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We systematically investigate the electronic structure, magnetism, and high-temperature superconductivity
(SC) in multilayer octagraphene and octagraphite (bulk octagraphene). A tight-binding model is used to fit
the electronic structures of single-layer and multilayer octagraphenes and octagraphite. We find that multilayer
octagraphene and octagraphite follow a simple A-A stacking structure from the energy analysis. The van der
Waals interaction induces t⊥ ≈ 0.25 eV and the hopping integral within each layer changes little when the
layer number n increases. There is a well Fermi-surface nesting with nesting vector Q = (π, π ) for single-layer
octagraphene at half-filling, which can induce a two-dimensional Néel antiferromagnetic order. With increasing
layer number n → ∞, the Fermi-surface nesting transforms to three-dimensional (3D) with nesting vector
Q = (π, π, π ) and shows that the system has a 3D Néel antiferromagnetic order. Upon doping, multilayer
octagraphene and octagraphite can enter a high-temperature s± SC driven by spin fluctuation. We evaluate the
superconducting transition temperature Tc by using the random-phase approximation, which yields a high Tc

even if the layer number n � 3. Our study shows that multilayer octagraphene and octagraphite are promising
candidates for realizing high-temperature SC.
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I. INTRODUCTION

Two-dimensional (2D) superconductors (SCs) have drawn
tremendous interest for their rich physical properties and po-
tential applications. So far, SCs have been reported in many
2D materials, such as FeSe-SrTiO3 [1], monolayer NbSe2 [2],
MoS2 [3], CuO2 [4], and Bi2Sr2CaCu2O8+δ [5]. As the first
single-layer 2D material, graphene [6] shows an interest-
ing proximity-induced superconductivity when it contacts SC
materials [7]. Besides, few-layer graphene with doping may
exhibit a considerable superconducting transition tempera-
ture Tc [8–12], which is higher than the reported Tc in bulk
compounds of the same composition [13]. Recently,“high-
temperature SC” with a Tc ∼ 1.7 K has been revealed in
magic-angle twisted bilayer graphene [14]. This progress
informs us that combinations and interactions between lay-
ers may have important influences on the properties of 2D
materials.

Theoretically, the SC of graphene-based 2D materials
has been widely studied via the Eliashberg theory under
the framework of the electron-phonon coupling mechanism
(BCS) [15–20]. By doping and applying a biaxial stress, the
highest Tc of graphene-based materials has been proposed to
reach 30 K [19]. In addition to graphene, variable forms of
graphyne have been predicted and some synthesized [21]. It
is only predicted that α-graphyne would exhibit a SC with
Tc ∼ 12 K by hole-doping and biaxial tensile strain [22].
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The hexagonal symmetry of graphene or graphyne is
unfavorable to form Fermi surface nesting with a high
density of states, which is important to form high-temperature
superconductivity.

Another 2D carbon-based material is octa-
graphene [23–25]. Astonishingly, the 2D square-octagon
lattice structure of single-layer octagraphene leads to a high
density of states near the well-nested Fermi surface (FS),
which may induce an antiferromagnetic spin-density-wave
order. The BCS mechanism based on electron-phonon
interaction is not enough to describe the pairing and the
SC mainly originates from spin fluctuation. Our recent
research on a repulsive Hubbard model on a square-octagon
lattice with nearest-neighbor and next-nearest-neighbor
hopping terms, which can serve as a rough representation of
single-layer octagraphene, shows that the system can host a
high-temperature SC with s±-wave pairing symmetry [26].
Unlike the complex forms of other 2D superconductors, the
simple structure of octagraphene may be an ideal platform
for studying the origin of high-temperature SCs. In real
materials, multilayer octagraphene and octagraphite may
be more common. We here study the electronic structures,
magnetism, and high-temperature superconductivity in
multilayer octagraphene and octagraphite.

