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Analysis of the ghost and mirror fields in the Nernst signal induced by superconducting fluctuations
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We present a complete analysis of the Nernst signal due to superconducting fluctuations in a large variety
of superconductors from conventional to unconventional ones. A closed analytical expression of the fluctuation
contribution to the Nernst signal is obtained in a large range of temperature and magnetic field. We apply this
expression directly to experimental measurements of the Nernst signal in NbxSi1−x thin films and URu2Si2

superconductors. Both magnetic field and temperature dependence of the available data are fitted with very good
accuracy using only two fitting parameters, the superconducting temperature Tc0 and the upper critical field
Hc2(0). The obtained values agree very well with experimentally obtained values. We also extract the ghost lines
(the maximum of the Nernst signal for constant temperature or magnetic field) from the complete expression
and also compare it to several experimentally obtained curves. Our approach predicts a linear temperature
dependence for the ghost critical field well above Tc0. Within the errors of the experimental data, this linearity is
indeed observed in many superconductors far from Tc0.
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I. INTRODUCTION

In a superconductor above its critical temperature Tc0,
global superconducting coherence vanishes, leaving behind
droplets of short-lived Cooper pairs. Superconducting fluc-
tuations, discovered in the late 1960s, have constituted an
important research area in superconductivity as they mani-
fest in a variety of phenomena. Today, their investigation has
emerged as a powerful tool for quantifying material parame-
ters of new superconductors. In this regard, the observation
of a giant Nernst signal (three orders of magnitude larger
than the value of the corresponding coefficient in typical met-
als) over a wide range of temperatures and magnetic fields
attracted great attention from the superconductivity commu-
nity and caused lively theoretical discussions [1–6]. Important
milestones were its discovery in underdoped phases of high-
temperature superconductors [7], later in the normal phase of
conventional superconductors [8,9], and in normal phases of
the overdoped, optimally doped, and underdoped supercon-
ductors La1.8−xEu0.2SrxCuO4 and Pr2−xCe2CuO4 [10] and,
finally, the observation of the colossal thermomagnetic re-
sponse in the exotic heavy-fermion superconductor URu2Si2

[11]. Today, it is commonly agreed that this effect is related to
superconducting fluctuations, and its profound relationship to
the fluctuation magnetization is well established [10,12,13].

One of the characteristic features of the fluctuation-induced
Nernst signal is its nonmonotonous dependence on applied
magnetic fields. The latter follows from very generic heuris-
tic arguments: the fluctuation-induced Nernst signal is the
response to an applied crossed magnetic field and tempera-
ture gradient, N(fl) = β (fl)

xy R�, where β (fl)
xy is the off-diagonal

component of the fluctuation-induced contribution to the ther-

moelectric tensor [14] and R� is the film sheet resistance.
Hence, it is zero at H = 0 (where the thermoelectric tensor
is diagonal), and it should vanish in very strong fields, which
suppress fluctuations [14]. Indeed, a maximum of the Nernst
signal as a function of the magnetic field has been widely
observed [8–11]. The study of the temperature dependence of
the field at which the Nernst signal is maximum, the ghost
(critical) field H∗(T ), acquired special significance for HTS
compounds since the authors of Refs. [10,11] proposed to
use it for the precise determination of the second critical field
Hc2(0), often inaccessible for direct measurements because of
its huge value.

Here we carefully analyze the behavior of the maximum in
the Nernst signal both in the two NbxSi1−x samples we mea-
sured and in available data on superconductors of different
classes. For this purpose, we developed numerical fluctuation
spectroscopy [13] for the fluctuation Nernst signal based on
the complete expression for the Nernst signal, which includes
all fluctuation corrections [2]. This allows us to not only
extract real material parameters like the BCS critical temper-
ature Tc0 and the critical magnetic field Hc2(0) but also to find
the precise position of the maximum of the Nernst signal, i.e.,
determine the ghost critical field. We emphasize that these
are not fits to asymptotic expressions for the Nernst signal,
which can lead to wrong conclusions about the ghost field
since these maxima are typically not located in any asymptotic
region of the phase diagram. Using our approach, we obtain
the temperature dependence of the ghost field, which allows us
to determine the scaling function in its dependence postulated
in Ref. [15] and finally resolve this long-standing problem. We
also illustrate why fitting the maxima extracted directly from
experimental data cannot answer that question.
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II. THE ISSUE OF THE GHOST FIELD
TEMPERATURE DEPENDENCE

