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Highly tunable magnetic coupling in ultrathin topological insulator films due to impurity resonances
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We theoretically investigate the carrier-free exchange interaction between magnetic impurities in ultrathin
Bi2Se3 topological insulator films by taking into account the low-energy states produced by the impurities. To
match with experimental observations of magnetism on the surface of ultrathin topological insulator films, we
restrict the calculations to having the chemical potential within the energy gap, with then interband processes
mediating the exchange interaction. We find that the locally induced impurity resonances strongly influence the
exchange interaction between magnetic moments. In particular, we find a noncollinear alignment to be more
favorable than the collinear ferromagnetic alignment preferred when impurity states are ignored and only the
pristine topological insulator band structure is considered. As a result, chiral ferromagnetism can easily become
favorable over the ferromagnetic phase in these materials. Moreover, we show that by applying an electric field
perpendicular to the ultrathin film, the exchange interaction can be drastically enhanced. This generates the
possibility of highly tunable magnetism by electric field.

DOI: 10.1103/PhysRevB.102.174446

I. INTRODUCTION

In the absence of direct coupling, magnetic impurity mo-
ments in solids couple indirectly to each other through the
electronic band of the host material, with the nature of the cou-
pling mechanism then determined by the electronic structure
of the host. In terms of spatial extension, magnetic moments
couple at distances up to a few nanometers in topological
insulators (TIs), whereas the corresponding coupling in most
semiconducting materials ranges only at most a few Å [1].
This long-range coupling between the magnetic impurities
in topological insulators leads to the existence of a robust
magnetic phase, which has also been recently confirmed in
experiments, both using angular resolved photoemission spec-
troscopy (ARPES) and scanning tunneling microscopy (STM)
[2–4].

It has been suggested that the indirect magnetic coupling in
topological insulators is governed by topology [2]. While the
magnetically ordered phase in topologically trivial materials
is fragile to decreasing dimensionality, the magnetic phase
in topological insulators appears to be strengthened when
lowering the dimension. Indeed, it has been observed that the
magnetic phase generated by coupled magnetic impurities on
the surface of topological insulators is far more robust than
the corresponding phase created between bulk impurities [5].
In line with this, magnetic coupling of impurities has also
been verified in ultrathin films of topological insulators in
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experiments measuring the quantum anomalous Hall effect
(QAHE) [6–10]. One prerequisite for the QAHE is the ex-
istence of an energy band gap, see, e.g., Ref. [10], thus being
relevant only in topological insulator thin films, as for films
thinner than five quintuple layers, the surface states become
gapped due to hybridization between the surface states at
opposite sides [11]. The finite energy gap in such ultrathin
topological insulator films however also makes the possible
emergence of impurity resonances within the band gap a
highly sensitive topic, as that can then easily change the con-
ditions for the QAHE in a discontinuous way. In addition, with
the band dispersion of ultrathin topological insulator films
tunable by the application of an electric field, a tantalizing
electric control of magnetism [12] might also be achievable in
the ultrathin limit.

Very generally, the indirect magnetic coupling between
magnetic impurities is governed by the magnetic suscepti-
bility of the whole system. Thus, in materials with strong
spin-orbit interaction, such as topological insulators, the
magnetic susceptibility tensor gives three fundamentally
different contributions: an isotropic (Heisenberg-like), a sym-
metrically anisotropic (Ising-like), and an asymmetrically
anisotropic (Dzyalosinskii-Moryia-like) contribution [13–15].
The isotropic and symmetrically anisotropic contributions
lead to collinear configurations of the magnetic moments,
whereas the asymmetrically anisotropic contribution favors
noncollinear configurations [16]. This asymmetric anisotropy
easily leads to the existence of exotic magnetic phases, such
as spin-glass, or chiral ferro- and antiferromagnetic phases
[17,18].