Meanwhile, the dynamical stability of octagraphene (in
some papers, it is called T-graphene) is confirmed by
DFT calculation [23–25,27]. The synthesizations of oc-
tagraphene, multi-layer octagraphene and octagraphite are
in progress. While a novel synthesization route of single-
layer octagraphene has been proposed theoretically [27],
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FIG. 1. (a) Predicted structure of octagraphene from DFT cal-
culation. The relative positions between the layers form an A-A
stacking. (b) Structure of single-layer octagraphene. The relative
positions of four carbon atoms in a unit cell are independent of the
deformation. (c) Two-dimensional single-orbital TB model. t1, t2, and
t3 correspond to the intrasquare, intersquare, and diagonal hopping
energies, respectively.

an one-dimensional carbon nanoribbons with partial four and
eight-membered rings has been realized experimentally [28].
As octagraphene shows a low cohesive energy [24], it has an
opportunity to build the strongest carbon atomic sheet after
graphene.

In this paper, we get a better tight-binding (TB) model to
study the band structure of single-layer octagraphene. In com-
parison with our previous work [26], the present Hamiltonian
adopts hopping integrals fitted from the density-functional
theory (DFT) calculations and are thus more realistic. Unlike
the complex stacking of the graphene, our DFT calculation
suggests that multilayer octagraphenes more likely build an
A-A stacking [see Fig. 1(a)]. There is a well FS nesting
with nesting vector Q = (π, π ) for single-layer octagraphene
at half-filling, which can induce 2D Néel antiferromagnetic
order. With increasing layer number n → ∞, the FS nest-
ing transforms to 3D with nesting vector Q = (π, π, π ) and
shows that the system has 3D Néel antiferromagnetic order.
Upon doping, multilayer octagraphene and octagraphite can
enter a high-temperature s± SC driven by spin fluctuation.
We calculate the Tc of single-layer octagraphene, multilayer
octagraphene, and octagraphite and find that the interlayer
interaction does not affect the superconducting state much.
With increasing n, Tc converges to ∼170 K, which is still high.

The rest of the paper is organized as follows. In Sec. II we
provide our model and the details of our methods. In Sec. III,
we introduce the calculations for single-layer octagraphene
and compare them with our previous work. In Sec. IV, we
study the properties of multilayer octagraphenes. Section V
provides the results for octagraphite, which is different from

multilayer octagraphenes. The Tc obtained with increasing
layer number n is given in our estimation. Finally, in Sec. VI
we provide the conclusions.

II. MODEL AND APPROACH

A. The model

We use the projector-augmented wave method im-
plemented in the Vienna Ab initio Simulation Package
(VASP) to perform density-functional theory (DFT) calcula-
tions [29–32]. The generalized gradient approximation and
the Perdew Burke-Ernzerhof (PBE) function are used to treat
the electron exchange correlation potential [33]. The vac-
uum is set at 15 Å to avoid external interaction. Grimme’s
DFT-D3 is chosen to correct the van der Waals (vdW) in-
teraction [34]. In some other systems, Grimme’s DFT-D3
may be less accurate than other vdW functionals, such as
optB88-vdW [35], vdWDF [36], vdWDF2 [37], and vdW-DF-
cx [38,39]. However, in carbon systems, Grimme’s DFT-D3
gives rather precise results. For example, the calculated rel-
ative error is only δc ≈ 0.4% from the experimental lattice
constants for graphite [27]. An extremely high cutoff energy
(1500 eV) and 16 × 16 × 1 k-point mesh with the Monkhorst-
Pack scheme are used in the self-consistent calculation.

To quantitatively analyze the band structures from DFT
calculations, we build a TB model to describe single-layer
octagraphene, multilayer octagraphene, and octagraphite. The
Hamiltonian can be expressed as

HTB = −
∑
i, j,σ

ti jc
†
iσ c jσ −

∑
<i, j>

t⊥c†
i c j + H.c., (1)

where c†
iσ (ciσ ) is the electron creation (annihilation) operator

for a given site i with spin σ , ti j are the hopping energies de-
fined in Fig. 1(c) and t⊥ represents the van der Waals interlayer
interaction between neighbor layers. Note that the matrix form
of Eq. (1) is different for single-layer octagraphene, multilayer
octagraphene, and octagraphite.

Similarly to graphene, there are strong Coulomb repulsions
between the 2pz electrons in octagraphene materials. Here we
use an effective Hubbard model to describe the effects

HHubbard = HTB + U
∑

i

n̂i↑n̂i↓. (2)

Here the U term represents the on-site repulsive Hubbard
interaction between the 2pz electrons within the same site.

