is
explained in Appendix B.

Momentum conservation yields 4 ≡ k1 + k2 + k3, ζ4 and
4′ ≡ k1 − k2 + k3, ζ4. The short notations for the integrals are∫

3
≡

∑
ζ3

∫
d2k3

(2π )2
,

∫
3′

≡
∑
ζ4

∫
3
. (23)

1

2

4

2
_

1
_

3

12

3

2
_

1
_

4'
12 3

2
_

1
_

3
_

BCS                     ZS                ZS'

FIG. 1. Feynman diagrams representing all topologically distinct
second order contributions to the two-particle vertex function for
spinful fermions [26]. For details see main text and Appendix B.

Xph (Xpp) denotes the integrands of the static particle-hole
susceptibility χph (static particle-particle susceptibility χpp),

χph(�k4 − �k3) = −
∫

3′
Xph(3, 4), (24)

Xph(3, 4) = f (E (3)) − f (E (4))

E (3) − E (4)
, (25)

χpp(ε) =
∫

3,|E |>ε

Xpp(3), (26)

Xpp(3) = − 1 − 2 f (E (3))

2E (3)
. (27)

Here f (E ) is the Fermi distribution. �BCS is the only diagram
in second order showing a logarithmic divergence. As derived
in previous works [27,28,38,40], for repulsive interactions,
U0 > 0, the superconducting instabilities can be obtained
from the nondivergent parts of the full vertex. This is seen
with the help of the β function of the RG method,

β(�(2, 1)) = ∂�(2, 1)

∂ ln(ε0/ε)
= −

∫
3̂
�(2, 3̂)�(3̂, 1), (28)

where the hat denotes momenta at the Fermi level, ε0 the
initial energy cutoff, and ε the lowered cutoff in the pro-
cess of renormalization. The short notation for the integral is
given by ∫

î
≡

∑
ζi

ρζi

∫
FS

dk̂i

Sζi,F

v̄ζi,F

vF (î)
, (29)

where vF (î) denotes the Fermi velocity of band ζi at momen-
tum k̂i, Sζi,F is the total length of the Fermi surface of band ζi,
the integral runs over the Fermi surface (FS), and

1

v̄ζi,F
=

∫
FS

dk̂i

Sζi,F

1

vF (î)
. (30)

In second order in U0, the nondiverging parts of � are �ZS

and �ZS′ . Thus, all we need to calculate is

�(2)(2, 1) ≈ �ZS(2, 1) + �ZS′ (2, 1) (31)

= �ZS(2, 1) − �ZS(2̄, 1), (32)

where the second line is an explicit antisymmetrization.
When dealing with fermions without spin mixing, as done
in Refs. [38,40], we neglect the spin part of the full vertex.
That is, � can be symmetric (spin-singlet Cooper pairs) or
antisymmetric (spin-triplet Cooper pairs), since we only work
with the momentum-space part of � and treat the spin-space
part only implicitly. Here, however, we have to explicitly
include spin because of the spin-orbit coupling, and the full
fermionic vertex function has to be antisymmetric, which is
reflected in Eq. (32).

As first pointed out by Anderson [48] and later by
Sergienko and Curnoe [34], if spin is not a good quantum
number we have to ensure that the two-particle scattering
processes that are considered in � are between time-reversal
partners. The vertex, where for the incoming and outgoing
electron pairs the two electrons are restricted to be time-
reversal partners, will be called �(T ), which differs from �
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by a momentum- and helicity-dependent phase which is odd
in momentum [34],

�(2, 1) = eiϕ(2,1) �(T )(2, 1), (33)

eiϕ(2̄,1) = eiϕ(2,1̄) = −eiϕ(2,1) = −eiϕ(2̄,1̄), (34)

implying that �(T ) must be even in momentum. In general, the
total phase factor can be written as the product of two phase
factors, each depending only on the momentum and helicity
of the incoming and outgoing electrons, respectively, i.e.,

eiϕ(2,1) = t∗(2) t (1). (35)

Computing the time-reversal conjugate of the annihilation
operators explicitly, i.e., T c†(1) = t (1)c†(1̄) (cf. Appendix
C), for the system discussed in Sec. II A we obtain the phase
factor as [34]

t (1) = −ζ1e−iφk1 . (36)

Equations (16), (35), and (36) thus yield

�(1)(T )(2, 1) = 1. (37)

We thus find that the first-order contribution only suppresses
the isotropic s-wave superconductivity, as it happens for the
single-orbital case without Rashba SOC [38,40].

The effective interaction of the leading superconducting
instability, Ueff = ρλmin, and the corresponding form factor of
the superconducting order parameter, ψmin, are then obtained
as follows [38]: First, we rescale � to

g(T )(2̂, 1̂) := τ (2̂)�(T )(2̂, 1̂)τ (1̂), (38)

where τ is obtained from Eq. (29) by∫
î
=

∑
ζi

∫
FS

dk̂i τ
2(î). (39)

Substituting an orthonormal eigenbasis of g, i.e.,∑
ζ1

∫
FS

dk̂1 g(T )(2̂, 1̂)ψ (T )
ν (1̂) = λνψ

(T )
ν (2̂), (40)

∑
ζ1

∫
FS

dk̂1
[
ψ (T )

ν (1̂)
]∗

ψ (T )
η (1̂) = δνη, (41)

into the flow equation, Eq. (28), yields that each eigenvalue of
g renormalizes independently, i.e.,

∂λν

∂ ln(ε0/ε)
= −λ2

ν . (42)

Note that Eq. (40) can also be understood as the linearized
gap equation. Thus, the most negative eigenvalue, λmin, is the
one that diverges first in the RG flow and, hence, serves as a
measure for the critical temperature via

Tc ∼ e−1/|λmin| = e−1/ρ|Ueff |. (43)

An analogous relationship to Eqs. (33) and (35) holds for
the eigenvectors,

ψν (1) = t (1)ψ (T )
ν (1). (44)

Note that each ψ (T )
ν has to transform according to an even

irreducible representation (i.e., the basis functions are even in

momentum) of the symmetry group of the lattice, since �(T )

is even in momentum.
The matrix of superconducting order parameters in spin

space is obtained from the result in helicity space, ψ (k, ζ ),
by the transformation

�̂(k) ≡
(

ψ (k,↑↑) ψ (k,↑↓)
ψ (k,↓↑) ψ (k,↓↓)

)

= Û (k)

(
ψ (k,−) 0

0 ψ (k,+)

)
Û T (−k), (45)

where Û T is the transpose of Û . Note that ψ (k, ζ ) ∝
〈bkζ b−kζ 〉 denotes the superconducting order parameter in the
helicity basis, while ψ (k, ss′) ∝ 〈cksc−ks′ 〉 is the correspond-
ing object in the spin basis. The relation of the fermionic
operators is given by(

ck↑
ck↓

)
= Û (k)

(
bk−
bk+

)
. (46)

Furthermore, we assumed here that we know ψ (k, ζ ) for
any momentum k, while in reality we only have access to
the projection onto the Fermi surface, ψ (k̂, ζ ). This issue is
addressed later. From Eq. (45), the particular elements of �̂(k)
are given by

ψ (k, ss′) =
∑

ζ

vs(k, ζ )vs′ (−k, ζ )ψ (k, ζ )

=
∑

ζ

vs(k, ζ )vs′ (−k, ζ )t (k, ζ )ψ (T )(k, ζ ) (47)