The analysis of the experimental data obtained from the
HTS compound Pr2−xCe2CuO4 led the authors of Ref. [10] to
the hypothesis that the temperature dependence of the “ghost
critical field” is described by the expression

H∗
exp(T ) = Hc2(0) ln

T

Tc0
. (1)

The prefactor in front of the logarithm with Hc2(0) was de-
termined by the observation that Hc2(0) is the only empirical
parameter that characterizes the strength of superconductiv-
ity. The authors stated that “the characteristic field scale
encoded in superconducting fluctuations above Tc” is equal
to the field needed to kill superconductivity at T = 0 K, and
we share this motivation. The argument justifying the log-
arithmic dependence of H∗ on temperature was based on
the statement that the maximum of the Nernst signal should
correspond to the field where the magnetic length of a fluc-
tuation Cooper pair LH becomes equal to its “size.” We agree
with the latter: in terms of the qualitative picture of super-
conducting fluctuations, one can see how, moving along the
Hc2(T ) line, the Ginzburg-Landau long-wavelength scenario
gradually transforms into the precursor of an Abrikosov vor-
tex lattice: a set of clusters of rotating fluctuation Cooper
pairs (FCPs) in magnetic field, which are relatively small (of
size ∼ξBCS) [13,16]. Yet in order to practically apply this
correct ideological idea, the authors of Refs. [8–11,17] ex-
trapolated the Ginzburg-Landau (GL) expression for the FCP

coherence length ξFCP(T ) = ξGL(T ) ∼ ξBCS/
√

ln T
Tc0

, ob-

tained with the assumption of closeness to the critical
temperature [14], to the region of high temperatures, T � Tc0.
Indeed, this procedure leads to Eq. (1).

However, at this point we need to stress that there is no
theoretical justification for such an extrapolation procedure.
Moreover, it leads to the obviously incorrect conclusion that
at high temperatures, the size of FCPs becomes much less
than ξBCS. The correlation length ξFCP(T ), identified with the
fluctuation Cooper pair size, should be determined either from
the pole of the two-particle Green’s function, or, equivalently,
from the pole of the fluctuation propagator [14]. For arbitrary

temperatures and magnetic fields in an impure superconduc-
tor, the general form of the latter is

L(R)−1
n

( − iω, q2
z

) = −ρe

[
ln

T

Tc0

+ψ

(
1

2
+ −iω + �H (n + 1

2 ) + Dq2
z

4πT

)
− ψ

(
1

2

)]
. (2)

Close to the critical temperature, where ln T
Tc0

≈ T −Tc0
Tc0

= ε �
1, and in zero magnetic field, it takes the standard form of the
diffusive mode, after expansion of the ψ function:

L(0, q2) = − 1

ρe

(
ε + πDq2

8T

)−1

. (3)

Analyzing the pole of this expression, L−1(0, q2
0 ) = 0, one

indeed obtains ξFCP(T → Tc0) ∼ q−1
0 ∼ ξGL(ε) ∼ ξBCS/

√
ε.

Yet far from the critical temperature, with the assumption that
ln T

Tc0
� 1, the ψ function in Eq. (3) with a large argument

should be replaced by its asymptotic logarithmic expression,
and one obtains

L(0, q2) = − 1

ρe
ln−1

(
Dq2

4πTc0

)
. (4)

The pole of this expression is given by q−1
0 ∼

√
4πTc0

D , result-

ing in ξFCP(T � Tc0) ∼ q−1
0 ∼ ξBCS. Hence, the qualitative

argumentation justifying Eq. (1) is unfounded.
In Ref. [15] the authors looked for an analytical expression

for the ghost field by proposing a scaling argument based
on the general expression for the fluctuation-induced Nernst
signal (see Refs. [2,13,18]), valid over a wide range of tem-
peratures and magnetic fields. It was noticed that the magnetic
field, H , occurs only in combination with the temperature as
H/T in this expression, while T also appears as parameter
ln (T/Tc0). This observation allowed them to obtain the fol-
lowing expression for the ghost field, which is very different
from Eq. (1):