B. The random-phase approximation (RPA) approach

We use the RPA procedure outlined in our prior
work [26,40] to solve Eq. (2). Generally neglecting the fre-
quency dependence, we define free susceptibility for U = 0,

χ
(0)p,q
s,t (q)

= 1

N

∑
k,α,β

ξα
t (k)ξα,∗

s (k)ξβ
q (k′)ξβ,∗

p (k′)
nF

(
ε

β

k′
) − nF

(
εα

k

)
εα

k − ε
β

k′
,

(3)

where α, β = 1, 2, 3, 4 are band indices, q = k′ − k is the
nesting vector between k′ and k, εα

k and ξα
ξ (k) are the αth

174509-2



ELECTRONIC STRUCTURE, MAGNETISM, AND … PHYSICAL REVIEW B 102, 174509 (2020)

eigenvalue and eigenvector of matrix form of Eq. (1), respec-
tively, and nF is the Fermi-Dirac distribution function.

At the RPA level, the spin (charge) susceptibility for the
Hubbard model is

χ (c(s))(q) = [I + (−)χ (0)(q)Ũ ]−1χ (0)(q), (4)

where χ (c(s))(q), χ (0)(q), and Ũ are 16 × 16 matrices with
Ũ pq

st = Uδs=t=p=q.
A Cooper pair with momentum k′and orbital (t, s) could

be scattered to k, (p, q) by charge or spin fluctuations. At
the RPA level, to project the effective interaction into the
two bands which cross the Fermi surface, we obtain the low-
energy effective Hamiltonian for Cooper pairs near the Fermi
surface

Veff = 1

N

∑
αβ,kk′

V αβ (k, k′)c†
α (k)c†

α (−k)cβ (−k′)cβ (k′), (5)

where α, β = 1, 2 and V αβ is

V αβ (k, k′)

= Re
∑

pqst,kk′



pq
st (k, k′, 0)ξα,∗

p (k)ξα,∗
q (−k)ξβ

s (−k′)ξβ
t (k′).

(6)

In the singlet channel, the effective vertex 

pq
st (k, k′) is

given as



pq
st (k, k′) = Ũ pt

qs + 1
4 {Ũ [3χ (s)(k − k′) − χ (c)(k − k′)]Ũ }pt

qs

+ 1
4 {Ũ [3χ (s)(k + k′) − χ (c)(k + k′)]Ũ }ps

qt ,

(7)

while in the triplet channel, it is



pq
st (k, k′) = − 1

4 {Ũ [χ (s)(k − k′) + χ (c)(k − k′)]Ũ }pt
qs

+ 1
4 {Ũ [χ (s)(k + k′) + χ (c)(k + k′)]Ũ }ps

qt . (8)

We can construct the following linear integral gap equation
to determine the Tc and the leading pairing symmetry of the
system from the low-energy effective Hamiltonian, Eq. (5):

− 1

(2π )2

∑
β

∮
FS

dk′
‖
V αβ (k, k′)

v
β
F (k′)

�β (k′) = λ�α (k). (9)

Here, the integration and summation are along variable FS
patches labeled α or β. v

β
F is the Fermi velocity at k′ on the

βth Fermi surface patch, and k′, k represent the component
along that patch. In the eigenvalue problem, the normalized
eigenvector �α (k) represents the relative value of the gap
function on the αth FS patch. The largest pairing eigenvalue λ

is used to estimate Tc by the equation

λ−1 = ln

(
1.13

h̄ωD

kBTc

)
, (10)

where we choose the typical energy scale of the spin fluc-
tuation h̄ωD = 0.3 eV in our calculation (see Ref. [40]).
Although the RPA usually overestimates Tc because of its
weak-coupling perturbation, we here use a smaller U than
the actual situation to get the relatively credible Tc. In the
previous calculation for single-layer octagraphene by using
the variational Monte Carlo method [26], we get a similar
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FIG. 2. Single-layer octagraphene. (a) Band structures of dif-
ferent lattice constants a: a/a0 = 1.1, 1.0, and 0.9 (a0 = 3.44 Å).
DFT-calculated results, solid lines; fitting results obtained with the
TB model, dashed lines. For a/a0 = 0.9, the bands show a quadruple
degeneracy at point M, with E = −3.01 eV. (b) Fermi surface from
the TB model, independent of the relative lattice constant a/a0. The
Fermi surface is well nested by the vector Q1 = (π, π ). (c) Variable
fitting parameters t1, t2, and t3 of the TB model with lattice constant
a. t2/t1 = 1.1 is almost constantly independent of a.

result with an optimized gap � ≈ 50 meV for U = 10 eV,
which implies a similar Tc here.

