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Topological transitions in electronic spectra: Crossover between Abrikosov and Josephson vortices
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The electronic structure of a vortex line trapped by a planar defect in a type-II superconductor is analyzed
within the quasiclassical approach of the Bogoliubov–de Gennes theory. The normal reflection of electrons
and holes at the defect plane results in the topological transition in the spectrum and formation of a type of
quasiparticle state skipping or gliding along the defect. This topological transition appears to be a hallmark of
the initial stage of the crossover from the Abrikosov to the Josephson vortex type revealed in the specific behavior
of the quantized quasiparticle levels and density of states. The increase in the resulting hard and soft gaps affects
the vortex mobility along the defect plane and the splitting of the zero-bias anomaly in the tunneling spectral
characteristics.
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I. INTRODUCTION

The most general definition of different vortex-type so-
lutions for the order parameter in superconducting and
superfluid systems is based on the calculation of the so-called
circulation of the gradient of the order parameter phase around
the line of singularity. Provided this circulation equals 2π , we
get a singly quantized vortex. The particular structure of the
order parameter and magnetic field distributions strongly de-
pends then on the specific system. In a homogeneous isotropic
superconductor the vortex solution possessing a cylindrical
symmetry is well known as an Abrikosov vortex [1], while
the presence of any anisotropy or inhomogeneity can strongly
deform this vortex line in the plane x-y perpendicular to its
axis (see Fig. 1). An extreme example of such an anisotropic
solution which does not even possess the normal core can be
realized for a vortex pinned at the Josephson junction [2].
Such quasi-one-dimensional vortices are also called Joseph-
son vortices [see Fig. 1(a)] and are known to play an important
role in magnetic and transport properties of layered and
nanostructured systems. Provided the junction critical current
density jc is much smaller than the depairing current density

jd = c�0/12
√

3π2λ2ξ, (1)

the Josephson penetration depth

λJ =
√

c�0/16π2 jcλ (2)

appears to be much larger than the London penetration depth
λ. Here �0 = π h̄c/e is the magnetic flux quantum and ξ is
the superconducting coherence length. Clearly, changing the
electron transparency of the junction, one can get a variety
of intermediate vortex states corresponding to a crossover
from the Josephson to the Abrikosov vortex [3–5]. This sit-
uation with the intermediate transparencies naturally appears
in many superconducting systems studied in experiments,

e.g., in superconductors with twinning planes [6], low-angle
grain boundaries [7,8], or other types of defects [9–11]. An
appropriate theoretical treatment needed, for instance, for
the interpretation of the experimental data on the magnetic
field distribution can be well developed on the basis of the
Ginzburg-Landau theory. Indeed, using a general expression
[12] for the critical current Ic across the junction with a cross-
section area S,

Ic = jcS = π�0/2eRN , (3)

and the relation between the contact resistance and the angle-
averaged transmission probability of the barrier T ,

R−1
N = k2

F S(2e2/h̄)T , (4)

we derive the simple relation

λ2
J = λξ/12π2T . (5)

It is natural that the Josephson length λJ grows if the
transmission probability of the barrier T decreases. To sat-
isfy the relation λJ � λ, the barrier transparency should be
small enough: T � Tλ = 1/12π2κ � 1, where κ = λ/ξ is
the Ginzburg-Landau parameter. As the probability of electron
transmission through the barrier grows above Tλ the changes
in the structure of the order parameter are controlled by the
relation between the Josephson length λJ , the London pene-
tration depth λ, and the coherence length ξ . Keeping in mind
type-II superconductors, we should take ξ � λ. When the
current density j(r) in the vortex core (r � ξ ) becomes of
order of the depairing one jd , the length l of the core along the
defect can be estimated from the continuity of currents flow-
ing parallel and perpendicular to the defect within the core
[3]: l jc ∼ jdξ , whence l ∼ jdξ/ jc ∼ λ2

J/λ. The case T � Tλ

(ξ < l � λ ∼ λJ ) corresponds to the limit of strong Josephson
coupling with jc � jd/κ , and we can no longer consider the
solution in the form of a core-free Josephson vortex having
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FIG. 1. Vortex pinned by a planar defect positioned in the y = 0
plane for several values of the barrier transparency T : (a) the Joseph-
son vortex for weak coupling (l � λJ � λ) for T � Tλ, (b) the
Abrikosov-like vortex for strong coupling (l ∼ λJ ∼ λ) for T ∼ Tλ,
and (c) the Abrikosov vortex (l ∼ ξ ) for T ∼ Tξ . The region of
the vortex core is shown in gray. The current streamline around the
vortex in the x-y plane perpendicular to its axis in the z direction is
shown by a solid red line.

the size of the order λJ . Instead, we get the crossover to the
Abrikosov-like vortex having a strongly deformed anisotropic
core (l × ξ ), where the superconducting order parameter is
suppressed [see Fig. 1(b)]. The distributions of the magnetic
field and circular screening currents outside the core (r �
l, ξ ) approach now the ones for the Abrikosov vortex in a
uniform superconductor. In the case of the extremely strong
Josephson coupling T � Tξ = 1/12π2 (l � ξ ) the anisotropy
of the vortex core becomes negligible, and at this initial stage
of the crossover [see Fig. 1(c)] the order parameter profile in
the Abrikosov vortex core is almost insensitive to the defect.

Despite the general correctness of the above qualitative
picture, there exist several important physical issues which
definitely cannot be described within the phenomenological
model and demand a more careful microscopic considera-
tion. This statement surely relates to the scanning tunneling
microscopy (STM) and spectroscopy data which provide de-
tailed spatially resolved excitation spectra [13–17] and also to
the problem of the vortex dynamics and dissipation [18–23].
In the latter case the crossover from the Abrikosov to the
Josephson vortex is particularly important since it is accom-
panied by the disappearance of the normal vortex core which
provides the dominating contribution to the dissipation and
resulting vortex viscosity [7]. It is the goal of the present work
to develop a theoretical description of the changes in the elec-
tronic structure of the pinned vortex core which occur during

the crossover between the Abrikosov and Josephson vortices
and unveil a nontrivial topological nature of this vortex core
transformation.