Furthermore, the nature of the indirect coupling between
magnetic impurities is significantly different between metallic
and gapped materials. The interaction in metals is dominated
by excitations around the Fermi level, known as Ruderman-
Kittel-Kausya-Yosida (RKKY) interaction, with intraband
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processes giving the primary contribution to the magnetic
susceptibility. On the other hand, in gapped systems, where
the chemical potential intersects no bands, the intraband
process vanishes and the coupling is necessarily provided
by interband processes between the valence and conduction
band electrons, more related to van Vleck-type magnetism.
In fact, van Vleck magnetism based on interband suscep-
tibility has already been observed in topological insulator
thin films [19–21]. With the indirect coupling determined by
the magnetic susceptibility of the whole system, the impuri-
ties themselves also modify the indirect coupling [16,22,23].
In particular, in topological insulators, impurity resonance
states easily appear near the Dirac point due to scattering
off the nonmagnetic part of the impurity potential [24–26].
In ultrathin topological insulator films these resonances may
even arise inside the band gap, depending on the strength of
the impurity scattering potentials and the properties of the
topological insulator [24,27], also recently addressed using
ab initio calculations [19,23,28]. The gapped dispersion in
ultrathin topological insulator films thus makes impurity states
even more prominent as they can be the only low-energy states
available to mediate the indirect magnetic coupling. Although
bulk doping of topological insulators, including the effects of
impurities, has been numerically studied [29], most calcula-
tions of the magnetic susceptibility in topological insulator
systems (and even other structures such as gapped graphene
[30], MoS2 [31], bilayer graphene [32]) have been based
only on the itinerant electrons of the unperturbed, or pristine,
TI surface states [21,33]. Only recent work highlighting the
effect of the impurities, and then only in thick topological
insulators, where it is the RKKY interaction mediating the
coupling [16]. This is in contrary to the fact that recent exper-
iments on ultrathin topological insulator films have indicated
that the indirect magnetic coupling depends strongly on the
nature of the magnetic impurities [1,2,6–9].

In this work, we therefore calculate the influence on the
magnetic susceptibility of the impurity induced in-gap reso-
nances in ultrathin topological insulator films. To accurately
capture the indirect coupling between surface magnetic impu-
rity moments, we use the T -matrix approach which treats the
effects of the impurities to infinite order in perturbation theory.
Being a gapped system, RKKY interaction is not present
and hence we focus on the impact of impurity states on the
interband van-Vleck magnetic susceptibility. We show that the
impurity resonances quench both the isotropic Heisenberg and
symmetrically anisotropic Ising contributions. Moreover, we
find a strong energy dependence, which opens for excellent
tuning possibilities of the indirect coupling on- and off-
resonance. Most importantly, we find that the asymmetrically
anisotropic Dzyalosinskii-Moryia contribution is generated
when we include the impurity states. As a direct consequence,
a noncollinear collective configuration of the magnetic mo-
ments easily becomes favored, with a finite out-of-plane net
magnetization. This is in sharp contrast to the ferromagnetic
ground state previously obtained when only considering the
pristine ultrathin topological insulator films [21]. Finally, we
also show that by simply applying an external electric field,
the magnetic coupling becomes extensively tunable, between
ferro- and antiferromagnetic to chiral configurations. This

tunability spans order of magnitudes and is due to the impurity
states, which is different from the minor electrical tunability
reported for magnetic coupling in other systems [21,32,33].

The remainder of the paper is organized as follow. In
Sec. II, we introduce the model Hamiltonian and the general
formalism for calculating the magnetic susceptibility, includ-
ing the impurity states. In Sec. III we present our results, with
a focus on the contribution from impurity resonances and their
tunability. Finally, we summarize and offer a few concluding
remarks in Sec. IV. Some detailed part of the calculations can
be found in Appendices A–F.

II. MODEL AND METHOD

The low-energy properties of the surface state electrons in
the ultrathin topological insulator films can be described by
an effective two-dimensional Hamiltonian near the � point
describing the two surfaces [11,34]

H0(k) =τz ⊗ [h̄vF (k × ẑ) · σ + V σ0] + �τx ⊗ σ0 − μ. (1)

Here, σ, τ are Pauli matrices in the spin and surface space,
respectively, k = (kx, ky) denotes the two-dimensional wave
vector for the surface electrons, and vF is the Fermi velocity.
Moreover, V denotes the potential difference between the two
surfaces. This potential arises from the effect of a substrate
and/or an external electric field applied perpendicular to the
film. Due to the thickness of the film there is an effective mass
hybridization term of the form � ≡ δ0 − δ1k2 that couples the
two surfaces of the topological insulator. The sign changing
δ1 term is responsible for a topological phase transition [34],
bringing the system into a quantum spin Hall state with gap-
less edge modes. However, since our study is restricted both
to the bulk effects of topological insulator thin films without
consideration of the one-dimensional edges and to low energy
chemical potentials, this higher expansion k term can be safely
neglected [35] and hence we assume � = δ0. For more details,
please see Appendix D.