III. SINGLE-LAYER OCTAGRAPHENE

In our DFT calculation of single-layer octagraphene, the
fit of the Birch-Murnaghan equation of state gives the more
accurate lattice constant a0 = 3.44 Å. We note that the rel-
ative positions of carbon atoms are almost independent of
the lattice constant a. The calculated square-octagon lattice is
shown in Fig. 1(b). The positions of four carbon atoms in the
unit cell are at (0.50a, 0.20a), (0.20a, 0.50a), (0.50a, 0.80a),
and (0.80a, 0.50a), respectively, consistent with C4v symme-
try. The rotational symmetry of σ bonds of octagraphene is
lower than that of graphene, and hence octagraphene is less
stable than graphene. The remaining p orbital electrons form
π bonds similar to those in graphene.

In Fig. 2(a), we show our DFT-calculated band structures
with a variable lattice constant a. There are two bands, ε2

and ε3, near the Fermi level. For a/a0 = 0.9, the bands are
quadruple degenerate at point M with E = −3.01 eV. This
coincidence is different from the Dirac point. The structure is
not a biconical structure with linear dispersion, but a parabolic
dispersion. This means that low-energy excitations are no
longer massless.

At the Fermi level, the band structures contain a hole
pocket around the 
 point and an electron pocket around
the M point [see Fig. 2(b)]. This is similar to the undoped
Fe-pnictide materials [41]. The two pockets connected by the
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nesting vector Q1 = (π, π ) form the well FS nesting, which
is independent of deformations within the single layer.

After the general procedure of Fourier transformation, the
Hamiltonian, Eq. (1), of the single layer reads

H̃1 =−

⎡
⎢⎢⎣

0 t1 t2eiky + t3 t1
t1 0 t1 t2eikx + t3

t2e−iky + t3 t1 0 t1
t1 t2e−ikx + t3 t1 0

⎤
⎥⎥⎦.

(11)

We obtain four bands, ε1, ε2, ε3, and ε4, by diagonalizing
Eq. (11). Since ε1 and ε4 are away from the Fermi level, we
only use ε2 and ε3 to get better fittings. By fitting bands ε2

and ε3 of the path from point 
 to point M, we get t1 =
2.678 ± 0.033 eV, t2 = 2.981 ± 0.027 eV, and t3 = 0.548
± 0.024 eV with a/a0 = 1.0. In comparison, t ≈ 2.7 eV
for the nearest-neighbor hopping energy and t ′ ≈ 0.1 eV for
the next-nearest-neighbor hopping energy are reported for
graphene [42]. Note that the existence of this small t3 is nec-
essary to split the ε3 and ε4 at point M and make ε2 coincide
with ε3 here.

Q1 remains almost unchanged with different deformations
[see Fig. 2(b)]. This is because the diagonalization result of
Eq. (11) is mathematically independent of the deformation
a/a0. This phenomenon is also examinated by our DFT cal-
culation, supporting the credibility of our TB model. Such
an unchanged FS nesting may stabilize the SC phase of the
octagraphene.

Figure 2(c) shows the variable fitting parameters t1, t2, and
t3 of the TB model with lattice constant a. As the distances
between carbon atoms increase, the values of t1, t2, and t3
decrease. This leads to the flatter band structures in Fig. 2(a).
However, t2/t1 remains almost 1.1 when a changes from
0.90a0 to 1.20a0. The relative interaction t2/t1 is independent
of a. We may conclude that the hopping energies between
carbon atoms are nearly inversely proportional to the distances
based on our calculations.

We then use a Hubbard model in Eq. (2) to study the
influence of spin fluctuation on SCs. Although the interaction
parameter U would be more than 10 eV for graphene-based
materials, the accurate value of U is still under discus-
sion [42]. Due to the weak-coupling character of the RPA,
there is a limitation on the value of U , i.e., Uc. Here, we
set U = 5.4 eV (2t1) and the electron doping density x
is 10% according to our estimation of the limits of the
RPA. The details of the RPA limitation Uc are elaborated
in Sec. V. The diagonalizing eigensusceptibilities χ (q) of
Eq. (3) peak at the vector Q1 = (π, π ), also verified by our
DFT result. The related eigenvector of susceptibilities ε(Q1)
= (1/2,−1/2, 1/2,−1/2) means that the Néel pattern is
formed [see Fig. 4(d)].