Considering the microscopic theory, one should take into
account the behavior of the subgap fermionic states bound
to the Abrikosov vortex core which are known to determine
both the structure and dynamics of vortex lines in the low-
temperature limit (see Ref. [18] for details). These subgap
states are known to form the so-called anomalous spectral
branch crossing the Fermi level. For well-separated vortices
the behavior of the anomalous branches can be described
by the Caroli–de Gennes–Matricon (CdGM) theory [24]: For
each individual vortex the energy εCdGM(μ) of subgap states
varies from −�0 to +�0 as one changes the angular mo-
mentum μ defined with respect to the vortex axis. Here �0

is the superconducting gap value far from the vortex axis. At
small energies |ε| � �0 the spectrum is a linear function of
μ: εCdGM(μ) � −μh̄ω0, where h̄ω0 ≈ �0/kF ξ = �2

0/2EF �
�0 is the interlevel spacing, ξ = h̄VF /�0, and pF = h̄kF , VF ,
and EF are Fermi momentum, velocity, and energy, respec-
tively. We use here the quasiclassical approach, which is valid
if the characteristic size ξ of the vortex core is much larger
than the Fermi wavelength of quasiparticles λF = 2π/kF . As
a result, the quasiparticles propagate along almost straight
classical trajectories which are characterized by the direc-
tion of the quasiparticle momentum pF = h̄k⊥(cos θpex +
sin θpey) + h̄kzez and the impact parameter b = −μ/k⊥. The
subgap bound states of quasiparticles form at these straight
trajectories due to the Andreev reflection [25] from the gap
profile inside the vortex core. Neglecting the quantization of
the angular momentum μ, one can get the anomalous spectral
branch crossing the Fermi level at μ = 0 for all orientations
of the momentum pF . Thus, in the μ-pF space we obtain a
Fermi surface for excitations localized within the vortex core
(see Ref. [26] for review). For fixed values of the energy ε and
the momentum projection at the vortex axis h̄kz we can define
a quasiclassical orbit in the plane μ-θp: μ(θp) = −ε/h̄ω0.
Each point in this orbit corresponds to a straight trajectory
passing through the vortex core, which is determined by the
impact parameter b and the angle θp (Fig. 2). For an isotropic
vortex core a θp dependence of the energy ε is lacking, and
isoenergetic lines form open orbits shown by dotted lines
in Fig. 3(a). The two-dimensional (2D) quantum mechanical
nature of the quasiclassical solution can be restored if one
takes into account the precession of the quasiparticle trajec-
tories which is triggered by the small deviations from the
exact backscattering in the Andreev reflection processes and
described by the Hamilton equation h̄∂θp/∂t = ∂ε/∂μ. For
a free Abrikosov vortex the straight trajectories precess (or
just rotate) around the vortex center by the angle 2π (see
Ref. [18]).

Any additional normal scattering process should modify
the behavior of the anomalous spectral branch. Such modi-
fication can be noticeable even for impurity atoms introduced
in a vortex core [21] and becomes much more pronounced
provided we consider a vortex pinned by a normal metal
[27,28] or an insulating [29–32] columnar defect of the size
R � ξ , far exceeding the Fermi wavelength. In the last case
the scattering at the defect is responsible for the opening of the
minigap ε0 ∼ �0R/ξ in the spectrum of localized states and
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FIG. 2. Specular reflection of quasiclassical trajectories s1 and s2

with opposite values of the angular momentum μ = ±k⊥|b| at the
defect in the plane y = 0. The region of the vortex core is shown in
gray. The red arrow shows the direction of the supercurrent in the
vortex.

resulting suppression of the dissipation at low temperatures
T � ε0 [18,33]. For a vortex approaching a flat or curved
sample boundary, an appropriate spectrum transformation was
studied in Refs. [34–37]. Change in the anomalous spectral
branch is accompanied by the changes in the topology of
quasiclassical orbits in the μ-θp plane. Such topological tran-
sitions in quasiparticle spectra of vortex systems are similar
to the well-known Lifshitz transitions which occur in the

(a)

(b) (c)

FIG. 3. (a) Quasiparticle orbits (8) in the μ-θp plane correspond-
ing to different energy levels n shown schematically by red solid
(closed orbits) and blue dashed (open orbits) lines. For reference,
dotted lines show the orbits for a single Abrikosov vortex in the
absence of a barrier. Arrows show the direction of the quasiparticle
trajectory precession along the orbit. Also shown is the precession
of the quasiparticle trajectory for (b) open and (c) closed orbits. The
trajectories A, B, C, and D correspond to the appropriate points at the
orbits indicated in Fig. 3(a). Solid and dashed trajectories correspond
to the cases μ � 0 and μ � 0, respectively. The region of the vortex
core is shown in gray. The direction of the trajectory precession is
shown by red arrows.

band spectra of metals [38,39]. The generic examples of such
transitions in vortex matter including the opening of the closed
segments of the orbits in the μ-θp plane or merging and
reconnection of the different segments via the Landau-Zener
tunneling have been previously studied in Refs. [36,40,41].
The basic properties of vortex matter such as pinning and
transport characteristics, heat transport in the vortex state, and
peculiarities of the local density of states should be strongly
affected by these changes in the topology of the subgap spec-
tral branches.