H∗
KV(T ) = Hc2(0)

(
T

Tc0

)
ϕ

(
ln

T

Tc0

)
, (5)

where ϕ(x) is some smooth function which satisfies the con-
dition ϕ(0) = 0. It is easy to see that Eq. (5) coincides with
Eq. (1) only in the very particular case of ϕ(x) = x exp(−x).

TABLE I. Asymptotic expressions (obtained in Ref. [2]) for fluctuation corrections to the Nernst signal in different domains of the phase
diagram (see Fig. 3). Here N0 ≡ π h̄

kBR�
, h̃ = h−hc2 (t )

hc2 (t ) � 1, and hc2(0) = Hc2 (0)
H̃c2 (0)

= π2

8γE
= 0.69 (see text).

Domain t and h range Description πN(fl)/N0

I h = 0, ε � 1 zero field, near Tc0
2eHξ2

GL (T )
3c = h

3ε

II ε � h � 1 near Tc0, above the mirror reflected Hc2 line 1 − (ln 2)/2
III h − Hc2(t ) � 1, ε � 1 near the Hc2 line 1

ε+h

IV t � h̃ region of quantum fluctuations − 2γE
9

t
h̃

V t2/ ln(1/t ) � h̃ � t � 1 quantum to classical ln t
h̃

VI h̃ � t2/ ln(1/t ) � 1 classical, near Hc2 (t � 1)
8γ 2

E
3

t2

h̃(t )

VII t2/ ln(1/t ) � h̃(t ) � 1 classical, intermediate fields 1
h̃(t )

[1 + 2Hc2 (t )
π2t

ψ ′′ ( 1
2 + 2Hc2 (t )

π2t
)

ψ ′ ( 1
2 + 2Hc2 (t )

π2t
)
]

VIII ln t � 1, h � t high temperatures 2
3π2

h
t ln t

IX h � max{1, t} high magnetic fields π2

48
t

h ln h
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FIG. 1. The magnetic field and temperature dependence of the fluctuation part of the Nernst coefficient. Top left: A view of the t = 0 plane
with the ghost temperature line in blue indicating the maximum of the Nernst coefficient for constant h. Top right: A view of the h = 0 plane
with the ghost field line in green, indicating the maximum of the Nernst signal for constant fields. Bottom: Zoom of the quantum fluctuations
(QF) region at t = 0 close to h = hc2. The red line indicates the contour, where the Nernst signal is zero. In a very small area of the QF region,
the Nernst coefficient becomes negative for t � 0.02 and h̃ � 0.15 (see text).

Due to the extremely cumbersome nature of the general
expression for the fluctuation-induced Nernst signal, none
of the authors of Refs. [2,3,15] succeeded in obtaining an
analytical expression for the temperature dependence of the
ghost field valid far from the critical temperature. Yet simple
equating of the asymptotic expressions valid at low fields and
high temperatures, ln t � 1, h � 1 (see Table I, domain VIII),

N(fl)(T, H ) ∼
(

ξ 2
BCS

L2
Hc2

)(
H

Hc2(0)

)(
Tc0

T

)
ln−1 T

Tc0
(6)

(here L2
Hc2

= c
2eHc2(0) ∼ ξ 2

BCS), and that valid for high fields,
h � max{1, t} (see Table I, domain IX),

N(fl)(T, H ) ∼
(

L2
Hc2

ξ 2
BCS

)(
T

Tc0

)(
Hc2(0)

H

)
ln−1 H

Hc2(0)
, (7)

leads to the conclusion that at sufficiently high temperatures
(T � Tc0) the ghost critical field should grow as a function of

temperature almost linearly (with logarithmic accuracy):

H∗(T ) ∼ Hc2(0)

(
T

Tc0

)
. (8)

In Ref. [13], a general computational approach to the de-
scription of fluctuation phenomena in superconductors valid
in the whole phase diagram, numerical fluctuoscopy, was
presented. In the following we will apply this method for the
determination of the true temperature dependence of the ghost
field in the Nernst signal and its comparison with experimental
data.