We then get λ = 0.321 for a/a0 = 1.0 and Tc ∼ 190 K for
the single-layer octagraphene. For comparison, it has been
reported recently that the calculated Tc is 20.8 K within
the framework of electron-phonon coupling [27]. Our cal-
culated Tc is much higher due to the spin fluctuation, not
the electron-phonon interaction. In the previous study, our
variational Monte Carlo gives the superconducting gap am-
plitude � ≈ 50 meV and a similar Tc at ∼180 K with
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FIG. 3. (a) Differences between the cohesive energy per atom of
bilayer octagraphene with relative shifts. Relative shifts between the
two layers are chosen along (100) and (110) in real space. A-A stack-
ing (0,0) is the most stable in our calculation. (b) Fermi surface of
bilayer octagraphene. The nesting vectors Q2 = (π, π ), (π + δ, π +
δ), and (π − δ, π − δ) indicate the deviation from perfect Fermi
surface nesting. (c) Band structures of bilayer octagraphene with
a0 = 3.45 Å. Solid lines represent the results by DFT calculation.
Dashed lines are fitting results of the TB model. (d) Detailed bands
near point M. Three branches from ε2, ε3, and ε4 coincide and form
a triple degeneracy at the M point.

the s±-wave pairing [26]. The consistence between the two
methods shows great potential to search for high-Tc supercon-
ductors.

We also note that with a decrease in a, Tc decreases on a
limited scale. This may be explained by the weakness of in-
teractions. However, Tc will remain at a high value (> 100 K)
when a/a0 increases from 0.9 to 1.2. Thus the single-layer
octagraphene would be a good superconductor with limited
mechanical deformation.

IV. MULTILAYER OCTAGRAPHENE

In real materials, multilayer octagraphene may be more
common. We here apply a DFT + RPA method to study
the properties of multilayer octagraphenes. We first verify
the stacking modes of bilayer octagraphene. Due to the C4v

symmetry of single layers, there may be three most proba-
ble stacking modes between two octagraphene layers—A-A
stacking, A-B stacking, and A-C stacking—which are defined
as (0, 0), (0.5, 0.5), and (0, 0.5) relative shifts between the two
layers, respectively. The differences between the cohesive en-
ergy per atom along the (100) and (110) directions are shown
in Fig. 3(a). In our calculations, A-A (0,0) stacking is the most
stable. Otherwise, from A-A (0,0) stacking to A-B (0.5, 0.5)
stacking, the energy differences are smaller compared with
those for graphene. The distance between the neighboring
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FIG. 4. Octagraphite. (a) Band structures with kz = 0, π/2, π .
(b) Fermi surface obtained by VESTA [44]; the nesting vector is
almost Q∞ = (π, π, π ). (c) Eigensusceptibilities χ (q) with qz = 0,
π/2, π . χ (q) peaks at almost Q∞ = (π, π, π ). (d) Predicted anti-
ferromagnetic Néel pattern with half-filling. (e) RPA-calculated Uc

as a function of the electron doping density x. (f) Doping density x
dependence of the largest pairing eigenvalues λ with U = 5.4 eV.
Based on (e) and (f), we set U = 5.4 eV (2t1) and electron doping
density x = 10%.

layers of multilayer octagraphene is 3.72 Å, which is larger
than the value of graphene (3.4 Å). This indicates a weaker
interlayer coupling, making the material more slippery than
graphite [43].