To elucidate our main findings we start from the simplified
qualitative picture illustrating the effect of the barrier on the
quasiparticle subgap states. Our idea is that the scattering at
the plane defect with some finite transparency T can strongly
affect the quasiparticle trajectory precession preventing the
trajectory from rotating by the full angle 2π . This destruction
of the trajectory rotation around the vortex center should be
accompanied by the changes in the topology of the quasiclas-
sical orbits and qualitative modification of the quasiparticle
spectrum. We restrict ourselves to situations when the barrier
is rather weak, assuming Tξ � T < 1, and focus on the mod-
ification of the anomalous energy branches which occurs in
a vortex pinned by a planar defect due to the quasiparticle
normal reflection at the defect boundary. First, considering
the specular reflection of the quasiclassical trajectories at the
plane defect in Fig. 2, one can clearly see that the scattering
couples the wave functions with the opposite angular mo-
menta ±μ. Overlapping of these wave functions transforms
the quasiclassical spectrum, resulting in the modification of
the topology of isoenergetic lines in the μ-θp plane. Phe-
nomenologically, one can describe this coupling by a standard
two-level problem, which yields the secular equation

(ε − εμ)(ε − ε−μ) ≈ [Vgap(θp)]2, (6)

where εμ denotes the anomalous spectral branch for a lin-
ear trajectory passing through the core of a free vortex. The
scattering obviously cannot couple the trajectories with θp =
0,±π , which are parallel to the defect plane. Considering
now the limit of small angles θp, one can expect that even
for the barriers with rather good transparency T the tunneling
probability should vanish in this angular interval. The splitting
of the energy levels around ε = 0 should originate from the
superconducting phase difference φ at the ends of the incident
f−μi ( fμi) and reflected fμt ( f−μt ) trajectories (see Fig. 2).
This phase difference φ equals ±(π − 2θp). Using now a
standard expression for the subgap Andreev state energy in
a one-dimensional Josephson junction [42], we find

ε = ±�0

√
1 − T sin2(φ/2) � ±�0

√
1 − T + T θ2

p . (7)

This energy splitting gives us the estimate for the coupling co-
efficient in the above two-level problem (6): Vgap(θp) ∼ �0θp

for a planar defect with a high transparency T → 1.
As a result, one obtains a set of quasiclassical orbits in μ-θp

space

μ(θp) = ± 1

h̄ω0

√
ε2 − �2

0θ
2
p . (8)

These orbits (8) corresponding to the precession of the quasi-
particle trajectory are schematically shown in Fig. 3(a). For
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low-energy levels one can clearly observe the formation of
closed orbits near the degeneracy points θp = 0,±π , which
are separated by the prohibited angular domains centered at
θp = ±π/2, where the precession of the trajectory appears
to be forbidden [Fig. 3(c)]. These closed trajectories form
from the open ones through a topological transition. The
closed orbits are nothing but skipping (or gliding) quasipar-
ticle states formed due to the scattering at the defect plane.
The quasiparticle momenta for these states are almost par-
allel to the plane of the defect while their wave functions
decay along the trajectory direction at the superconducting
coherence length. The corresponding discrete subgap energy
levels of quasiparticles can be obtained from the semiclassical
Bohr-Sommerfeld quantization rule for canonically conjugate
variables μ and θp [43,44],


(ε) =
∫ 2π

0
μ(ε, θp)dθp = 2π (n + β ), (9)

where n is an integer, 2π is the period of μ(θp), and β is of
the order unity. Applying the Bohr-Sommerfeld rule (9) to the
closed paths in μ-θp space, we obtain the spectrum in the form

ε2
n = �3

0

EF
(n + β ), (10)

which is dramatically different from the CdGM spectrum εn =
h̄ω0(n + 1/2) and is reminiscent of the square-root quantiza-
tion of the quasiparticle spectra in different types of nodal
problems (like graphene [45,46] or d-wave superconductors
in magnetic fields [47]). Note that this draft estimate of the
energy of low subgap spectrum levels appears to be in good
agreement with the explicit expression for the energy levels
(35) on the basis of the full quantitative description in Sec. III.
The minigap ε0 � �0

√
�0/EF determined by Eq. (10) far

exceeds the CdGM interlevel spacing h̄ω0. This minigap
increase obviously manifests the partial suppression of the
spectral flow, which should give origin to all the dissipation
phenomena inside the vortex core during its motion. In this
sense this spectrum change can be viewed as a precursor to
the crossover to the Josephson vortex where all the subgap
quasiparticle levels are repelled from the Fermi energy to the
gap value �0. On the other hand, the limit of the moderate
barrier strength studied here provides a possibility to observe
a different type of vortex core with the peculiar quantization
rule arising from the splitting of the orbit segments in the μ-θp

plane. This splitting destroys the trajectory precession in the
whole angular interval 0 < θp < 2π , changing thus the topol-
ogy of the quasiclassical orbits. The precession region |θp| �
δθp expands with an increase of the energy level n. As a result,
for rather high levels the prohibited angular domains shrink,
the precession over the full region 0 � θp � 2π is restored,
and we get the crossover to a CdGM type of spectrum εn ∼ n.

The paper is organized as follows. In Sec. II we intro-
duce the basic equations used for the spectrum calculation.
In Sec. III we study the quasiparticle spectrum transformation
for a singly quantized vortex pinned at the planar defect and
discuss the consequences for the vortex dynamics. Section IV
is devoted to the analysis of the peculiarities of the local den-
sity of states for a vortex pinned at the defect. We summarize
our results in Sec. V.

II. BASIC EQUATIONS

Hereafter we consider a planar defect in the plane y = 0 as
a δ-function repulsive potential for quasiparticles, i.e., V (y) =
Hδ(y). The magnetic field B = Bz0 is assumed to create a
single quantum vortex line parallel to the z axis trapped in-
side the attractive potential well within the defect [48]. The
vortex center defined as a point of the order parameter phase
singularity is positioned at the point x = y = 0.