The model in Eq. (1) leads to the dispersion relation

Esm(k) =s
√

(h̄vF |k| + (−1)mV )2 + �2, (2)

of a gapped Dirac spectrum with gap size 2�. Here, s = ±1,
refers to the conduction and the valence bands, respectively,
whereas m = 1, 2 labels the solutions. Further, we model the
added magnetic impurities, which modify the electronic struc-
ture of the system, by the Hamiltonian

H =
∑

i

(Uσ0 + JcSi · σ )δ(r − ri ), (3)

where U and JcSi represent the spin-independent and spin-
dependent scattering potentials of the impurity, respectively.
For sufficiently large scalar potential U , impurity-induced
resonance states emerge inside the gap, while the spin scat-
tering off JcSi breaks the spin degeneracy of these states.
The energies of the impurity resonances depend inversely
on the scattering potential U , approaching the middle of the
gap (Fermi energy) as U → ∞, whereas the spin splitting of
the resonances is governed by JcSi. Here we allow magnetic
impurities on sites ri, summing over all impurities, where we
restrict ourselves to consider impurities in the top surface only,
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justified by several experiments on magnetism on the surface
of ultrathin topological insulator films due to the surface
impurities [1–5]. The only assumption in Eq. (3) is that the
impurities behave as classical spins, i.e., JcŜ = Jc〈S〉 ≡ JcS,
with strength |Si| = S, as appropriate for higher spin impuri-
ties [22].

For two local impurity magnetic moments, located at r and
r′, respectively, the effective indirect coupling, or exchange,
Hamiltonian can be written as

Hex = 1
2 J2

c S1 · χ(r, r′) · S2, (4)

where χ(r, r′) is the magnetic susceptibility tensor. This ten-
sor can be obtained from the definition of the magnetization
in terms of the dressed Green’s functions in a full expansion
of the impurity perturbation by using the T -matrix approach
[16]. The result we can always write χ(r, r′) as

χ(r, r′) = tr
∫

σG0(r, r′; ω)σG0(r′, r; ω)

(1 − Ug)2 − J2
c S2g2

dω

2π
. (5)

This expression describes the indirect exchange interac-
tion between two impurities at some finite distance |r −
r′| 	= 0. In this expression, G0(r, r′; ω) denotes the bare
single electron Green’s function, i.e., without impurities,
the trace runs over the spin degrees of freedom, g(ω) =
(1/k2

c )tr
∫

G0(k, ω) dk/2, and where the expression in the
denominator encode for the contributions from the impurity
states. The normalization factor kc, in the definition of g(ω),
is the cutoff band momentum and ensures that g and G0
have the same dimension. For sufficiently weak scattering
potentials, the impurity resonances emerge within the valence
and conduction bands, that is, outside the gap. In this regime
the mechanism for spin-spin interaction can be described
sufficiently well within linear response theory. Hence, the
magnetic susceptibility of the pristine topological insulator,
χ0, is retained by setting U = JcS = 0 in the denominator. We
refer to Appendix A for more details on the bare Green’s func-
tion. We note that Eq. (4) is the same as found in Ref. [16], as
it expresses the most general form of the magnetic suscep-
tibility for a system with magnetic impurities, although the
purpose and setup of this previous work were much different
from here. We also already here see that Eq. (5), in combi-
nation with the highly nontrivial expressions for the Green’s
function, results in a magnetic susceptibility that is not easily
accessible analytically but that a numerical solution is needed.
We also note that usually when treating the spin as a quantum
object, we need to be careful, since 〈S〉n 	= 〈Sn〉 in general for
integers n > 1. However, as the numerator of Eq. (5) is only
proportional to 〈S〉 and the denominator captures the existence
of impurity states seen in experiment, we expect that any
quantum effects of the spin can for our purposed be omitted
without loosing information on the qualitative behavior of the
interaction. It is convenient to rotate the spin vectors Si=1,2

into S̃i = (Six cos ϕR, Siy sin ϕR, Siz ) [16,33] in terms of the
polar angle ϕR of the relative distance between the impurities.
Then the exchange Hamiltonian takes the form