Since the A-A stacking bilayer is the most stable stack-
ing mode, we only consider the A-A stacking structure. The
bilayer Hamiltonian near the Fermi surface in matrix form
reads as

H̃2 =
[

H̃1 t⊥ Ĩ4×4

t⊥ Ĩ4×4 H̃1

]
, (12)

where H̃1 is Eq. (11) and Ĩ4×4 is a 4 × 4 identity matrix.
The fitting parameters of bilayer octagraphene are t1 =

2.685 ± 0.021 eV, t2 = 3.001 ± 0.016 eV, t3 = 0.558 ±
0.016 eV, and t⊥ = 0.184 ± 0.011 eV. t1, t2, and t3 show little
difference from those of single-layer octagraphene. This can
be understood by the small interlayer interaction t⊥, smaller
than that of graphene (t⊥ ≈ 0.4 eV) [42]. However, each band
of the single layer splits into two bands due to the doubled unit

TABLE I. Lattice constant a0, fitting parameters t1, t2, t3, and t⊥,
and λ of single- to six-layer octagraphene and octagraphite (∞).

n a0 (Å) t1 (eV) t2 (eV) t3 (eV) t⊥ (eV) λ

1 3.444 2.678(33) 2.980(27) 0.548(24) — 0.330
2 3.446 2.685(21) 3.001(16) 0.558(16) 0.184(11) 0.324
3 3.447 2.680(16) 2.994(13) 0.548(12) 0.222(07) 0.320
4 3.446 2.678(13) 3.001(11) 0.550(11) 0.263(06) 0.320
5 3.447 2.671(12) 2.993(10) 0.546(09) 0.261(05) 0.320
6 3.449 2.677(11) 2.999(09) 0.548(08) 0.247(05) 0.313
∞ 3.447 2.686(17) 2.986(13) 0.574(12) 0.259(05) 0.319

cell. As a result, there are two nesting hole pockets around the

 point and two nesting electron pockets around the M point
[see Fig. 3(b)].

Interestingly, three branches from ε2, ε3, and ε4 coincide
and form a triple degeneracy at point M [see Figs. 3(c)
and 3(d)]. This triple degeneracy, which naturally exists in
bilayer octagraphene, does not need any external deformation.
From our TB model, the diagonalization of Eq. (12) gives
exactly the same result at the M point when t1 + t⊥ = t2 + t3
is satisfied. While the matching of single-layer ε2 and ε3 at
the M point is determined by the C4v symmetry, the matching
with ε4 is just a coincidence.

The usage of RPA for bilayer octagraphene gives λ =
0.324 for U = 5.4 eV, doping x = 10%, which shows little
difference from single-layer octagraphene. We obtain Tc ∼
180 K, which is a bit lower than that in single-layer oc-
tagraphene. We suppose that this may be caused by the
interlayer interaction and cell expansion. Although t⊥ is very
small compared with the intralayer interactions, the well FS
nesting of one layer deviates due to the interlayer interaction
[see Fig. 3(b)]. There are two hole and two electron pockets
with the nesting vectors Q2 = (π, π ), (π + δ, π + δ), and
(π − δ, π − δ). The blurring of perfect FS nesting suppresses
the superconductivity and reduces Tc.

Now we study the tendency of SCs with increasing layer
numbers n. The A-A stacking multilayer octagraphenes show
more 2D-like behavior. As n increases, the two energy bands
ε2 and ε3 split into more branches due to the expansion of the
unit cell. We can still use the same form of Eq. (12), which
can be written as

H̃n =

⎡
⎢⎢⎢⎣

H̃1 t⊥ Ĩ4×4 0

t⊥ Ĩ4×4 H̃1 t⊥ Ĩ4×4

. . .
. . .

. . .

0 t⊥ Ĩ4×4 H̃1

⎤
⎥⎥⎥⎦. (13)

We fit the DFT-calculated data for ε2 and ε3 of the path
from point 
 to point M to Eq. (13). The fitting parameters
and λ of three to six layers are reported in Table I. We find
that the fitting parameters are very close to those of bilayer
octagraphene, whose relative differences are all less than 1%.

With increasing layer number n, we find that the pairing
symmetry remains unchanged as s±, and Tc does not change
much. According to our estimation, we get Tc ∼ 170 K for
three to five layers and Tc ∼ 160 K for six layers when
U = 5.4 eV and doping x = 10%. Thus we suggest that
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superconductivity of octagraphene is related to the 2D char-
acteristics of materials.

V. OCTAGRAPHITE

Similarly to graphite, it is important to study octagraphite
(n = ∞). The DFT-calculated intralayer structure is similar
to that of single-layer octagraphene, with only a slightly en-
hanced lattice size, as the interaction between the neighboring
layers changes the lattice parameters slightly.