=
∑

ζ

1

2
([σ0 + ζ γ̂ (k) · �σ ]iσy)ss′ψ (T )(k, ζ ),

where γ̂ = �γ /|�γ |. The d vector, which is defined by

�̂(k) = (dνσ
ν )iσy =

(−dx + idy d0 + dz

−d0 + dz dx + idy

)
, (48)

is then obtained as [49,50]

d0(k) = 1
2 [ψ (T )(k,+) + ψ (T )(k,−)], (49)

�d (k) = 1
2 γ̂ (k)[ψ (T )(k,+) − ψ (T )(k,−)]. (50)

Equation (50) reflects the result that �d tends to be parallel to γ̂ ,
as long as the band splitting due to the Rashba SOC is larger
than the superconducting gap, or, in other words, αRt1 > kBTc

[14,35,36,50]. Since the WCRG works at infinitesimal cou-
pling, and in turn the superconducting gap is infinitesimally
small as well, every finite value for αR will result in �d ‖ γ̂ .
With other words, the regime where αRt1 < kBTc is not ac-
cessible within the WCRG approach. This arises from the
fact that we only consider Cooper pairs formed by electrons
with opposite momentum, which must, hence, be from the
same band in the weak coupling limit, i.e., contributions like
ψ (k,+,−) ∝ 〈bk+b−k−〉 are strictly zero.

It is important to note here that because inversion sym-
metry is broken by the Rashba SOC, the superconducting
state can be a mix of singlet and triplet states [33,49,50].
Furthermore, the order parameter matrix in spin space is not
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unitary anymore [50]; i.e.,

�̂�̂† = dνdν∗σ0 + (d0 �d∗ + d∗
0
�d ) · �σ . (51)

For the specific system studied here, the Rashba SOC term
enforces a specific structure on the d vector. In particular, it
yields dz = 0, since γz = 0, and consequently there are no
triplet states with zero total spin. Before we apply this theory
to the model in Eq. (1) and present the results, we discuss
an example to demonstrate the implications from the above
equations. Let us consider the simplest case of a pure triplet
state, which is given by ψ (T )(k,−) = −ψ (T )(k,+) = ψ0. It
becomes immediately apparent from Eq. (49) that d0 = 0;
i.e., we have indeed a pure triplet state. Now, if we consider
the square lattice with nearest-neighbor hopping and Rashba
SOC, we have

γ0(k) = − 2t1[cos(kx ) + cos(ky)], (52)

γx(k) = + 2t1αR sin(ky), (53)

γy(k) = − 2t1αR sin(kx ), (54)

and thus

ψ (k,↑↑) = + ψ0
sin(ky) + i sin(kx )√
sin2(kx ) + sin2(ky)

, (55)

ψ (k,↓↓) = − ψ0
sin(ky) − i sin(kx )√
sin2(kx ) + sin2(ky)

. (56)

This is, up to phase factors, a p + ip wave for Cooper pairs
with spin 1 and a p − ip wave for those with spin −1. That
is, the superconducting quasiparticles with spin up have an
edge mode that propagates in one direction, whereas the ones
with spin down propagate in the opposite direction, and thus
preserve time-reversal symmetry. We can conclude from this
consideration that the Rashba SOC term, or more precisley
the relation �d||γ̂ , enforces the appearing triplet states to be
helical, and forbids chiral states to appear.

More generally, we can see which mixed states can be
expected to appear. Equations (33) and (34) state that the
vertex function using time-reversal partners has to be even in
momentum, which means that its eigenfunctions, ψ (T )(k, ζ ),
have to transform according to an even irreducible represen-
tation (irrep) of the symmetry group of the lattice. Hence,
on the square lattice, available irreps are A1, A2, B1, and B2,
which correspond in terms of lowest-order lattice harmonics
to (extended) s, g, d , and d ′ waves, respectively. Multiplying �γ
to those functions to obtain the d vector, as done above, leads
to the following mixed singlet-triplet states:

A1 : s + p,

A2 : g + f ,

B1 : d + f ,

B2 : d ′ + p,

(57)

where the first term denotes the symmetry of the sin-
glet component (s, d , and g) and the second one the
helical triplet component (p and f ). The latter can be

TABLE I. List of low-order lattice harmonics for each irreducible
representation of the point group D4.

irrep Label Base function

A1 s 1
A1 Extended s cos(kx ) + cos(ky )
A2 g sin(kx ) sin(ky )(cos(kx ) − cos(ky ))
B1 d ≡ dx2−y2 cos(kx ) − cos(ky )
B2 d ′ ≡ dxy sin(kx ) sin(ky )
E p {sin(kx ), sin(ky )}
E Extended p {sin(kx ), sin(ky )}(cos(kx ) + cos(ky ))

{sin(kx )(cos(kx ) − cos(ky )),
E f

sin(ky )(cos(kx ) − cos(ky ))}

explicitly expressed as

p : ψ (k,↑↑) =̂ p + ip, ψ (k,↓↓) =̂ p − ip, (58)

and similar for the f wave. Note that the p wave might cor-
respond both to standard and extended p wave. A list of base
functions for some low-order harmonics is given in Table I.

Finally, we are left with a technical problem: We know the
form factor, ψ (k, ζ ), only for momenta on the Fermi surface,
i.e., ψ (k̂, ζ ). However, to calculate the d vector for any given
momentum k, Eqs. (49) and (50) demand the form factor of
both helicities, i.e., bands, at the same momentum k, one of
which cannot be on the Fermi surface. To solve this problem,
we extend the form factor to the whole Brillouin zone by fit-
ting a set of lattice harmonics to the respective Fermi surfaces
(details on the fitting process are given in Appendix D).

III. RESULTS

We study the square lattice with nearest- and next-nearest-
neighbor hopping (t1 and t2), repulsive on-site interaction
(U0), and Rashba SOC (αRt1 and αRt2). The band structure
of the noninteracting system is thus given by

E (kζ ) = γ0 + ζ

√
γ 2

x + γ 2
y (59)

with

γ0 = −2t1[cos(kx ) + cos(ky)] − 4t2 cos(kx ) cos(ky),

γx = +αR[2t1 sin(ky) + 4t2 cos(kx ) sin(ky)],

γy = −αR[2t1 sin(kx ) + 4t2 sin(kx ) cos(ky)].

The density of states (DOS), ρ, of the system for next-
nearest-neighbor hopping t2 = 0 and t2 = −0.3 is shown in
Fig. 2. In both cases the Van Hove singularity splits into
two, one for each helicity. The singularities appear at different
values for the filling, nvH,ζ , for nonzero SOC, given by

nvH,ζ =
∫ μvH,ζ

−∞
ρ(ε) dε, (60)

μvH,ζ = ζ2t1
(
1 −

√
1 + α2

R

) + 4t2
√

1 + α2
R, (61)

for ζ = ±1. Note that Eq. (61) is only valid for |t2| � 0.5|t1|.
The difference between nvH,+ and nvH,− increases with αR, as
shown in Fig. 2.