Hex = [H S1 · S2 + I (S̃1 · S̃2 + S̃1xS̃2y + S̃1yS̃2x )

+ D · (S̃1 × S̃2)]. (6)

Here H and I refer to the isotropical and symmetri-
cal anisotropic couplings, respectively, whereas D = D (1,

−1, 0) denotes the asymmetrical anisotropy. Here H , I , and D
can be thought of as Heisenberg-, Ising-, and Dzyaloshinskii-
Moriya-like interactions, respectively. Using Eq. (5) for the
magnetic susceptibility in Eq. (4), these interaction parame-
ters are obtained from the expressions [16]

H = J2
c

∫
G2

tt (r, r′; ω) + G′2
tt (r, r′; ω)

(1 − Ug)2 − J2
c S2g2

dω

π
, (7a)

I = −2J2
c

∫
G′2

tt (r, r′; ω)

(1 − Ug)2 − J2
c S2g2

dω

π
, (7b)

D = −2J2
c

∫
Gtt (r, r′; ω)G′

tt (r, r′; ω)

(1 − Ug)2 − J2
c S2g2

dω

π
. (7c)

Here Gtt and G′
tt indicate the ↑↑ and ↑↓ components, re-

spectively, of the bare Green’s function on the top surface, see
Appendix A for more details. Again, the results for a pristine
topological insulator, J0 = H0, I0, D0, is obtained by setting
JcS = U = 0 in the denominator of Eq. (7). In order to pro-
vide a physical understanding for the behavior of the exchange
parameters in the presence of impurities, we also consider the
spin-polarized local density of states (spin-resolved LDOS)
ρ↑,↓, see Appendix B for a detailed expression derived from
the full Green’s function.

Before proceeding we also note that the magnetic sus-
ceptibility is, in general, a sum of interband and intraband
contributions, χ = χintra + χinter. At low temperatures and fi-
nite occupancy at the Fermi level, such as in a metal, the
intraband contribution normally dominates the exchange in-
teractions. This part of the interaction is proportional to
∂n(ε)/∂ε, where n(ε) is the Fermi-Dirac distribution function
of the energy band ε. At low temperature, this term con-
verges to a delta-Dirac form and the intraband part of the
susceptibility χintra is thus given primarily by the electrons
around the Fermi level. Then, the indirect magnetic coupling
can be well described in terms of the itinerant electrons of
the Fermi surface, giving rise to a (generalized) RKKY in-
teraction. By contrast, as long as the chemical potential lies
within the energy gap of the ultrathin topological insulator
film, the intraband contribution vanishes due to the absence of
carriers. Hence, only interband contributions are now present,
although they are also small [33]. These contributions, as
their name indicate, come from processes between different
bands and they become proportional to a term of the form
(n(ε1) − n(ε2))/(ε1 − ε2), where ε1,2 indicates the two rele-
vant bands in the system, normally valence and conduction
bands. The part of the response function which originates
from such interband processes between conduction and va-
lence bands is usually referred to as a van Vleck interaction
[19]. As this interaction is the response coming from different
bands, separated by a gap, it decays exponentially with the
size of the gap between the two bands [30]. In this work, since
we also consider the effect of impurity states, the resulting
complicated form of Eq. (7) prevents us from an analytical
expansion, however, we use the above physical descriptions
to understand our results.
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FIG. 1. Contributions of the exchange interaction, δJ = J − J0,
where J = H, I, D, from the impurity states, as a function of chem-
ical potential μ. Here we assume two impurities located at distance
R = 12.48 Å and V = 0, U = 4 eV, with JcS = U/8 (a) and U/4
(b). Values for a pristine ultrathin topological insulator film is given
by black lines for comparison. (c), (d) Corresponding spin-resolved
LDOS with respect to the energy ε in the presence of one impurity,
with the LDOS calculated at the location of the other impurity.