Figure 4(a) shows the DFT-calculated band structure of
octagraphite. There are always four bands near the Fermi level
for a given kz, which shows the 2D feature of octagraphene
materials. The highest and lowest boundaries of each band
are labeled kz = 0 and kz = π , respectively. The 3D Fermi
surface is fusiform, where the largest hole pocket is around
the 
 point [see Fig. 4(b)]. It is similar to the multiorbital Fe-
based superconductor family [41] and shows the importance
of interlayer interactions.

We here use the 3D single-orbital TB model [Eq. (1)] to
construct the major band features of octagraphite, which is
given by

H̃∞ = −

⎡
⎢⎢⎣

2t⊥ cos kz t1 t2eiky + t3 t1
t1 2t⊥ cos kz t1 t2eikx + t3

t2eiky + t3 t1 2t⊥ cos kz t1
t1 t2e−ikx + t3 t1 2t⊥ cos kz

⎤
⎥⎥⎦.

(14)

Since ε1 and ε4 are away from the Fermi level, we only use
ε2 and ε3 with kz = 0, π/2, and π in our fittings. By fitting
bands ε2 and ε3 from point 
 to point M, we get t1 = 2.686 ±
0.017 eV, t2 = 2.986 ± 0.013 eV, t3 = 0.574 ± 0.012 eV, and
t⊥ = 0.259 ± 0.005 eV. t⊥ here shows little difference from
octagraphene with layer number n � 4.

We now need to consider the form of the Fermi surface.
See Fig. 1(c) from the TB model, Eq. (1). (c1σ , c2σ , c3σ , c4σ )
in a unit cell can be transformed to (−c1σ , c2σ , −c3σ , c4σ ) with
a gauge transformation T̃ , as

T̃ HTB(t1, t2, t3, t⊥)T̃ −1 = HTB(−t1, t2, t3, t⊥). (15)

Since the gauge transformation T̃ does not change the mo-
mentum coordinates, HTB(t1, t2, t3, t⊥) has exactly the same
energy levels as HTB(−t1, t2, t3, t⊥) at any momentum k.

It is easily seen that when t3 = 0 in Eq. (14), H̃∞(k) and
H̃∞(k + (π, π, π )) satisfy the following equations:

H̃∞(k, t1, t2, t⊥) = −H̃∞(k + (π, π, π ),−t1, t2, t⊥). (16)

Given that the eigenvalues of H̃∞(k) and H̃∞(k + (π, π, π ))
have the same absolute value with a different sign, con-
sider, for simplicity, that all energy levels in a Brillouin
half-zone must have values opposite to those of the other
half. Therefore, the Fermi energy level is located at E f = 0
with half-filling exactly. If eigenvalue Ek = 0 occurs at a
nonspecific k, Ek at the Fermi energy level, it is easily seen
that Ek+(π,π,π ) = 0. We finally prove the perfect FS nesting
vector Q∞ = (π, π, π ) for t3 = 0 in Eq. (14). When t3 > 0,
the actual FS nesting vector deviates from Q∞ = (π, π, π )
on a limited scale.

Figure 4(c) shows the eigensusceptibilities χ (q) for
qz = 0, π/2, π . χ (q) peaks at Q∞ = (π, π, π ), and
the related eigenvector of susceptibilities ε(Q∞) =
(1/2,−1/2, 1/2,−1/2) means that the Néel pattern is
obtained both within the layer and between the layers with
half-filling, shown in Fig. 4(d). The reasonthat χ (q) peaks at
Q∞ = (π, π, π ) lies in the fact that the FS nesting vector is at
Q∞ = (π, π, π ). As shown in Fig. 4(b), due to the interlayer
coupling, the hole pocket centering at the 
 point is no longer
nested with the electron pocket centered at the M (π, π, 0)
point with the same kz, and instead it is best nested with the
electron pocket centered at the (π, π, π ) point. Therefore,
the FS nesting vector is Q∞ = (π, π, π ). Note that such an
interlayer magnetic structure is new for octagraphite and is
absent for single-layer octagraphene. What is more, the FS
nesting in this case is not perfect, which leads to a small
but finite Uc with half-filling [see Fig. 4(e)]. This means that
considerable superconductivity can occur even at half-filling.