We discuss the leading superconducting instabilities ob-
tained within the WCRG method as a function of band
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FIG. 2. Density of states (DOS) of the square lattice with Rashba
SOC as a function of filling n, for different strengths of the SOC, αR.
The second-neighbor hopping is given by t2/t1 = 0 (left) and t2/t1 =
−0.3 (right).

filling, n, and for different strengths of the Rashba SOC,
αR ∈ {0, 0.01, 0.1, 0.2, 0.35, 0.5}. The main difference be-
tween this analysis with and without Rashba SOC is that
in the former case we find the leading instability in helicity
space and need to transform this result back to spin space. In
the following we first give a simple example to demonstrate
how the resulting form factor obtained in the helicity basis,
ψ (k, ζ ), relates to the d vector in the spin basis. We assume
that we have a pure dx2−y2 as the form factor on both Fermi
surfaces, i.e.,

ψ (T )(k,+) = c+[cos(kx ) − cos(ky)], (62)

ψ (T )(k,−) = c−[cos(kx ) − cos(ky)]. (63)

Note that both ψ’s are even functions in momentum. However,
we still have the freedom to choose different values for the
prefactors c±, and this freedom is exactly what enables us to
obtain triplet states, which are odd in momentum, as given by
Eq. (50). Varying c+ smoothly from the value of c− to −c−
thus yields a transition between a pure singlet state (dx2−y2

wave) at c+ = c− to a pure triplet state (helical f wave) at
c+ = −c−, which is shown in Fig. 3. For c+ �= ±c−, we have
a mixed state with singlet and triplet components.

We evaluate the triplet contribution, η, to the full state by
calculating the average over the Brillouin zone:

η ≡
∫

BZ
d2k

(2π )2 (|dx(k)|2 + |dy(k)|2)∫
BZ

d2k
(2π )2 (|d0(k)|2 + |dx(k)|2 + |dy(k)|2)

. (64)

Note that the integrals run over the entire Brillouin zone; after
the necessary fitting process (see above and Appendix D), the
�d vector is given in the whole Brillouin zone instead of just
on the Fermi surface. By construction, 0 � η � 1. The triplet
contribution to the state described in Eqs. (62) and (63) as a
function of c+/c− is shown in Fig. 4.

If superconductivity only occurs on one of the two Fermi
surfaces, i.e., c+ = 0 or c− = 0, we obtain a state which is
half singlet and half triplet (η = 0.5) as shown in the middle
row of Fig. 3.

It is important to note here that η just serves as an esti-
mation for the ratio of singlet and triplet contributions to the
full superconducting order parameter, since the denominator
in Eq. (64) does not correspond to the full contribution of �̂�̂†

given in Eq. (51); it is, however, a good approximation.
We further note that the results from the WCRG approach

often require some higher harmonics to provide a good fit

FIG. 3. Transition from pure dx2−y2 wave to pure helical f wave.
This is done by setting ψ (T )(k, ζ ) = cζ [cos(kx ) − cos(ky )] and vary-
ing from c+ = c− (top row) via c+ = 0 (middle row) to c+ = −c−
(bottom row).

to the superconducting form factor instead of a single lattice
harmonic. Higher lattice harmonics can play a nontrivial role.
Usually, this does not change the physics qualitatively, but the
technical details become more involved (see Appendix D).

Now we have all the tools at hand to discuss the results
obtained by solving Hamiltonian (1). The resulting effec-
tive interactions, Ueff , for t2 = 0 and as a function of filling
n are shown in Fig. 5 for several relevant values in the
range 0 � αR � 0.5. First, we see that the overall effective
interaction does not change much with increasing spin-orbit
coupling [Fig. 5(a)]. Two notable exceptions can be observed:
(1) Above the Van Hove singularity, which moves to lower
fillings as αR increases [cf. Eqs. (60) and (61) and Fig. 2], one
observes a decrease of Ueff for increasing SOC. This decrease
stems from the accompanied sharp decrease of the DOS as a
function of αR in this region. (2) For fillings in the range n ∈

FIG. 4. Triplet contribution, η, to the state described in Eqs. (62)
and (63) as a function of c+/c−.
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(a) (b) (c)

(f)(e)(d)

FIG. 5. (a) Ueff as function of band filling, n, for different SOC strengths, αR. (b)–(f) Superconducting phase diagrams for selected values
of αR. In addition to Ueff vs n, the symmetry of the leading instability is shown. The shaded region indicates the triplet contribution, ηUeff , to
the full order parameter, whereas the pure ratio η is shown below the panels. The Van Hove singularities are indicated by dashed lines.

[0.62, 0.85] one also observes a slight decrease of Ueff with
increasing αR. In Figs. 5(b)–5(f) we show the phase diagrams
for individual values of αR. In particular, Fig. 5(b) corresponds
to the spin-orbit-free case, αR = 0 (see Refs. [38,40]). The sin-
glet part of the superconducting condensate is shown in white
while the triplet part, ηUeff defined in Eq. (64), is shown as
a shaded area. Moreover, we show the mixing ratio of singlet
and triplet states, η, separately in the small panels below the
main panels, Figs. 5(b)–5(f). We note that mixing is forbidden
for αR = 0 [Fig. 5(b)], and here η can only take the values
zero (singlet) or 1 (triplet). The phase diagram for αR = 0
contains spin-singlet dxy-wave order for small n. Then there
is a small intermediate spin-triplet phase for 0.54 � n � 0.59
with (px + ipy)-wave order, followed by another spin-singlet
phase with dx2−y2 -wave order up to Van Hove filling n = 1.

Turning on Rashba SOC αR allows for mixing of singlet
and triplet phases. Figure 5(c) shows results for αR = 0.1 (be-
ing representative for the entire range 0 < αR � 0.1) where
only small triplet contributions with p-wave symmetry are
mixed into the dxy-wave order for small n. The chiral p-
wave phase for 0.54 � n � 0.59 present at αR = 0 is absent,
the reason for which we explain below in detail. Thus we
are left with two phases with dominant but different d-wave
symmetries. In Fig. 5(d) we show αR = 0.2: while the original
structure of the αR = 0 phase diagram is still visible, now sig-
nificant triplet contributions are mixed into the singlet phases
and small singlet contributions into the triplet phase. We note
that the mixing ratio η, shown below the main panel, takes
arbitrary values between zero and 1, as expected. The mixed
condensates realized for αR = 0.2 correspond to d ′ + p, s +
p, and d + f [cf. Eq. (57)]. Note that the s + p phase, which
corresponds to the chiral p + ip phase for αR = 0, is not only
mixed with a singlet s wave, but also the triplet part changes
to a helical p wave, for the reasons outlined above. Figure 5(e)

shows αR = 0.35 where the mixing of singlet and triplet
phases dominates but also the deformation of the FSs due to
Rashba SOC has altered the structure of the αR = 0 phase
diagram at small n. Finally, αR = 0.5 is shown in Fig. 5(f):
here we find many small phases with different singlet-triplet
mixtures. In contrast to smaller values of αR, here we also
detect g-wave order with small f -wave contributions.

Furthermore, we can see from Fig. 5 that for extended
regions the ratio η tends to stay away from zero or 1 with
increasing αR; i.e., the mixing of singlet and triplet states
becomes more pronounced for stronger spin-orbit coupling. In
the region n ≈ [0.65, 0.83], however, η increases at first, until
αR = 0.35, and then decreases again for αR = 0.5. Hence,
there is an optimal value for αR for maximizing the triplet
contribution to the dominant singlet state in this region.

In addition to Ueff and the singlet triplet mixture in Fig. 5,
we show in Fig. 6 representative d vectors as contour plots
corresponding to the three different fillings n = 0.44, 0.55,
and 0.9 and to different values of αR. The contour plots re-
veal the symmetry of the irreps, associated with the leading
instability, in the Brillouin zone.

As mentioned before, for αR = 0 the mixing of singlet
and triplet states is forbidden; i.e., η ≡ 0 (singlet) or η ≡ 1
(triplet). As we can see in Fig. 5(c), ηUeff tends to zero every-
where in the limit αR → 0, i.e., to the spin-orbit-free case. An
exception is observed in the region where the pure triplet state
is found in the absence of SOC [n ≈ [0.54, 0.59], indicated
by the shaded area in Fig. 5(b)].