We assume the system to be homogeneous along the z axis;
thus the h̄kz projection of the momentum is conserved. The
quantum mechanics of quasiparticle excitations in a super-
conductor is governed by the two-dimensional Bogoliubov–de
Gennes (BdG) equations for particlelike (u) and holelike
(v) parts of the two-component quasiparticle wave functions
(u(r), v(r))T exp(ikzz):

− h̄2

2m
(∇2 + k2

⊥)u + �(r)v = εu, (11a)

h̄2

2m
(∇2 + k2

⊥)v + �∗(r)u = εv. (11b)

Here ∇ = ∂xx0 + ∂yy0, r = (x, y) is a radius vector in the
plane perpendicular to the magnetic field direction, �(r) is
the gap function, and k2

⊥ = k2
F − k2

z .
The potential barrier is assumed to be partially transpar-

ent for electrons and the appropriate boundary conditions for
wave function �̂(x, y) = (u(r), v(r))T at y = 0 read [49]

�̂(x, 0+) = �̂(x, 0−) = �̂0, (12a)

∂y�̂(x, 0+) − ∂y�̂(x, 0−) = 2k⊥Z�̂0, (12b)

where the dimensionless barrier strength Z = H/h̄V⊥ (mV⊥ =
h̄k⊥) defines the transmission T = 1/(1 + Z2) and reflection
Z2/(1 + Z2) coefficients in the normal state. For an extremely
weak barrier (T � Tξ ) we can neglect the anisotropy of the
order parameter �(r) within the vortex core and assume that

�(r) = �0δv (r)eiθ , r =
√

x2 + y2, (13)

where (r, θ ) is a polar coordinate system. Here δv (r) is a
normalized order parameter magnitude for a vortex centered
at r = 0 such that δv (r) = 1 for r → ∞. Following the pro-
cedure described in [35,36,41] (see the Appendix for details),
we introduce the momentum representation

�̂(r) = 1

(2π h̄)2

∫ +∞

−∞
d2p eipr/h̄ψ̂ (p), (14)

where p = |p|(cos θp, sin θp) = pp0. The unit vector p0

parametrized by the angle θp defines the trajectory direction
in the x-y plane. We assume that our solutions correspond to
the momentum absolute values p close to the value h̄k⊥: p =
h̄k⊥ + q (|q| � h̄k⊥). Within the quasiclassical approach, the
wave function in the momentum representation assumes the
form

ψ̂ (p) = 1

k⊥

∫ +∞

−∞
ds ei(k⊥−|p|/h̄)sψ̂ (s, θp), (15)

where s is a coordinate along a quasiclassical trajectory, which
is a straight line along the direction of the quasiparticle mo-
mentum. Finally, the wave function �̂(r) in the real space
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r = r(cos θ, sin θ ) is expressed in the following way via the
slowly varying functions ψ̂ (s, θp) defined at the trajectory:

�̂(r, θ ) =
∫ 2π

0
eik⊥r cos(θp−θ )ψ̂ (r cos(θp − θ ), θp)

dθp

2π
. (16)

The solution (16) cannot be characterized by a definite angular
momentum μ because the partial transparency of the barrier
makes it possible to couple four quasiclassical rays at the
plane defect. As a result, the angular harmonics f±μi and
f±μt (see Fig. 2) with opposite momenta μ and −μ become
interacting, contrary to the case considered in [29]. To account
for this four-wave coupling, we follow Ref. [50] and introduce
the angular momentum expansion for the solution (16),

ψ̂ (s, θp) =
∑

μ

eiμθp+iσ̂zθp/2 f̂ μ(s), (17)

where the discreteness of the angular momentum μ = n +
1/2 (n is an integer) arises from the obvious condition that
the wave function (17) is single valued. The function f̂ μ(s)
satisfies the Andreev equation along the quasiclassical trajec-
tory with the impact parameter b = −μ/k⊥,

−ih̄V⊥σ̂z∂s f̂μ + �̂b(s) f̂μ = ε f̂μ, (18)

where

�̂b(s) = σ̂xReDb(s) − σ̂yImDb(s) (19)

is the gap operator, σ̂i are the Pauli matrices, and the expres-
sion for the order parameter � = Db(s)eiθp around the vortex
in (s, θp) variables

Db(s) = �0
δv (

√
s2 + b2)√

s2 + b2
(s + ib) (20)

can be obtained from (13), taking into account the evident
relations

x = s cos θp − b sin θp, y = s sin θp + b cos θp,

x ± iy = (s ± ib) e±iθp .

Note that the impact parameter b and the trajectory orientation
angle θp are two independent quantities which parametrize the
linear quasiclassical trajectory in the x-y plane.

A. General solution

To find the solution of Eqs. (18)–(20) we can use the results
of Ref. [35]. For low energies (μ � k⊥ξ ) we take the function

f̂μ as a sum

f̂μ =
(

uμ

vμ

)
= cμ1Ĝμ1 + cμ2Ĝμ2 (21)

of the two linearly independent solutions

Ĝμ1 = eiσ̂zπ/4
(

e−|Kμ(s)| − i sgn(s)
γμ

2
σ̂ze

|Kμ(s)|
)
λ̂, (22a)

Ĝμ2 = eiσ̂zπ/4e−|Kμ(s)|σ̂zλ̂, (22b)

where λ̂ = (1, 1)T ,

Kμ(s) = kF

k⊥ξ

∫ s

0
dt

tδv (
√

t2 + b2)√
t2 + b2

, (23)

�μ = 2kF

k⊥ξ

∫ ∞

0
ds e−2Kμ(s), (24)

γμ = �μ

�0
(εμ − ε), (25)

with

εμ = −2�0kF μ

k2
⊥ξ�μ

∫ ∞

0
ds

δv (
√

s2 + b2)√
s2 + b2

e−2Kμ(s) (26)

the CdGM excitation spectrum. Here ξ = h̄VF /�0 is the co-
herence length (VF is the Fermi velocity).

B. Boundary condition

As the next step we rewrite the boundary condition (12)
for wave functions f̂±μ(s) defined at the trajectories s1 and
s2 (see Fig. 2). Due to normal reflection of quasiparticles at
the defect, the trajectories s1 and s2 with opposite momen-
tum (+μ and −μ) directions are coupled. Substituting the
expressions (16) and (17) into the boundary condition (12), we
obtain the relation between the amplitudes of incident f̂±μi(s)
and transmitted f̂±μt (s) two-component quasiparticle wave
functions at the point s0 = −b/ tan θp where the trajectories
cross the barrier,

(η + i) f̂±μt = η f̂±μi − ie∓iσ̂zθp f̂∓μi, (27)

where η = sin θp/Z . Our further analysis of quasiparticle ex-
citations is based on the solutions (21) and (22), which must
be supplemented by the boundary conditions (27).