III. RESULTS

Using Eq. (7) we quantify the complete and general indi-
rect exchange coupling in terms of J = H, I , and D between
two magnetic impurities on the top surface of an ultrathin
topological insulator film. We first present the different com-
ponents in an unbiased (V = 0) film, and thereafter we discuss
the effects of an external electric field. Building on these
results, we proceed to study the magnetic ordering of impurity
moments and the different magnetic phases in the system.

For the remainder of this work we assume a four quintuple
layer thin film of Bi2Se3, which has an energy gap 2� =
70 meV and Fermi velocity vF = 4.48 × 105 m/s. We also
assume that the chemical potential resides within the band
gap, i.e., |μ| < �, in order to directly connect with recent
experiments [10]. Moreover, and consistent with experiments,
we assume an interimpurity distance of R = 12.48 Å in the
surface plane, unless we explicitly investigate the distance
behavior. This choice is equivalent to x = 22% of Cr atoms
in Bi2−x(SeTe)3 used in recent experiments [2]. We also re-
quire that 0 � JcS � 1 and 0 � U � 6 (both given in units of
h̄vF kc) and keep JcS/U ≈ 1/8 except Fig. 1(b) and 1(d) where
we used JcS/U ≈ 1/4. We find these values by comparing
our spin-resolved LDOS with the results of Refs. [36–39].
As we set the cutoff energy h̄vF kc to be 1 eV in this work,
all the presented U, JcS are in the unit of eV. We here note
that the impurity potential terms and effective Hamiltonian
of the topological insulator belong to two separate systems

and the range of their validity should thus not be compared to
each other. As impurity resonances are associated with local
potentials, in some works even infinitely large values of U
have been considered in order to reproduce theoretically the
experimental observations [24,40,41]. To simplify our plots
we express the coupling terms, J , and spin-resolved LDOS in
units of (Jc/h̄2v2

F �BZ)2 and 1/h̄2v2
F �BZ, respectively, where

�BZ is the area of the first Brillouin zone.

A. Impurity states and their exchange interaction contributions

We start by setting the parameters V = 0 and U = 4 eV, in
order to study how the impurities influence the exchange in-
teraction. The plots in Fig. 1(a) and 1(b) show the corrections
from the impurities, δJ = J − J0 with J = H, D, I and J0 =
H0, I0, D0, as a function of the chemical potential μ within
the energy gap for JcS = U/8 and JcS = U/4, respectively. As
a reference we also plot the exchange interactions parameters
for the pristine topological insulator, J0, with black lines. In
Figs. 1(c) and 1(d) we show the corresponding spin-resolved
LDOS in the presence of one impurity and calculated at the
position of the second impurity as a function of energy ε for
the same values of JcS as panels (a) and (b), respectively, and
chemical potential μ = 0.

First, we directly see that in the pristine case, the magnetic
coupling is independent of the chemical potential, within the
gap, in the pristine case. As the Fermi level lies within the gap
of the system, the intraband part of the magnetic susceptibility,
the RKKY interaction, is zero and the coupling can only come
from the interband processes in the susceptibility. The inter-
band processes are independent of the chemical potential, as
long as the Fermi level is between the conduction and valence
bands. These constant exchange interactions obtained for the
impurity-free ultrathin topological insulator films should be
contrasted with the interactions in the presence of impurities,
which acquire both significantly different values and a very
strong energy dependence, here reflected in the variation as a
function of the chemical potential. In fact, we observe that the
correction δJ to the exchange interaction changes the overall
amplitude of the exchange coupling. From this observation,
we conjecture that the carrier density redistributed from the
valence band into the impurity resonances has a substantial
overall influence on the magnetic susceptibility.

Specifically, we see that the isotropic and symmetrically
anisotropic corrections δH and δI even obtain opposite signs
compared to H0 and I0. On the other hand, the asymmetric
anisotropy has significantly different behavior. Since the band
dispersion of a pristine topological insulator film is electron-
hole symmetric, the overlap between states in the conduction
and valence bands, due to their different helicities, result in a
vanishing asymmetric anisotropy D0 for all chemical potential
values inside the gap. But, in the presence of the impurity
resonances, the electron-hole symmetry is broken and the
asymmetric anisotropy becomes finite.