Here ηUeff is not approaching Ueff for small values of αR.
Figure 5(c), but also other results in the regime 0 < αR � 0.1
(not shown here), shows the suppression of the triplet p-wave
phase. This discrepancy has a simple explanation: in the men-
tioned regime we find a (near) degeneracy of two or even
three superconducting instabilities. Minimal deformations of
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FIG. 6. For nonzero SOC the d vector is shown in the form of
contour plots in the Brillouin zone for three relevant values of n and
selected values of αR.

the FS, as caused by small changes of αR, let these almost
degenerate instabilities change their ordering. In a previous
work, we have shown that even the numerical resolution for
evaluating the integrals affects which of the nearly degenerate
instabilities wins (see Sec. IV in Ref. [40]). In Fig. 7 we plot
the leading and subleading instabilities for different values
of αR in the region n = [0.45, 0.58]. This almost degeneracy
persists even for larger values of αR, and we find that in
the regime 0.01 � αR � 0.15 the triplet state swaps position
with another state which is of pure singlet type. The solid
lines indicating Ueff of the competing pairing channels are
extremely close together (note the logarithmic scale), which
causes the abrupt changes from singlet to triplet states or vice
versa. For instance, for αR = 0 [Fig. 7(a)] there is a pure
singlet state with dxy-wave order (shown in black) competing
with a pure triplet state with p-wave order (shown in red),
leading to the phase diagram in Fig. 5(b). For αR = 0.01, there
are even three competing instabilities, two pure singlet states
with dxy-wave and extended s-wave order and the previously
mentioned triplet state with p-wave order. While the p-wave
state wins for αR = 0, it loses by a hair split for αR = 0.01 and
0.1 [cf. Fig. 5(c)]. Similarly, up to quite large SOC αR = 0.35
one can observe this almost perfect degeneracy.

Three comments are in order:
(i) This issue of nearly degenerate states and competing

pairing channels is not specific to the presence of Rashba
SOC, but a rather generic problem.

(ii) In fact, “almost degeneracies” are not a problem but
rather a feature: if such degeneracies are sufficiently robust,
they can lead to two-component order parameters. For in-
stance, when a dxy-wave and another dx2−y2 -wave state on
the square lattice become (almost) degenerate, they can form
complex superpositions of the type d + id , resulting in chiral,
topological superconductivity. In the present example, even
a highly exotic three-component order parameter of the type
dxy + αpx + βpy is possible (with α, β complex constants).

(iii) We emphasize that these results were obtained in the
weak-coupling regime; whether or not such near degeneracies
are stable upon increasing Coulomb interactions is less clear

FIG. 7. Ueff as a function of band filling, n, for different SOC
strength, αR, in the region n ∈ [0.45, 0.58], where the d- and p-wave
dominant solutions are almost degenerate. Partially, also an extended
s-wave singlet state is competing with the former two. In the presence
of SOC, d (p) becomes a d + p (s + p) mixture. The shaded region
(both in red and black) indicates the triplet contribution, ηUeff , to
the full order parameter. It is apparent that the almost degeneracy
between the d and p waves in this region persists even for strong
spin-orbit coupling.

and requires further investigations on a case-by-case basis
using other methods.

In summary, the investigation of the nearest-neighbor
square lattice Hubbard model in the presence of Rashba
SOC—being the most paradigmatic lattice model to study—
reveals already a rich phenomenology. We note that the overall
amplitude Ueff and thus the critical transition temperature Tc

hardly changes with varying αR. Spin-singlet superconducting
phases, which dominate the phase diagram in the absence of
SOC, mix with spin-triplet states as αR increases. We empha-
size that the increase of triplet contribution is nonmonotonic in
αR and an optimal value for maximizing triplet contributions
exists.

IV. DISCUSSION

In this section, we discuss the following five aspects of our
work: (i) we benchmark to results in the literature, (ii) we
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FIG. 8. Ueff as function of band filling, n, for t2/t1 = −0.3 and
αR = 0.5, in the region n ∈ [0.4, 1]. The shaded region indicates the
triplet contribution, ηUeff , to the full order parameter. In the lower
panel we plot η as a function of filling n. The Van Hove singularities,
nvH, are indicated as dashed lines. For n < 0.6 we find a mix of g and
helical f waves, for fillings 0.6 < n < 0.624 almost pure helical f
wave, and for n > 0.624 a mix of dx2−y2 and helical f waves.

briefly discuss the experimental relevance, (iii) we address the
interesting topic of topological phase transitions, (iv) we give
an outlook on what to expect when considering other lattices,
and (v) we briefly discuss how random disorder might affect
our results.

Let us consider nonzero t2 in order to study the effect of
longer-ranged hopping on the mixed singlet-triplet states. For
the sake of benchmarking and comparing with results in the
literature [30], we choose the band-structure parameters to be

t2/t1 = −0.3, αR = 0.5. (65)

In Ref. [30] the very same model was investigated by virtue
of RPA. Note that in Ref. [30] a factor 4 is missing in the
second-neighbor hopping term, t ′ ≡ t2; this can be confirmed
by comparing DOS plots. According to Eq. (60), the Van Hove
singularities are located at nvH,1 ≈ 0.642 and nvH,2 ≈ 0.874.
The results for Ueff and η are shown in Fig. 8.

In agreement with Greco and Schnyder [30], we find a
strong peak of f wave around the first Van Hove singularity,
nvH,1. For lower fillings, until n = 0.6, we find an almost pure
helical f -wave state, which gets then gradually mixed with
g wave (not considered in Ref. [30]) for decreasing filling,
where the f -wave contribution becomes negligible for n <

0.5. Above the Van Hove singularity, n > nvH,1, the f wave
gets gradually mixed with the dx2−y2 wave, starting from equal
contributions from both, f and d wave right above nvH,1 to al-
most pure dx2−y2 wave at n ≈ 0.832. Starting from this point of
a pure singlet state, decreasing the filling lets us thus replicate
the theoretical study in Fig. 3; i.e., we can adjust the mixing
ratio η gradually by changing the filling n, which is shown in
Fig. 9. The regime below n = 1 is also in Ref. [30] dominated
by dx2−y2 -wave order; however, below nvH,2 the dominating
pairing channel reported in Ref. [30] is a dxy-wave order.
This disagreement might stem from the different interaction
strengths and the methodological differences in both works.

FIG. 9. Transition from pure dx2−y2 wave to pure helical f wave
as a function of the filling n. These are results for t2/t1 = −0.3, αR =
0.5, and, from top to bottom, n = {0.832, 0.748, 0.656, 0.624} and
η = {0.003, 0.164, 0.5, 1}.

Most recently, the Rashba-Hubbard model with parameters
(65) was also studied in Ref. [31] using RPA. However, they
considered a slightly different band structure, in particular,
without the factor 4 in the second-neighbor hopping term
t2. Thus, their results correspond to t2/t1 = −0.075 in our
notation. Given the proximity to t2 = 0, we can at least qual-
itatively compare their results to Fig. 5 (f). We both find a
dominant dx2−y2 phase in the same doping regime. For smaller
doping they also find a g-wave phase. More interestingly,
Ref. [31] also calculated a singlet-triplet ratio, similar to η.
Around n = 0.4, they find a dominant triplet phase, which
matches our results. Around n = 0.6, they find an almost
purely singlet state, which we have at around n = 0.65. Given
the small difference in t2 between the two works, the agree-
ment is satisfying.