III. SPECTRUM OF THE VORTEX PINNED
BY PLANAR DEFECT

We now proceed with the analysis of the subgap spectrum
for a singly quantized vortex trapped by the planar defect.
Hereafter in this section we assume the angular momentum
to be positive, i.e., μ > 0. The form of the two-component
quasiparticle wave functions f̂±μ(s) depends on a position of
the point s0 at the trajectory. If the coordinate s0 � 0 then the
general solution (21) and (22) takes the form

f̂±μ(s) =

⎧⎪⎨
⎪⎩

c±μiei(σ̂z∓1)π/4e−|Kμ(s)|λ̂, s � 0

c±μiei(σ̂z∓1)π/4(e−|Kμ(s)| − iγ±μσ̂ze|Kμ(s)|)λ̂, 0 � s � s0

c±μt ei(σ̂z∓1)π/4e−|Kμ(s)|λ̂, s � s0,

(28)
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where

γ+μ = −�μ

�0
(|εμ| + ε), γ−μ = �μ

�0
(|εμ| − ε).

Otherwise, if s0 � 0,

f̂±μ(s)

=
⎧⎨
⎩

c±μiei(σ̂z∓1)π/4e−|Kμ(s)|λ̂, s � s0

c±μt ei(σ̂z∓1)π/4(e−|Kμ(s)|+iγ±μσ̂ze|Kμ(s)|)λ̂, s0 � s � 0
c±μt ei(σ̂z∓1)π/4e−|Kμ(s)|λ̂, s � 0.

(29)

The unknown coefficients c±μi and c±μt in (28) and (29) are
determined by the boundary conditions (27). The eigenfunc-
tions f̂±μ(s) have to be normalized such that∫ ∞

−∞
ds[| f̂+μ(s)|2 + | f̂−μ(s)|2] = k⊥.

Substituting the expressions (28) or (29) into the boundary
conditions (27), we obtain the following system of algebraic
equations with respect to the amplitude c±μi of the incident
waves:

ηγ+μc+μi + (γ∓μ cos θp + e−2K0 sin θp)c−μi = 0, (30a)

ηγ−μc−μi − (γ±μ cos θp − e−2K0 sin θp)c+μi = 0. (30b)

The case s0 � 0 (s0 < 0) corresponds to the choice of up-
per (lower) sign in Eqs. (30), K0 = Kμ(s0), and the angle θp

defines the direction of the ray with the angular momentum
+μ. To find the subgap quasiparticle excitation spectrum we
should find the determinant of the algebraic system, and its
zero gives us the equation for the energy spectrum ε:

ε2(b, θp) = ε2
μ +

(
�0

�μ

)2 e−2K0

η2 + cos2 θp

×
[
�μ

|εμ|
�0

| sin(2θp)| + e−2K0 sin2 θp

]
. (31)

Clearly, the above expression describes the crossover to
the standard CdGM spectrum in the limit of vanishing barrier
strength (η → ∞). Figure 4 shows the anomalous spectral
branches as functions of the impact parameter b = −μ/kF for
different values of the dimensionless barrier strength Z and
the trajectory directions in the x-y plane determined by the
angle θp. The qualitative behavior of the spectrum is weakly
sensitive to the concrete profile of the gap amplitude inside
the core and we choose a simple model dependence

δv (r) = r/
√

r2 + ξ 2, (32)

neglecting thus the influence of the defect on the behavior of
the gap profile. Contrary to the CdGM case, the spectrum
branch (31) does not cross the Fermi level in the presence of
the defect. For rather small Z the minigap in the quasiparticle
spectrum

�m(θp) = ε(0, θp) = �0

�0

Z√
1 + Z2/tan2 θp

appears to be almost independent of θp in a wide range of
angles except the small angular intervals close to θp = 0 and
θp = π . It is natural to expect that in the patterns of the local

(a)

(b)

(c)

FIG. 4. Quasiparticle spectra ε(b, θp) calculated using Eq. (31)
for different values of the dimensionless barrier strength Z and
the trajectory direction θp in the x-y plane (kz = 0): (a) Z = 0.1,
(b) Z = 0.2, and (c) Z = 0.3. Dotted lines for θp = 0 correspond to
the CdGM branch of the spectrum. The blue dashed lines show the
dependence for θp = π/4 and the red solid lines show the depen-
dence for θp = π/2.

density of states (LDOS) this angular independent quantity
should reveal itself as a soft gap �soft ∼ Z�0 growing with
the increasing barrier strength Z (see Sec. IV). We emphasize
here the fact that this gap is soft since the spectrum (31) for
small |tan θp| � Z is gapless and thus these angular intervals
can contribute to the LDOS at the Fermi level. This nonzero
contribution exists of course only in the quasiclassical limit
when we completely neglect the quantum mechanical nature
of the trajectory precession which should be responsible for
the opening of the hard minigap for the energies below �soft.
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FIG. 5. Quasiparticle orbits in the μ-θp plane corresponding to
different energy levels for the dimensionless barrier strength Z =
0.3. The numbers near the curves denote the corresponding values
of ε/�0. The direction of trajectory precession along the orbits is
shown by an arrow. We set here kz = 0.

To derive the corresponding quantization rules in the limit
Z � 1 we consider isoenergetic lines μ(θp) = −k⊥b(θp) in
the μ-θb plane. The resulting classical orbits are shown in
Fig. 5. Generally, one can distinguish two types of the isoen-
ergetic lines behavior. If the quasiparticle energy is of the
order of the minigap (ε � �soft) there appear prohibited an-
gular domains centered at the points θp = ±π/2 due to the
normal reflection of quasiparticles at the defect. In this case
classical orbits form close paths in μ-θb space corresponding
to the precession of the trajectory in the region with the width
2δθp(ε) near the points θp = 0, ±π . The width 2δθp of the
precession region grows with an increase in energy level. For
small |μ| � k⊥ξ the value δθp can be estimated as follows:

δθp � ε�0/�0√
1 − (ε�0/Z�0)2

. (33)

Shrinking of the prohibited angular domains and the crossover
from the closed orbits to the open ones occur at the energy ε∗
satisfying the condition δθp(ε∗) = π/2.