III. CONSISTENT DERIVATION OF THE GHOST FIELD

A. Theoretical foundation: Fluctuation-induced Nernst signal

The general expression for the fluctuation contribution to
the Nernst signal of two-dimensional superconductors, valid
beyond the line Hc2(t ), can be presented in a form suitable for
the numerical analysis as [2,13,18]

N(fl) = N0

8π

[
Mt∑

m=0

(m+1)
∞∑

k=−∞

{(
η(2m+3)+|k|

Em
+ η(2m+1)+|k|

Em+1

)
(E ′

m−E ′
m+1)+2η[η(2m+1)+|k|]E

′′
m

Em
+2η[η(2m+3)+|k|]E

′′
m+1

Em+1

}

+4π2
Mt∑

m=0

(m + 1)
∫ ∞

−∞

dx

sinh2 πx

{
η Im Em Im (Em + Em+1)+[

η(m + 1/2) Im Em + x
2 Re Em

]
Im (Em+1 + 2ηE ′

m−Em)

|Em|2
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+η Im Em+1 Im (Em + Em+1) + [
η(m + 3/2) Im Em+1 + x

2 Re Em+1
]

Im (Em+1 + 2ηE ′
m+1−Em)

|Em+1|2 +2x Im ln
Em

Em+1
(9)

−2
Im (Em+Em+1)(Im Em Im Em+1+Re Em Re Em+1)

|Em+1|2|Em|2
[
η

(
m+ 3

2

)
Im Em+1−η

(
m + 1

2

)
Im Em+ x

2
Re (Em+1−Em)

]}]
,

with N0 = ekBR�
h̄ . Here the function

Em ≡ Em(t, h, |k|)= ln t + ψ

[ |k| + 1

2
+η

(
m+ 1

2

)]
− ψ

(
1

2

)
(10)

is the denominator of the above-mentioned fluctuation propa-
gator. Its derivatives with respect to the argument x are related
to polygamma functions:

E (n)
m (t, h, x) ≡ ∂n

∂xn
Em(t, h, x)

= 2−nψ (n)

[
1 + x

2
+ η

(
m + 1

2

)]
. (11)

We use here the convenient combination η = 4h
π2t of the dimen-

sionless temperature t = T
Tc0

and magnetic field h = H
H̃c2(0)

.
The latter is normalized by the value of the second critical
field obtained by linear extrapolation of its temperature de-
pendence near Tc0: H̃c2(0) = �0/(2πξ 2), where �0 = πc/e
is the magnetic flux quantum. The value of the magnetic field
H̃c2(0) is 8γE/π2 times larger than Abrikosov’s value for the
second critical field Hc2(0):

h = H

H̃c2(0)
= π2

8γE

H

Hc2(0)
= 0.69

H

Hc2(0)
. (12)

In analogy to ε, which measures the closeness to Tc0 in
zero field, we introduce h̃(t ) = h−hc2(t )

hc2(t ) , where h̃(0) measures
the closeness to the true critical field at zero temperature.
Despite the apparent divergence of Eq. (9) [we introduced
the natural upper limit of the summation over Landau levels
Mt ∼ (Tc0τ )−1, with τ being the electron elastic scattering
time], it, in fact, converges due to intricate cancellations in two
divergent orders of the transport (Kubo) and magnetization
current fluctuation contributions (see Refs. [2,15,19]). This
can be verified by expanding all functions E (n)

m (t, h, x) and
their derivatives in Eq. (10) over Landau level differences in
the limit of large numbers. Hence, the result of the summa-
tions does not depends on the cutoff parameter. This fact is
also confirmed by the direct numerical evaluation.

B. Numerical analysis of the fluctuation-induced Nernst signal

The fluctuation contribution to the Nernst signal in the
whole phase diagram beyond the Hc2(t ) line is presented in
Fig. 1 as a surface plot in accordance to Eq. (9). Figure 2
shows selected isomagnetic and isothermal cuts of this sur-
face plot. The asymptotic expressions for the Nernst signal
in different domains of the phase diagram are summarized
in Table I, and the corresponding domains are indicated
in Fig. 3.