Often unconventional superconductors contain heavy el-
ements, which is favorable for non-negligible spin-orbit
interactions. For instance, Sr2RuO4 [15], CuxBi2Se3 [18,19],
and CePt3Si [7,13,17] are the standard candidate materials
for topological superconductivity. In particular, Sr2RuO4 was
believed to realize spin-triplet p-wave pairing. Due to recent
experimental progress [16,51] it became apparent that a two-
component spin-singlet order parameter represents a more
likely scenario [52,53]. One of the recent theory proposals
[53] is based on the presence of significant Rashba SOC.

Superlattices with tunable layer thickness provide an-
other example of unconventional superconductivity where
Rashba SOC is important. The heavy-fermion superlattice
CeCoIn5/YbCoIn5 [54,55] is such a candidate where inver-
sion symmetry is broken by the modulation of the layer
thickness of the superlattice. In fact, the parameters discussed
above, Eq. (65) and Ref. [30], are motivated by this com-
pound. We would like to emphasize, however, that the aim
of this work is not to model a specific material but rather
to present a principal, thorough study of how Rashba SOC
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affects the superconducting instabilities; therefore, we have
chosen the simplest and most paradigmatic model one can
think of.

The mixing of singlet and triplet phases leads to an in-
teresting point of study: Suppose that the singlet phase is a
gapped phase with zero Chern number or trivial Z2 invariant
and that the triplet phase is a chiral or helical gapped phase
such as p + ip. Note that a f + i f phase on the square lattice
is not gapped, since the diagonal line nodes of both f waves
overlap. Then there must be a topological phase transition,
ηc, as a function of mixing ratio η. Of course, this transition
might not be reached if η varies between zero and, say, 0.2 or
0.3; but supposing η varies from small to large values then
such a transition will occur. We note that from the list of
possible singlet-triplet mixtures, Eq. (57), only the first case,
s + p, represents a scenario where both phases are gapped:
the s wave corresponds to a topologically trivial phase but
the helical p wave is a fully gapped state with nontrivial
Z2 topology. Note that a pure s-wave state is suppressed
by the repulsive interaction, U0 > 0; however, extended s-
wave states can still appear. All other scenarios correspond
to transitions from a gapless to a gapped state or between
two gapless states. The former are possibly even more in-
teresting: when a gapless and “gapful,” i.e., a gap opening,
term compete usually the latter wins easily. That suggests that
indeed some of the mixed singlet-triplet states realize gapped,
topologically nontrivial superconductivity. Determining the
exact values ηc where such topological phase transitions occur
and the investigation of phase diagrams as a function of η

will be reported elsewhere. Other lattices, e.g., with hexag-
onal symmetry, might have a richer phenomenology since
the d-wave representations are degenerate and thus prefer to
form chiral singlet states of the type d + id which are fully
gapped.

In this work, we exclusively discussed the square lattice
with its D4 symmetry group. It contains five irreps, four of
which are even (i.e., the basis functions are even in momentum
k) and one dimensional. As stated above, the form fac-
tor in helicity basis using time-reversal partners, ψ (T )(k, ζ ),
transforms according to an even irrep of the point group.
That raises the interesting question of what would happen
if ψ (T )(k, ζ ) transforms according to an even irrep which
is two dimensional. Such a scenario is possible for the D6

point group. The simplest example with D6 symmetry is the
triangular lattice. In analogy to Eq. (57), multiplying the even
irreps with the �γ vector for the triangular lattice leads to the
following singlet-triplet states:

A1 : s + p,

A1 : extended s + p,

A2 : i + h,

E2 : d + { f + p}.

(66)

The singlet contributions are s, i, and d . (s corresponds to
isotropic, constant s-wave pairing, and extended s to nearest-
neighbor s-wave pairing.) i is an i-wave order with large
angular momentum � = 6 and d refers to the two-component
(dx2−y2 + idxy)-wave order, which is chiral and topologically

nontrivial (Chern number C = 2). Triplet contributions p, f ,
and h correspond to helical p-wave, f -wave, and h-wave or-
der. The latter has � = 5. As for the square lattice, the p wave
includes the standard case but also the “extended” p wave with
additional line nodes. For E2, { f + p} denotes a superposition
of helical p- and f -wave order.

Instead of changing the lattice symmetry, also additional
orbital or sublattice degrees of freedom might change the
picture drastically, since the band index now incorporates
multiple degrees of freedom and the structure of �γ might
be more complicated. This potentially leads to new types of
superconducting states as well, which cannot appear for a
one-band model.

Finally, we briefly discuss the qualitative effects of disor-
der. To begin with, to treat random disorder is not a trivial
issue and requires advanced methodology that is beyond the
scope of this paper. Nonetheless, we wish to address a few
points regarding disorder. For a superconducting state with a
hard gap, small random disorder can be neglected (as long
as the disorder strength is much smaller than the gap). Once
the disorder strength becomes larger, it was recently shown
that topological superconductors can undergo phase transi-
tions either from trivial to topological phases or vice versa
[56,57]. Many of these transitions can be understood due
to a renormalization of the bandwidth and thus a rescaling
of single-particle parameters. In addition, there might very
well be many-body rescaling effects. More complicated is
the role of random disorder for “gapless” superconductors,
i.e., superconducting order parameters with nodal points or
nodal lines. We expect that within the WCRG framework,
weak random disorder can be seen as a small perturbation.
That is, if the leading and the second-leading instabilities
are energetically close to each other (or even quasidegen-
erate), weak disorder might easily cause a phase transition
from one superconducting state to the other. In contrast, if
leading and second-leading instabilities are well separated
by a large energy gap, the WCRG results are likely to be
robust.

V. CONCLUSION

In this work, we have thoroughly investigated the square
lattice Hubbard model in the presence of Rashba spin-orbit
coupling. We have developed an implementation of Rashba
spin-orbit coupling into the weak-coupling renormalization
group framework, which allows the study of noncentrosym-
metric superconducting states with broken spin symmetry.
These states feature mixing of singlet and (helical) triplet
states, where smooth transitions between pure singlet and
pure triplet states are possible as a function of any system
parameter. While the mixing ratio can change continuously
upon varying such parameters, we are still able to find the
leading superconducting instability in an unbiased way. This
is a major advantage of the weak-coupling renormalization
group method. We also address the issue of how to properly
deal with split energy bands within a “Fermi surface method,”
i.e., a method which restricts paired electrons to momenta on
the Fermi surface, and the transformation from helicity to spin
basis.
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TABLE II. List of symmetry operators, Ô = Ôr ⊗ Ôo ⊗ Ôs, for
several symmetries. Ôr denotes the part of Ô which acts on real
space, i.e., on �r, Ôo the part which acts on orbital (sublattice) space,
and Ôs the one which acts on spin space. Note that for time reversal,
T̂ = (T̂r ⊗ T̂o ⊗ T̂s )K , where K denotes complex conjugation. 1 is
the identity. For the systems studied here, Ôo ≡ 1.

Symmetry Ôr Ôs

Time reversal 1 −iσy

Inversion −1 iσ0

Spin rotation around z 1 ±( eiϕ/2 0
0 e−iϕ/2

)
π rotation around z diag(−1,−1, 1) ±iσz
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APPENDIX A: CONSTRAINTS ON �γ DUE TO SYMMETRY

The symmetry properties of the given lattice are reflected
in properties of the Bloch matrix ĥ. We write the Bloch
matrix as

ĥ = τo ⊗ γ o
s (k)σ s. (A1)

The orbital (sublattice) space parts, τo, are elements of a
complete set of N × N matrices, {τ1, τ2, . . . , τN2}, where N is
the number of orbitals per unit cell. Note that if N = 1, which
is the case for the system studied in this paper, τ1 ≡ 1. The
spin-space part is given by the k-dependent functions γ o

s (k)
and the Pauli matrices σs.