The low-lying energy levels of quasiparticles can be ob-
tained by applying the Bohr-Sommerfeld quantization rule
(9) for closed paths in the plane of canonically conjugate
variables μ and θp. Figure 6 shows the typical dependence

(ε) calculated using the spectrum (31). Taking εμ � −h̄ω0μ

for small μ values and replacing the real classical orbits in the
μ-θb plane by the model one (see the inset in Fig. 6), one can
obtain a reasonable fit (dashed curve) to the numerical results
(solid curve):


(ε) ≈ 2
ε

h̄ω0
δθp = 2ε2�0/�0

h̄ω0

√
1 − (ε�0/Z�0)2

. (34)

The above relation together with the Bohr-Sommerfeld rule
(9) results in the explicit expression for discrete subgap energy
levels

εn � �0Z

�0

[
pn

√
1 + p2

n/4 − p2
n/2

]1/2
,

pn = π�0�0

2EF Z2
(n + β ), (35)

FIG. 6. Dependence 
(ε) (9) for two values of the dimensionless
barrier strength Z = 0.1; 0.3. Results of numerical calculations are
shown by the blue solid lines. Red dashed curves show approximate
values of 
(ε) obtained from Eq. (34). The inset shows the quasipar-
ticle orbit in the μ-θb plane (blue solid line) and its approximation
(red dashed line) described by Eq. (34). We set here kz = 0 and
EF /�0 = 50.

which appears to be justified for εn/�0 � Z2 � 1. The ex-
pression (35) can be strongly simplified provided pn � 1 for
low-lying energy levels:

ε2
n � π

2�0

�3
0

EF
(n + β )

[
1 − π�0�0

4EF Z2
(n + β )

]
.

The main term of the preceding relation appears to be in good
agreement with the estimate (10) and describes qualitatively
the behavior of spectrum of subgap quasiparticle states (εn ∼
n1/2) gliding along the planar defect. Both the hard minigap
ε0 � �0

√
�0/EF � �soft in the discrete spectrum (35) and

the interlevel spacing h̄ω = εn − εn−1 grow with the increase
in the barrier strength Z . The wave functions of these gliding
states are given by the expressions (28) and (29) describing
the mixtures of the wave functions u and v with almost equal
probabilities to find the quasiparticle in the electronlike and
holelike states.

Besides its fundamental interest, the problem of a pinned
vortex spectrum is important for understanding the nature of
dissipation in the presence of planar defects. In particular,
according to the spectral flow theory [18,26], it is the behavior
of the anomalous branch which determines the high-frequency
conductivity and Kerr effect [30,32]. As a result, the quasipar-
ticle subgap spectrum can be tested by the measurements of
the conductivity tensor at finite frequencies. The additional
complication at this point arises from the obvious fact that
the vortex during its motion under the effect of the Lorentz
force can shift from the defect plane. Thus, the quantitative
description of the appropriate response requires strictly speak-
ing the solution of the problem for a shifted vortex. Still, the
increase in the minigap obtained in our work indicates at least
qualitatively that the spectral flow for a moving vortex should
be suppressed according to very general arguments [18,26].
Thus, one can expect that the opening of the hard minigap
ε0 in the discrete quasiparticle spectrum (35) and change in
the slope ε(μ) dependence (31) can cause the suppression
of the dissipation accompanying the vortex motion and the

174501-7



SAMOKHVALOV, PLASTOVETS, AND MEL’NIKOV PHYSICAL REVIEW B 102, 174501 (2020)

appropriate changes in the relation between the Ohmic and
Hall conductivities (an increase in the Hall part of the AC
response compared to the Ohmic one).

IV. LOCAL DENSITY OF STATES FOR A PINNED VORTEX

We now proceed with the calculations of the local density
of states for a singly quantized vortex pinned at the planar
defect. This quantity is known to be directly probed in the
scanning tunneling microscopy and spectroscopy experiments
[17]. For the sake of simplicity we assume here the Fermi
surface to be a cylinder and neglect the dependence of the
quasiparticle energy on the momentum component kz along
the cylinder axis z considering the motion of quasiparticles
only in the x-y plane. The peculiarities of the LDOS are
usually determined from the analysis of the local differential
conductance (LDC)

dI/dV

(dI/dV )N
=

∫ ∞

−∞
dε

N (r, ε)

N0

∂ f (ε − eV )

∂V
, (36)

where (dI/dV )N is the conductance of the normal metal
junction and f (ε) = 1/[1 + exp(ε/T )] is a Fermi function.
The expression (36) describes the two-dimensional map of
the tunneling conductance dI/dV (x, y) at an arbitrary bias
voltage V between the STM tip and the sample surface.

Within the quasiclassical approach the LDOS

N (r, ε) = kF

∫
db|ub(r)|2δ(ε − ε(b)) (37)

can be expressed through the electron component ub(r, θ ) of
quasiparticle eigenfunctions (14) corresponding to the energy
ε(b, θp) determined by Eqs. (23)–(26) and (31). The wave
function �̂(r, θ ) parametrized by the impact parameter b =
−μ/kF ,

�̂(r, θ ) =
(

ub(r, θ )

vb(r, θ )

)

= ei(2μ+σ̂z )θ/2
∫ 2π

0

dα

2π
eikF r cos α+i(2μ+σ̂z )α/2 f̂μ(r cos α),

(38)

in the limit kF r � 1 can be evaluated using the stationary
phase method. For an impact parameter |b| � r the station-
ary phase points are given by the condition sin α1,2 = −b/r.
Summing over two contributions in the vicinity of the station-
ary angles α1 = θp1 − θ = αr and α2 = θp2 − θ = π − αr ,
we can write the electron component ub(r, θ ) of quasiparticle
eigenfunctions as

ub(r, θ ) =
(

1

2πkF sr

)1/2

ei(2μ+1)θ/2

×[
f u
μ(sr )eiϕr + f u

μ(−sr )e−iϕr+i(2μ+1)π/2
]
, (39)

where sr = r| cos αr | = √
r2 − b2. The phase

ϕr = kF r cos αr + |μ|αr + sgn(μ)αr/2 − π/4

is determined by the trajectory orientation angle αr =
− arcsin(b/r). Neglecting the oscillations at the atomic
length scale, we obtain the slowly varying envelope

function

|ub(r, θ )|2 � 1

2πkF sr

[∣∣ f u
μ(sr )