Close to the critical temperature Tc0 (domains I–III), where
fluctuations have Ginzburg-Landau thermal character, the
Nernst signal is positive and grows in magnitude approach-
ing the transition line [h − Hc2(t ) � 1]. The “mirror field,”
h(m)(t ) = t − 1, separates the linear and nonlinear regimes in
the magnetic field dependence of the Nernst signal [20].

The isothermal Nernst signal graphs in Fig. 2(a) show the
well-known nonmonotonous behavior of the Nernst signal for
temperatures above Tc0. The dashed line connects the maxima
for various fixed values of temperature, indicating the “ghost
field temperature dependence,” which at sufficiently high tem-

FIG. 2. Fluctuation-induced Nernst signal (a) as a function of
magnetic field at constant temperatures (above Tc0, i.e., t > 1), where
the reduced temperatures are indicated in the legend and the curve of
maxima (dashed) is a function of temperature, and (b) as function of
temperature at constant fields [above hc2(0)], indicated in the legend,
with the dashed maxima curve shown as a function of field.
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FIG. 3. Phase diagram (left panel) with the lines of the BCS second critical field hc2(t ), the ghost field h∗(t ), the ghost temperature t∗(h),
the mirror field h(m)(t ), and the crossover line from quantum to thermal fluctuations t (qt)(h). The regions of qualitatively different asymptotic
behavior are indicated by roman numerals, which are explained in Table I. The region of quantum fluctuations is marked by “QF”; in this
region the Nernst coefficient becomes negative. The shaded region is enlarged in the right panel, which shows both ghost lines with a density
plot of the Nernst signal. In addition the (t, h) gradient of N( f l ) is indicated by a vector field. The ghost lines follow the vertical and horizontal
gradients.

peratures is well described by the expression

h∗(t ) ≈ 1.12(t − 0.84), (13)

as shown in Fig. 3. One can see that its linear depen-
dence on temperature corresponds to our qualitative picture
above and is quite different from the logarithmic law used in
Refs. [10,11].

Of special interest is the study of the low-temperature
regime of fluctuations, close to the upper critical field Hc2(0)
(domains IV–VI). Here a crossover line, t (qt)(h) = h̃, exists,
which separates the purely quantum regime at vanishing tem-
peratures (domain IV) and the region of low temperatures, but
where fluctuations already acquire thermal character (domain
VI). It is interesting that in the quantum regime the fluctuation
contribution to the Nernst signal is negative in a very small
t-h area, where it depends linearly on temperature and di-
verges as h̃−1 when approaching the transition point (see the
inset in Fig. 1). This change in the sign in the fluctuation
thermoelectric response is similar to the negative fluctua-
tion conductivity close to the quantum phase transition in
the vicinity of Hc2(0), found in Ref. [21]. These negative
values comes from the diffusion coefficient renormalization
contribution, which exceeds the positive, but fading away,
Aslamasov-Larkin (AL) term in this region. In the quantum-
to-classical crossover region (domain V), the Nernst signal
becomes positive and less singular (∼ ln t

h̃
). Increasing the

temperature, one goes over into the region of thermal fluc-
tuations (domain VI) and sees that the Nernst signal continues
to grow as ∼t2/h̃.

In the isomagnetic Nernst signal plots above the second
critical field, shown in Fig. 2(b), one sees, like in the situation
above Tc0, that the Nernst signal temperature dependence at
a fixed field is nonmonotonous and has a maximum. The line
connecting these maxima can be called the “ghost temperature

line,” and it is well described by the linear dependence

t∗(h) ≈ 0.65(h − 0.13) (14)

for h > 1 (see Fig. 3, the 1.54t + 0.13 fit).
In the following we will use these insights and complete

expression, Eq. (9), for the Nernst signal to fit experimental
data, allowing us to perform a characterization of the super-
conducting material. In particular, we can extract the values
of Tc0 and Hc2(0) without using any “artificial” convenience
criteria (like the half width of the transition region, 90% of
the resistance decay, the temperature where the derivative of
the resistance is maximal or has an inflection point, etc.). In a
“simplified” version one can just use the ghost field and ghost
temperature lines [Eqs. (13) and (14)] for fitting instead of the
nontrivial fluctuoscopy, the full fitting procedure of the Nernst
signal.