The symmetries of the system pose several constraints on
γ , which are obtained by

ÔĥÔ† = ĥ, (A2)

where Ô is the operator of the symmetry operation. Explicit
representations of the relevant symmetries are listed in Ta-
ble II. The resulting constraints on γ due to these symmetries
are listed in Table III under the additional constraint of ĥ being
Hermitian.

Note that for N = 1 inversion and time-reversal symmetry
together set γx = γy = γz = 0, whereas time-reversal symme-

TABLE III. List of constraints on γ due to symmetries.

Symmetry Conditions

Time reversal γ0(−k) = γ0(k),
γx,y,z(−k) = −γx,y,z(k)

Inversion γ (−k) = γ (k)

Spin rotation around z γx = γy = 0

π rotation around z γ0,z(−k) = γ0,z(k),
γx,y(−k) = −γx,y(k)

(a) (b) (c) (d) (e)

FIG. 10. Diagram ZS [26], where the interaction nodes are ex-
plicitly expanded in all possible configurations. The same can be
done for the diagram ZS′ by just switching 1 and 1̄. Diagrams 2b,
2c′, 2d′, 2e′ are in the convention of Refs. [38–40].

try and the existence of a rotation center in the lattice for a
rotation by the angle π yields γz = 0. If inversion symmetry
and π -rotation symmetry is given, γx = γy = 0, i.e., spin ro-
tation symmetry is also conserved.

APPENDIX B: FEYNMAN DIAGRAMS

In this section we explain why we use the Feynman dia-
grams given, e.g., in the review by Shankar [26] (see Fig. 1),
instead of the ones typically used in the WCRG papers
[38–40] (see Fig. 10). Both of the two variants are equiv-
alent, as the ones in Fig. 1 follow from the ones shown in
Refs. [38–40] taking into account fermionic anticommutation
relations. This is shown explicitly in Fig. 10, where the dia-
gram ZS is expanded in the four diagrams of the particle-hole
channel of the same order (U 2), but different momenta (only
the first one starts with 1 on the top right leg, the other three
with 1̄). Adding the same expansion of diagram ZS′, which is
obtained by simply swapping 1 and 1̄, we obtain all scattering
processes in the particle-hole channel, including fermionic
anticommutation of the incoming particles. This shows that

�ZS + �ZS′ ≡ �(2b) + �(2c) + �(2d ) + �(2e) + 1 ↔ 1̄. (B1)

The advantage of using the diagrams ZS and ZS′ is that their
numerical computation is more efficient, since we need to
calculate only two integrals (or a single one followed by the
correct antisymmetrization), whereas for diagrams 2b–2e we
would need to calculate four integrals, which ultimately yields
the same result. Note that without spin-orbit coupling, the four
diagrams 2b–2e can also be obtained by just a single integral;
diagram 2a is not shown here [38,40].

APPENDIX C: TIME-REVERSAL TRANSFORMATION OF
FERMIONIC OPERATORS

This section is essentially paraphrased from Appendix B in
Ref. [50]. We add this here for the sake of completeness and
to adapt the derivation to our notation.

The creation and annihilation operators in the helic-
ity basis, b†

kζ
and bkζ

, respectively, are given by unitary
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transformation of the corresponding operators in the spin ba-
sis, i.e.,

b†
kζ

= v
↑
kζ

c†
k↑ + v

↓
kζ

c†
k↓, (C1)

bkζ
= v

↑
kζ

ck↑ + v
↓
kζ

ck↓. (C2)

Using the time reversal of the operators in spin space, which
is given by

T̂

(
c†

k↑
c†

k↓

)
=

(
c†
−k↓

−c†
−k↑

)
, (C3)

yields the time reversal of the creation operator b†
kζ

as

T̂ b†
kζ

= T̂ (v↑
kζ

c†
k↑ + v

↓
kζ

c†
k↓) = v

↑∗
kζ

c†
−k↓ − v

↓∗
kζ

c†
−k↑. (C4)

Comparing Eq. (C4) with

b†
−kζ

= v
↑
−kζ

c†
−k↑ + v

↓
−kζ

c†
−k↓ (C5)

and using the relations θζ (−k) = θ−ζ (k) and eiφ−k = −eiφk

yields

b†(T )
−kζ

≡ T̂ b†
kζ

= −ζe−iφk b†
−kζ

. (C6)

Thus, the phase factor t (k, ζ ) is given by

t (k, ζ ) = −ζe−iφk (C7)

for single orbital models.

APPENDIX D: TRANSFORMATION FROM
HELICITY BASIS TO SPIN BASIS

Here we discuss how to perform the transformation of the
form factor of the superconducting gap function from helicity
basis to spin basis, which is explicitly given in Eqs. (49) and
(50). Of course, the transformation from helicity to spin basis
is a simple unitary transformation. However, what is usually
a simple task turns out to be a challenging problem for a
Fermi surface method (such as WCRG); i.e., the form factors
ψ (T )(kζ ) are only given on the respective Fermi surface. For
the transformation, however, we need the form factors at the
same k points for both bands, which we do not have. To solve
this problem, we fit lattice harmonics with the same symmetry
properties to each ψ (T )(kζ ) and thus obtain the form factors
within the entire Brillouin zone.

However, since we fit a 2D function to a one-dimensional
(1D) manifold, the fit is underdetermined in the sense that
we can produce arbitrary results far away from the Fermi
surface, by including more and more lattice harmonics. This
also means that, including an arbitrary number of arbitrarily
high orders of lattice harmonics, we can always find a perfect
fit with or without a line node exactly between the two Fermi
surfaces, which enables us, in principle, to find a solution in
spin space anywhere between pure singlet and pure triplet
(note, however, that the irrep cannot change). This becomes
particularly easy when the splitting of the Fermi surfaces is
large, i.e., for large values of αR. An example to visualize
this is shown in Fig. 11. Here we see the lowest-order lat-
tice harmonic of the irreducible representation B1, fa(kx, ky),
in Fig. 11(a), and a combination with a higher-order lattice

(c)(b)(a)

FIG. 11. Form factor plots for different lattice harmonics of the
irreps of B1 of the D4 point group. (a) Lowest-order lattice harmon-
ics, given by Eq. (D1). (b) Combination of two lattice harmonics,
[see Eq. (D2)], which produces an additional circular line node.
(c) Projection of (b) onto an example set of spin-orbit split Fermi
surfaces, such that the circular line node lies between them and is
thus not visible.

harmonic, fb(kx, ky), in Fig. 11(b). The corresponding func-
tions are given by

fa(kx, ky) = cos(kx ) − cos(ky), (D1)

fb(kx, ky) = −[cos(kx ) − cos(ky)]

+ 1.5[cos(2kx ) − cos(2ky)]. (D2)

Let us now imagine that we have a state similar to the one
shown in Fig. 11(c), i.e., where we have two Fermi surfaces
separated such that the circular line node in Fig. 11(b) lies
between them, and where the superconducting order parame-
ter has opposing signs on each Fermi surface. Then we could
either use the function of Fig. 11(a) for fitting, which would
yield a dominant triplet state, or we could use the one of
Fig. 11(b), which would yield a dominant singlet state. This is
the problem of ambiguity resulting from fitting a 2D function
to a 1D manifold.