∣∣2 + ∣∣ f u
μ(−sr )

∣∣2]
, (40)

where the function f u
μ(±sr ) is determined by the relations (28)

or (29).
We have calculated the differential conductance using

Eqs. (36), (37), and (40) for low temperature T/�0 = 0.02
for different values of the dimensionless barrier strength Z .
The typical examples of dependence of the local differential
conductance dI/dV vs the bias voltage eV at various distances
r from the vortex axis are shown in Fig. 7. In order to com-
pare our results with the standard CdGM ones, we present
the dependence of the local dI/dV vs voltage at different
distances r from the Abrikosov vortex axis in the absence of
the barrier (Z = 0). One can clearly observe the disappearance
of the zero-bias peak in the core (r = 0) and opening of the
soft spectral minigap �soft caused by the normal scattering
at the defect [Fig. 7(a)]. The barrier results in the anisotropy
of the LDC structure in the x-y plane [Figs. 7(b) and 7(c)].
The anisotropy of the LDC grows when barrier strength Z
increases. Figure 8 illustrates the evolution of the local dif-
ferential conductance dI/dV (eV, x, y) distribution in the x-y
plane for several values of the bias voltage V and dimension-
less barrier strength Z . In Figs. 8(a) and 8(b) we can see the
spread of the zero-bias peak along the defect, which appears
to be another hallmark of the crossover from the Abrikosov
to the Josephson vortex type. Due to the normal reflection of
electrons and holes at the defect plane, we get the azimuthal
modulation of the LDC developing with the growth of the
barrier strength Z .

V. SUMMARY

We have investigated the transformation of the subgap
spectrum of quasiparticle excitations in the Abrikosov vortex
pinned by the planar defect with a high transparency. We
found that the normal scattering at the defect surface results
in the opening of a soft minigap �soft in the elementary
excitation spectrum near the Fermi level. The minigap size
grows with the decrease in the transparency of the barrier.
The increase in the resulting soft gap affects the splitting of
the zero-bias anomaly in the tunneling spectral characteristics
and perturb the circular symmetry of the LDOS peaks. The
normal reflection of electrons and holes at the defect plane
changes the topology of the isoenergetic orbits in μ-θp space.
This topological transition revealed in the specific behavior
of the quantized quasiparticle levels and density of states
can be considered as a hallmark of the crossover from the
Abrikosov to the Josephson vortex. As a result, there appears
a different type of subgap quasiparticle states gliding along
the defect, which reveal the qualitatively different behavior of
the discrete spectrum εn ∼ n1/2. The hard minigap ε0 � �soft

in the spectrum of energy levels exceeds noticeably the value
of the CdGM minigap h̄ω0 � ε0. The decrease in the bar-
rier transparency is accompanied by the increase in the hard
minigap ε0 in the spectrum which can be observed in the
measurements of the Ohmic and Hall conductivities at finite
frequencies. The basic properties of the vortex such as pinning
and mobility along the defect plane are strongly affected by
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(a)

(b)

(c)

FIG. 7. Local differential conductance dI/dV versus bias volt-
age eV at different points r and θ on the x-y plane: (a) r = 0, (b) r =
0.14ξ , and (c) r = 0.28ξ . The numbers near the curves are the cor-
responding values of the dimensionless barrier strength Z . The lines
correspond to the case θ = π/4, open symbols θ = 0, and closed
symbols θ = π/2. We set here T/�0 = 0.02. For reference, black
closed circles show the local dI/dV curves for the free Abrikosov
vortex (Z = 0). The soft minigap �soft corresponding to the maximal
slope of the energy dependence of the LDOS is indicated by the
arrows in (a).

these changes in the orbit topology. We have also analyzed
the distinctive features of the quasiparticle density of states,
which accompany the transformation of the subgap quasipar-
ticle spectrum and the topology of the isoenergetic orbits for
an Abrikosov vortex pinned by a planar defect with a perfect
boundary. One can expect, however, that barrier imperfections
and roughness should result in a partial smearing of both the

hard and soft gap features similarly to the effect of the point
impurity scattering.

As for the transformation of the shape of the vortex core, it
is of course related to the changes in the low-energy spectrum
since the latter cause the change in both the supercurrent
density and gap profile. At high barrier transparency T � Tξ

we see that the appearance of the nutating states strongly sup-
presses the DOS below the soft minigap �soft ∼ Z�0, which
should result in the partial increase in the gap value inside
the core. Without the self-consistent calculations we can only
assume that a further decrease in the barrier transparency
fully suppresses the quasiparticle states nutating around the
direction parallel to the barrier and only the high-energy states
close to the gap can survive. Such suppression of the low-
energy DOS obviously gives the disappearance of the normal
vortex core.