IV. NbxSi1−x EXPERIMENTS

In order to verify our theoretical studies, measurements
on two stoichiometrically identical samples of NbxSi1−x were
performed, labeled samples 1 and 2 in the following. The Nb
concentration x was fixed at x = 0.15. These amorphous film
samples were prepared under ultrahigh vacuum by electron-
beam coevaporation of Nb and Si with precise control over
concentrations and deposited on sapphire substrates. Such
films typically undergo a metal-insulator transition when x
decreases.

The two samples have different thicknesses, which mostly
controls their critical parameters since the nominal concen-
tration is the same: Sample 1 (2) was 12.5 (35) nm thick, its
experimental midpoint T (exp)

c0 was 0.165 (0.380) K (resistively
measured in zero field), and its upper critical field H (exp)

c2 (0)
was 0.36 (0.91) T. The zero-temperature coherence lengths
for the samples are 19.7 and 13 nm, respectively.
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FIG. 4. Fit of the Nernst signal for Nb0.15Si0.85 (sample 1)
to Eq. (9). The found fitting parameters are Tc0 = 0.165 K,
Hc2(0) = 0.36 T.

The Nernst coefficient is obtained by measuring the ther-
moelectric and electric coefficients of both samples in a
dilution fridge using a resistive heater, two RuO2 thermome-
ters, and two lateral contacts. Partial data were published in
Refs. [8,9]. At T ∼ 0.19 K, the dc voltage resolution for our
setup was 1 nV, and temperature resolution was 0.1 mK. The
results are discussed below.

V. NERNST SIGNAL FLUCTUOSCOPY OF Nb0.15Si0.85

AND OTHER MATERIALS

As already noted, in previous studies the dependence of
the fluctuation contribution to the Nernst signal on mag-
netic field and temperature above the critical one was fitted
[12] by asymptotic expressions and interpolations between
them [1–4] with limited accuracy, which also does not allow
for a consistent extraction of the ghost lines. Here we use
the general expression (9) for detailed numerical analysis
and high-precision fitting of experimental data in the whole
t-h plane without the interpolation procedure.

In Figs. 4 and 5 one can see how accurately Eq. (9)
fits the experimental data of two Nb0.85Si0.15 samples using
only two fitting parameters: Tc0 and Hc2(0). The values of
the fitting parameters for sample 1 are T (theo)

c0 = 0.165 K and
H (theo)

c2 (0) = 0.36 T.
Similarly, the fits of the measurements obtained for

sample 2 give values of the critical temperature and
second critical field close to their experimentally estimated
meanings: T (theo)

c0 = 0.36 K and H (theo)
c2 (0) = 0.7 T.

The observation that the theoretical value of the critical
temperature is lower than the experimentally obtained value is
in agreement with previous findings that Tc0 is typically over-
estimated when using traditional empirical methods, which
are (visually) convenient but only approximate (see Ref. [22]
for a detailed comparison in the case of fluctuation conductiv-
ity measurements).

The dependence of the position of the maximum in the
Nernst signal N(fl)(h) versus temperature for Nb0.85Si0.15 is
shown in Fig. 6, which demonstrates both the numerically
obtained theoretical curve and the values extracted from the

FIG. 5. Fit of the Nernst signal for Nb0.15Si0.85 (sample 2) to
Eq. (9), shown in half-logarithmic representation. The found fitting
parameters are Tc0 = 0.36 K, Hc2(0) = 0.7 T, which are close to the
experimentally estimated values.

experimental data. One can see that the behavior of h∗(t )
obtained from the numerical study of the extremum of Eq. (9)
is strongly nonlinear close to Tc0 but becomes linear as func-
tion of temperature quickly and can be described by Eq. (13).
However, we note that the error bars of the experimentally
obtained ghost field become quite large due to the broadness
of the maxima, such that the theoretical curve lies well within
the error. Similar results are obtained for sample 2.