However, from a physical perspective, we implement a
few criteria for the fitting process to avoid ambiguities as
described above; indeed these criteria heavily limit the amount
of freedom for the resulting ratio of singlet and triplet pairing.
These are given in the following, sorted by decreasing impor-
tance:

(1) The form factor should not be much larger far away
from the Fermi surface than on the Fermi surface itself.

(2) We use lower-order lattice harmonics rather than
higher orders. It is often necessary to find a compromise
between low order and low fitting error.

(3) We limit the number of lattice harmonics used for the
fit to a maximum of three, and using fewer where possible.

In the example presented in Fig. 11 above, we would thus
choose to use the function of Fig. 11(a) to fit and obtain a
mainly triplet state, since it uses lower-order harmonics than
the function of Fig. 11(b).

Figure 12 shows an example from our results, where the
form factor transforms according to the irrep A1. We see
that we can fit different functions equally well to the Fermi
surface, which yield drastically different results.

The main results of this paper are, however, not affected.
First, the irrep always remains the same, regardless of the
fitting process; only the ratio between singlet and triplet can
be affected by fitting ambiguities. Second, only for large SOC,
i.e., significant splitting of the Fermi surfaces, it becomes
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(1) (2) (3) (4) (5) (6)

FIG. 12. Example of the ambiguity of fitting functions and the resulting mixing ratio between singlet and triplet states. Three different sets
of fitting functions are shown as rows (a), (b), and (c). Column 1: form factor of the superconducting order parameter in helicity basis, as given
by the result of the WCRG calculations. Columns 2 and 3: fitted functions to outer and inner Fermi surfaces. The blue line is the function fitted
to the outer Fermi surface, the red line the one fitted to the inner Fermi surface. Columns 4–6: resulting functions for d0, dx , and dy. What we
obtain are different extended s waves mixed with different extended p waves, i.e., the symmetry of the d-vector components is the same in all
three examples, but the nodal lines are very different. In particular, the mixing ratio, η, changes drastically between (a), (b), and (c).

more challenging to handle such ambiguities. Third, when
sweeping through entire parameter ranges (such as phase dia-
grams) it turns out that a single point might still allow for such
fitting ambiguities, but parameter points close by do not. By

adiabaticity we can thus find further evidence in favor of one
of the fitting options. We stress again that the issue of fitting
ambiguities is relevant to any Fermi surface method and not
specific to the WCRG approach.

[1] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
[2] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
[3] B. Yan and C. Felser, Annu. Rev. Condens. Matter Phys. 8, 337

(2017).
[4] M. Sato and Y. Ando, Rep. Prog. Phys. 80, 076501 (2017).
[5] C. Kallin and J. Berlinsky, Rep. Prog. Phys. 79, 054502 (2016).
[6] Y. Tanaka, M. Sato, and N. Nagaosa, J. Phys. Soc. Jpn. 81,

011013 (2012).
[7] M. Smidman, M. B. Salamon, H. Q. Yuan, and D. F. Agterberg,

Rep. Prog. Phys. 80, 036501 (2017).
[8] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M.

Bakkers, and L. P. Kouwenhoven, Science 336, 1003 (2012).
[9] S. Nadj-Perge, I. K. Drozdov, J. Li, H. Chen, S. Jeon, J. Seo,

A. H. MacDonald, B. A. Bernevig, and A. Yazdani, Science
346, 602 (2014).

[10] A. Palacio-Morales, E. Mascot, S. Cocklin, H. Kim, S. Rachel,
D. K. Morr, and R. Wiesendanger, Sci. Adv. 5, eaav6600
(2019).

[11] N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).

[12] D. A. Ivanov, Phys. Rev. Lett. 86, 268 (2001).
[13] Y. Yanase and M. Sigrist, J. Phys. Soc. Jpn. 77, 124711 (2008).
[14] T. Yokoyama, S. Onari, and Y. Tanaka, Phys. Rev. B 75, 172511

(2007).
[15] A. P. Mackenzie and Y. Maeno, Rev. Mod. Phys. 75, 657 (2003).
[16] A. Pustogow, Y. Luo, A. Chronister, Y.-S. Su, D. A. Sokolov,

F. Jerzembeck, A. P. Mackenzie, C. W. Hicks, N. Kikugawa, S.
Raghu, E. D. Bauer, and S. E. Brown, Nature 574, 72 (2019).

[17] E. Bauer, G. Hilscher, H. Michor, C. Paul, E. W. Scheidt, A.
Gribanov, Y. Seropegin, H. Noël, M. Sigrist, and P. Rogl, Phys.
Rev. Lett. 92, 027003 (2004).

[18] Y. S. Hor, A. J. Williams, J. G. Checkelsky, P. Roushan, J. Seo,
Q. Xu, H. W. Zandbergen, A. Yazdani, N. P. Ong, and R. J.
Cava, Phys. Rev. Lett. 104, 057001 (2010).

[19] S. Sasaki, M. Kriener, K. Segawa, K. Yada, Y. Tanaka, M. Sato,
and Y. Ando, Phys. Rev. Lett. 107, 217001 (2011).

[20] S. Ran, C. Eckberg, Q.-P. Ding, Y. Furukawa, T. Metz, S. R.
Saha, I.-L. Liu, M. Zic, H. Kim, J. Paglione, and N. P. Butch,
Science 365, 684 (2019).

174512-13

https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1146/annurev-conmatphys-031016-025458
https://doi.org/10.1088/1361-6633/aa6ac7
https://doi.org/10.1088/0034-4885/79/5/054502
https://doi.org/10.1143/JPSJ.81.011013
https://doi.org/10.1088/1361-6633/80/3/036501
https://doi.org/10.1126/science.1222360
https://doi.org/10.1126/science.1259327
https://doi.org/10.1126/sciadv.aav6600
https://doi.org/10.1103/PhysRevB.61.10267
https://doi.org/10.1103/PhysRevLett.86.268
https://doi.org/10.1143/JPSJ.77.124711
https://doi.org/10.1103/PhysRevB.75.172511
https://doi.org/10.1103/RevModPhys.75.657
https://doi.org/10.1038/s41586-019-1596-2
https://doi.org/10.1103/PhysRevLett.92.027003
https://doi.org/10.1103/PhysRevLett.104.057001
https://doi.org/10.1103/PhysRevLett.107.217001
https://doi.org/10.1126/science.aav8645


SEBASTIAN WOLF AND STEPHAN RACHEL PHYSICAL REVIEW B 102, 174512 (2020)

[21] X.-C. Pan, X. Chen, H. Liu, Y. Feng, Z. Wei, Y. Zhou, Z. Chi,
L. Pi, F. Yen, F. Song, X. Wan, Z. Yang, B. Wang, G. Wang, and
Y. Zhang, Nat. Commun. 6, 7805 (2015).

[22] Y. Qi, P. G. Naumov, M. N. Ali, C. R. Rajamathi, W. Schnelle,
O. Barkalov, M. Hanfland, S.-C. Wu, C. Shekhar, Y. Sun,
V. Süß, M. Schmidt, U. Schwarz, E. Pippel, P. Werner, R.
Hillebrand, T. Förster, E. Kampert, S. Parkin, R. J. Cava, C.
Felser, B. Yan, and S. A. Medvedev, Nat. Commun. 7, 1 (2016).

[23] N. P. Butch, P. Syers, K. Kirshenbaum, A. P. Hope, and J.
Paglione, Phys. Rev. B 84, 220504(R) (2011).