Finally, we note that recently the vortices pinned by the de-
fects were proposed as the hosts for the Majorana states in the
systems consisting of a primary superconductor with conven-
tional pairing and a low-dimensional layer with a nontrivial
topology [s-wave superconductors with a cylindrical hole
(cavity) deposited on the surface of a topological insulator
(TI)] [51–54]. An Abrikosov vortex pinned by the hole gener-
ates a “pancake” vortex inside 2D topological superconductor
induced in TI due to proximity. Such a pancake is known to
support a Majorana fermion state bound to the vortex core
[55,56]. The isolating inclusions or cavity in the vortex core
in the primary superconductor allow a shift of the low-energy
core spectrum from the Fermi level, improving the topolog-
ical protection (robustness) of the Majorana states in the 2D
topological superconductor. The vortex at the planar defect
considered in our work can provide a perspective platform
for such states since the hard minigap in the core can exhibit
a strong increase even in the limit of the defect with high
transparency when the shape of the gap inside the vortex
core is only weakly perturbed by the scattering. The planar
defect removes the low-lying CdGM states from the vortex
core and provides the robustness of the Majorana states. An-
other advantage of this geometry (see Fig. 9) is related to the
possibility to move the vortices along the defects, changing
thus the positions of the Majorana states in the attached 2D
layer without changing the minigap responsible for the desired
topological protection.
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APPENDIX: ANDREEV EQUATIONS

The BdG equations for particlelike u and holelike
v parts of the two-component quasiparticle wave
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FIG. 8. Evolution of the local differential conductance dI/dV (eV, x, y) corresponding to different bias voltages (a) and (b) eV = 0, (c) and
(d) eV/�0 = 0.1, and (e) and (f) eV/�0 = 0.2 for different values of the dimensionless barrier strength Z: (a), (c), and (e) Z = 0.1 and (b),
(d), and (f) Z = 0.3. We set here T/�0 = 0.02.

FIG. 9. Possible setup of the Majorana-type system based on
the vortex pinned by a planar defect. A robust Majorana fermion
can be localized inside the vortex core created on the surface of
the topological insulator (TI) by the proximity effect to the primary
s-wave superconductor (SC).

functions (U,V )T = (u(r), v(r))T exp(ikzz) have the
following form:

− h̄2

2m
(∇2 + k2

⊥)u + �(r)v = εu, (A1a)

h̄2

2m
(∇2 + k2

⊥)v + �∗(r)u = εv. (A1b)

Here ∇ = ∂xx0 + ∂yy0, r = (x, y) is a radius vector in the
plane perpendicular to the magnetic field direction, �(r) is
the gap function, and k2

⊥ = k2
F − k2

z . We assume the system
to be homogeneous along the z axis; thus the h̄kz projection
of the momentum is conserved and we restrict our analysis to
the case of the weak external magnetic field and the extreme
type-II superconductors where the vector potential A can be
neglected.

174501-10



TOPOLOGICAL TRANSITIONS IN ELECTRONIC SPECTRA: … PHYSICAL REVIEW B 102, 174501 (2020)

The two-component wave function �̂ = (u(r), v(r))T in
the momentum representation can be written as

�̂(r) = 1

(2π h̄)2

∫ +∞

−∞
d2p eipr/h̄ψ̂ (p), (A2)

where p = p(cos θp, sin θp) = pp0 defines the polar coor-
dinate system in momentum space. The unit vector p0 =
(cos θp, sin θp) is parametrized by the angle θp, which deter-
mines the trajectory direction in the x-y plane. The coordinate
operator in the polar coordinate system (p, θp) can be written
as

r̂ = ih̄
∂

∂p
= ih̄

(
p0

∂

∂ p
+ i

p
[z0, p0]μ̂

)
, (A3)

where the operator of z projection of angular momentum μ̂ is
given by the expression

μ̂ = 1

h̄
[r, p]z0 = −i

∂

∂θp
. (A4)

Within the quasiclassical approach the characteristic length
scale of envelopes of quasiparticle waves is determined by
the superconducting coherence length ξ , and the quasiparticle
wave function can be viewed as a wave packet with momen-
tum absolute values close to h̄k⊥ since kF ξ � 1 is assumed.
Therefore, we look for solutions with absolute values p close
to the value h̄k⊥: p = h̄k⊥ + q (q � h̄k⊥). In this case one can
obtain the expression for the coordinate operator

r̂ = ih̄p0
∂

∂q
+ i

2k⊥

{
[z0, p0],

∂

∂θp

}
, (A5)

where {· · · } is an anticommutator. Let us now introduce a
Fourier transformation

ψ̂ (p) = 1

k⊥

∫ +∞

−∞
ds e−iqs/h̄ψ̂ (s, θp), (A6)

where s = r cos(θp − θ ) is a coordinate along a quasiclassical
trajectory, which is a straight line along the direction of the
quasiparticle momentum p. The trajectory orientation angle
is given by the θp value. The wave function �̂(r) in the
polar coordinate system (r, θ ) can be found from Eqs. (A2)

and (A6):

�̂(r, θ ) =
∫ 2π

0
eik⊥r cos(θp−θ )ψ̂ (r cos(θp − θ ), θp)

dθp

2π
, (A7)

where functions ψ̂ (s, θp) vary slowly at the trajectory θp.
The expression for the coordinate operator (A5) in the (s, θp)
representation reads

r̂ = sp0 + i

2k⊥

{
[z0, p0],

∂

∂θp

}
. (A8)

Then the BdG equations (A1) in the (s, θp) representation take
the form

Ĥψ̂ (s, θp) = εψ̂ (s, θp),

Ĥ = −iσ̂z
h̄2k⊥

m

∂

∂s
+

[
0 �(r̂)

�∗(r̂) 0

]
, (A9)

where σ̂x, σ̂y, and σ̂z are the Pauli matrices. Considering the
eikonal approximation for the angular dependence of the wave
function

ψ̂ (s, θp) = eiSe(θp) f̂ (s, θp),

where

− 1

k⊥

∂Se

∂θp
= b(θp)

is an impact parameter of a quasiclassical trajectory, and
assuming a rather slow angular dependence of f̂ (s, θp)
[ f̂ (s, θp) � f̂μ(s)], one can neglect a differential operator
∂/∂θp in the Hamiltonian (A9). The function f̂ μ(s) satis-
fies the Andreev equations along the quasiclassical trajectory
with a certain orientational angle θp and impact parameter
b = −μ/k⊥,

−iσ̂z
h̄2k⊥

m

∂ f̂μ
∂s

+ σ̂xRe�(x, y) f̂μ

−σ̂yIm�(x, y) f̂μ = ε f̂μ, (A10)

where

x = s cos θp − b sin θp, y = s sin θp + b cos θp.

Changing the sign of the coordinate s, one can observe a
useful symmetry property of the solution of Eq. (A10):

f̂μ(−s) = ±σ̂y f̂μ(s).
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