Finally, we get λ = 0.319 and Tc ∼ 170 K for octagraphite.
Practically, the U values of real carbon-based materials are
larger than our given value, U = 5.4 eV [45]; this may provide
a chance to get a higher Tc in real materials. However, the
RPA-given Tc level is usually overestimated because of its
weak-coupling perturbation, with its limitation of adopting
a strong U [40]. As shown in Fig. 4(e), the RPA-limited Uc

is above 6.0 eV when the electron doping density x > 10%.
In Fig. 4(f), the dependence of x on λ shows that the RPA
results are reliable when U/Uc is far less than 1. Thus we set
U = 5.4 eV and x = 10% to approach a relatively reasonable
Tc in the field of our RPA limit.

We note that the λ of octagraphite shows a small decrease
from that of single-layer octagraphene. Note that t3 here is
larger than that of single-layer octagraphenes and is negative
to form the well nesting FS. The Fermi nesting deviates due
to the interlayer interaction, leading to a small decrease in
Tc. The calculated s±-wave pairing is stronger than the other
three pairing symmetry channels (p, dxy, dx2−y2 ), so the su-
perconductivity of octagraphite is also similar to multiorbital
Fe-based superconductors. In addition, the λ of octagraphite
converges to a constant value when the layer number n � 3,
which means that Tc changes little with n. This reflects the 2D
nature of octagraphite.

Interestingly in Figs. 2(a), 3(c), and 4(a), except for the
four energy bands described by the TB model, other bands are
almost the same and independent of the layer number n from
the DFT results. They are represented by the local properties
of orbits. Note that these bands are far away from the Fermi
level, so they have little influence on the superconductivity.

VI. CONCLUSIONS

Here we study the electronic structure, magnetism, and
superconductivity of single-layer octagraphene, multilayer
octagraphene, and octagraphite. DFT calculations suggest
that multilayer octagraphene has a simple A-A stacking and
the cohesive energy differences are smaller than those of
graphene. This indicates a good slip property and promising
mechanical applications. A TB model is built to capture the
main features for each layer number n. The hopping param-
eters are obtained with a high accuracy. We find that the
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hopping parameters change little with the layer number n.
The van der Waals interaction induces t⊥ ≈ 0.25 eV, smaller
than for multilayer graphenes. All these findings support that
multilayer octagraphene and octagraphite are more 2D-like.
We find a sandwich structure with multiple energy bands
overlapping frequently in multilayer octagraphene. This band
structure has not been reported before, which may reveal more
interesting topological phenomena.

At the Fermi level, the band structures of octagraphenes
contain hole pockets around the 
 point and electron pockets
around the M point. The two pockets connected by the nest-
ing vector Q1 = (π, π ) form the well Fermi-surface nesting
for single-layer octagraphene. For multilayer octagraphene
the nesting vector is blurred from Q = (π, π ), which makes
Tc lower than that for single-layer octagraphene. For octa-
graphite, Fermi-surface nesting is switched to a 3D form with
nesting vector Q∞ = (π, π, π ), also yielding a high Tc.

By applying the RPA method with half-filling, a 3D
antiferromagnetic Néel magnetism is obtained both within
layers and between layers. Thus spin fluctuation is dom-
inant for the SC pairing with doping. We calculate the
Tc of single-layer octagraphene, multilayer octagraphene,
and octagraphite and find that the interlayer interaction
does not affect the superconducting state much. With in-
creasing n, Tc converges to ∼170 K, which is still high.
The difference between three-layer octagraphene and octa-
graphite is so tiny that we suggest that the high-temperature

superconducting s± pairing mechanism of this material is
mainly a 2D mechanism.

Moreover, we find that in-plane strain or stress does not
change the energy bands obviously near the Fermi surface
for single-layer octagraphene. As an actual single-layer octa-
graphene may exist on a substrate, the lattice difference with
the substrate would lead to some deformations. Therefore,
this stability of Fermi nesting may confer great advantages
for preparation. We note that the synthesis of multilayer
octagraphene is now in progress. Novel synthesis routes of
multilayer octagraphene have been reported recently [27].
One-dimensional carbon nanoribbons with four- and eight-
membered rings have been synthesized experimentally [28].
This holds great hope for realization of this promising high-Tc

material in the future.
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