[24] L. Savary, J. Ruhman, J. W. F. Venderbos, L. Fu, and P. A. Lee,
Phys. Rev. B 96, 214514 (2017).

[25] H. Kim, K. Wang, Y. Nakajima, R. Hu, S. Ziemak, P. Syers, L.
Wang, H. Hodovanets, J. D. Denlinger, P. M. R. Brydon, D. F.
Agterberg, M. A. Tanatar, R. Prozorov, and J. Paglione, Sci.
Adv. 4, eaao4513 (2018).

[26] R. Shankar, Rev. Mod. Phys. 66, 129 (1994).
[27] O. Vafek and L. Wang, Phys. Rev. B 84, 172501 (2011).
[28] L. Wang and O. Vafek, Physica C 497, 6 (2014).
[29] K. Shigeta, S. Onari, and Y. Tanaka, J. Phys. Soc. Jpn. 82,

014702 (2013).
[30] A. Greco and A. P. Schnyder, Phys. Rev. Lett. 120, 177002

(2018).
[31] R. Ghadimi, M. Kargarian, and S. A. Jafari, Phys. Rev. B 99,

115122 (2019).
[32] N. Bittner, D. Einzel, L. Klam, and D. Manske, Phys. Rev. Lett.

115, 227002 (2015).
[33] L. P. Gor’kov and E. I. Rashba, Phys. Rev. Lett. 87, 037004

(2001).
[34] I. A. Sergienko and S. H. Curnoe, Phys. Rev. B 70, 214510

(2004).
[35] P. A. Frigeri, D. F. Agterberg, and M. Sigrist, New J. Phys. 6,

115 (2004).
[36] P. A. Frigeri, D. F. Agterberg, A. Koga, and M. Sigrist, Phys.

Rev. Lett. 92, 097001 (2004).
[37] P. A. Frigeri, M. Sigrist, and D. F. Agterberg, Phys. B: Condens.

Matter 378-380, 900 (2006).
[38] S. Raghu, S. A. Kivelson, and D. J. Scalapino, Phys. Rev. B 81,

224505 (2010).
[39] S. Raghu, E. Berg, A. V. Chubukov, and S. A. Kivelson, Phys.

Rev. B 85, 024516 (2012).

[40] S. Wolf, T. L. Schmidt, and S. Rachel, Phys. Rev. B 98, 174515
(2018).

[41] W. Cho, R. Thomale, S. Raghu, and S. A. Kivelson, Phys. Rev.
B 88, 064505 (2013).

[42] C. Platt, W. Cho, R. H. McKenzie, R. Thomale, and S. Raghu,
Phys. Rev. B 93, 214515 (2016).

[43] W. Cho, C. Platt, R. H. McKenzie, and S. Raghu, Phys. Rev. B
92, 134514 (2015).

[44] T. Scaffidi, J. C. Romers, and S. H. Simon, Phys. Rev. B 89,
220510 (2014).

[45] H. S. Røising, F. Flicker, T. Scaffidi, and S. H. Simon, Phys.
Rev. B 98, 224515 (2018).

[46] W. Metzner, M. Salmhofer, C. Honerkamp, V. Meden, and K.
Schönhammer, Rev. Mod. Phys. 84, 299 (2012).

[47] C. Platt, W. Hanke, and R. Thomale, Adv. Phys. 62, 453 (2013).
[48] P. W. Anderson, J. Phys. Chem. Solids 11, 26 (1959).
[49] K. V. Samokhin and V. P. Mineev, Phys. Rev. B 77, 104520

(2008).
[50] M. Sigrist, in Lectures on the Physics of Srongly Correlated Sys-

tems XIII: Thirteenth Training Course in the Physics of Strongly
Correlated Systems, edited by A. Avella and F. Mancini, AIP,
Conf. Proc. No. 1162 (AIP, New York, 2009), p. 55.

[51] S. Ghosh, A. Shekhter, F. Jerzembeck, N. Kikugawa, D. A.
Sokolov, M. Brando, A. P. Mackenzie, C. W. Hicks, and B. J.
Ramshaw, Nature Physics (2020), doi: 10.1038/s41567-020-
1032-4.

[52] S. A. Kivelson, A. C. Yuan, B. Ramshaw, and R. Thomale, Npj
Quantum Materials 5, 43 (2020).

[53] H. G. Suh, H. Menke, P. M. R. Brydon, C. Timm, A. Ramires,
and D. F. Agterberg, Phys. Rev. Research 2, 032023(R) (2020).

[54] Y. Mizukami, H. Shishido, T. Shibauchi, M. Shimozawa, S.
Yasumoto, D. Watanabe, M. Yamashita, H. Ikeda, T. Terashima,
H. Kontani, and Y. Matsuda, Nat. Phys. 7, 849 (2011).

[55] M. Shimozawa, S. K. Goh, R. Endo, R. Kobayashi, T.
Watashige, Y. Mizukami, H. Ikeda, H. Shishido, Y. Yanase, T.
Terashima, T. Shibauchi, and Y. Matsuda, Phys. Rev. Lett. 112,
156404 (2014).

[56] E. Mascot, C. Agrahar, S. Rachel, and D. K. Morr, Phys. Rev.
B 100, 235102 (2019).

[57] D. Crawford, E. Mascot, D. K. Morr, and S. Rachel, Phys. Rev.
B 101, 174510 (2020).

174512-14

https://doi.org/10.1038/ncomms8805
https://doi.org/10.1038/ncomms11038
https://doi.org/10.1103/PhysRevB.84.220504
https://doi.org/10.1103/PhysRevB.96.214514
https://doi.org/10.1126/sciadv.aao4513
https://doi.org/10.1103/RevModPhys.66.129
https://doi.org/10.1103/PhysRevB.84.172501
https://doi.org/10.1016/j.physc.2013.10.007
https://doi.org/10.7566/JPSJ.82.014702
https://doi.org/10.1103/PhysRevLett.120.177002
https://doi.org/10.1103/PhysRevB.99.115122
https://doi.org/10.1103/PhysRevLett.115.227002
https://doi.org/10.1103/PhysRevLett.87.037004
https://doi.org/10.1103/PhysRevB.70.214510
https://doi.org/10.1088/1367-2630/6/1/115
https://doi.org/10.1103/PhysRevLett.92.097001
https://doi.org/10.1016/j.physb.2006.01.331
https://doi.org/10.1103/PhysRevB.81.224505
https://doi.org/10.1103/PhysRevB.85.024516
https://doi.org/10.1103/PhysRevB.98.174515
https://doi.org/10.1103/PhysRevB.88.064505
https://doi.org/10.1103/PhysRevB.93.214515
https://doi.org/10.1103/PhysRevB.92.134514
https://doi.org/10.1103/PhysRevB.89.220510
https://doi.org/10.1103/PhysRevB.98.224515
https://doi.org/10.1103/RevModPhys.84.299
https://doi.org/10.1080/00018732.2013.862020
https://doi.org/10.1016/0022-3697(59)90036-8
https://doi.org/10.1103/PhysRevB.77.104520
https://doi.org/10.1038/s41567-020-1032-4
https://doi.org/10.1038/s41567-020-1032-4
https://doi.org/10.1038/s41535-020-0245-1
https://doi.org/10.1103/PhysRevResearch.2.032023
https://doi.org/10.1038/nphys2112
https://doi.org/10.1103/PhysRevLett.112.156404
https://doi.org/10.1103/PhysRevB.100.235102
https://doi.org/10.1103/PhysRevB.101.174510