Besides the two NbxSi1−x samples, we also analyzed
several other available Nernst signal measurements using
Nernst fluctuoscopy. In Fig. 7, the temperature dependence
of the normalized ghost field [scaled by Hc2(0)] from two
different experiments (squares and crosses) is compared
to the numerically obtained ghost field line from Eq. (9)
(solid green line) and to the empirical ∼ ln(t ) (thin or-

FIG. 6. Numerically evaluated ghost field curve h∗(t ) from
Eq. (9) (solid green line) and the mirror field (dashed green line).
Extracted ghost field from experimental data scaled by fitting param-
eters with error bars for both samples and the extracted mirror field
for sample 2, when the Nernst coefficient starts to deviate from linear
behavior. As one can see, the error bars for the ghost field become
larger for larger temperatures since the maxima become very broad.
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FIG. 7. Fit of the ghost field data for Eu-LSCO and PCCO to the
numerically evaluated curve h∗(t ) from Eq. (9) and comparison to a
logarithmic dependence.

ange line). The experimental data on Eu-doped LSCO,
La1.8−xEu0.2SrxCuO4 (Eu-LSCO), (blue crosses) are taken
from Ref. [17] [Fig. 3(b)], and the data on Pr2−xCe2CuO4

(PCCO) at doping level x = 0.17 (overdoped sample, red
squares) are from Ref. [10] (their Fig. 10). One sees that the
experimental findings fit the theoretical curve very well and,
in particular, follow the linear behavior given by Eq. (13).

Finally, we also applied the numerical Nernst fitting pro-
cedure to the heavy-fermion superconductor URu2Si2 [11],
where we used the measured Nernst signal data at different
temperatures (Fig. 4 in Ref. [11]) and fitted N(fl)(h) with fit-
ting parameters Tc0 = 1.14 K, which is slightly lower than the
empirically determined value of 1.45 K, and Hc2(0) = 1.11 T,
which is close to the values found in previous experimental
works [23–25]. The result is shown in Fig. 8 [26]. Based
on these Nernst signal fittings, we extracted the positions of
maxima (the values of ghost fields) and compare them to the
experimentally extracted values in the inset of Fig. 8 [27].

VI. DISCUSSION

We presented a complete analysis of the magnetic field
and temperature dependence of the fluctuation-induced Nernst
signal in a large variety of superconductors ranging from con-
ventional to unconventional ones as long as they are described
by the BCS model. That also includes overdoped cuprate
superconductors, whose properties can be mostly described
by the Gaussian approximation in the fluctuation region.

We developed a numerical fluctuation spectroscopy ap-
proach based on the complete expression of the fluctuation
contribution to the Nernst signal in the whole range of
temperatures and magnetic fields and applied it to experi-

mental Nernst signal measurements. Both magnetic field and
temperature dependence of the Nernst signal data are fitted

FIG. 8. Fit of the normalized Nernst signal vs magnetic field
measurements on the heavy-fermion superconductor URu2Si2 [11]
to Eq. (9) for different temperatures. The fitting parameters are Tc0 =
1.14 K and Hc2(0) = 1.11 T. Inset: the ghost field measurements
(blue circles) compared to the universal curve following Eq. (9)
(green) and the logarithmic [Eq. (1)] fitting (red). In addition we
added a linear fit to the experimental data (dashed blue line).

with very good accuracy using only two fitting parameters:
the superconducting temperature Tc0 and the upper critical
field Hc2(0).

Our approach predicts a linear temperature dependence for
the ghost critical field well above Tc0, contrary to previous
heuristic arguments resulting in a logarithmic dependence on
temperature [10]. Within the errors of the experimental data,
this linearity is, indeed, observed in many superconductors far
from Tc0. From a technical point of view we note that the
maxima of the Nernst signal become very shallow at large
temperatures, which makes their extraction from experimental
data very difficult. Therefore, the seemingly simple approach
to the determination of the critical temperature Tc0 and critical
field Hc2(0) from the fitting of the ghost field should be done
with care, giving high-temperature points lower weight.
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