There is also a very strong energy dependence for the
exchange interactions in a specific range of the chemical
potential. More specifically, whenever the chemical potential
μ is positioned between the impurity resonances [see, e.g.,
the range −20 � μ � −15 meV in Figs. 1(a) and 1(c)], the
amplitudes of the magnetic coupling are strongly enhanced
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FIG. 2. Exchange interactions J = H, I, D as a function of U for
R = 12.48 Å, V = 0, and JcS = U/8 for μ = −20 meV (a) and μ =
0 meV (b) and with dotted black lines marking zero.

compared to when both impurity resonances lie on the same
side of the chemical potential. This strong energy dependence
can thus be directly traced back to the emergence of impurity
resonances inside the band gap, as seen in Figs. 1(c) and 1(d).
As a consequence of the finite JcS, the impurity resonances
are spin-split into two spin-polarized resonances [27]. These
two resonances are very close to each other in energy and
hence the interband interaction between them becomes very
large. By increasing the value of JcS [panel (b)], the energy
gap between the two impurity resonances becomes larger
and the correction δJ thus becomes smaller. Moreover, as
the energy gap between the impurity states and the valence
band is smaller than the corresponding gap between these
states and the conduction band, the correction δJ is slightly
higher for energies smaller than the energy of impurity
states.

Considering the properties of the impurities, both the spin-
dependent JcS and spin-independent U parts of the impurity
potential can vary between the impurities. Therefore, in Fig. 2
we plot the exchange couplings J = H, I, D, as a function
of the spin-independent impurity potential U , again keeping
R = 12.48 Å and V = 0 and fixing JcS = U/8, for two dif-
ferent chemical potentials (a) μ = −20 meV and (b) μ =
0 meV. In both cases we observe that the isotropic (symmetric
anisotropic) exchange is positive (negative) for low scattering
potentials but then transitions to negative (positive) values be-
fore diminishing for large U . The asymmetric anisotropy, on
the other hand, vanishes in the absence of a scattering poten-
tial and peaks at small values before slowly approaching zero
for increasing scattering potentials. However, in Fig. 2(a) this
overall smooth dependence on U is interrupted by a sharply
defined region with larger values, in the range U ∼ 3 eV to
U ∼ 4 eV. These boundaries exactly mark the energies where
at least one of the induced impurity resonances coincide with
μ, in analogy with the sharp features in Figs. 1(a) and 1(b).
The substantially increased values of the exchange coupling in
this U range thus originate from that the impurity resonances
residing within the band gap. The absence of the correspond-
ing features in Fig. 2(b) is due to the fact that for this range
of potentials U , the impurity resonances reside in the valence
bands only and thus their effect is not present for the choice
of in-gap value of μ.

FIG. 3. Exchange interactions J = H, I, D as a function of V for
U = 4 eV, JcS = U/8, R = 12.48 Å and different chemical poten-
tials μ = −20 meV (a) and μ = 0 meV (b). (c), (d) Corresponding
spin-resolved LDOS at energy ε = μ in for one impurity at the
location of the other impurity.

B. Giant electrical tunability of magnetism

Having seen a strong dependence for the exchange cou-
pling on the chemical potential, we next turn to the possibility
to easily tune this behavior by applying an external electric
field perpendicular to the plane of the film. We here choose
the range between −50 and 50 meV for the electrical po-
tential drop as that is feasible to achieve for thin films a
few nanometers thick [21]. To explore the signature of such
potential difference in the magnetic exchange interaction, we
present H, I, D in terms of the parameter V for different
values of the chemical potential in Figs. 3(a) and 3(b), while
in Figs. 3(c) and 3(d) we present the relevant spin-resolved
LDOS extracted at energy ε = μ and plotted as a function of
V . Clearly, we see how all the magnetic coupling terms are
significantly higher for V s between two distinct values. In be-
tween these two V values the exchange coupling is in fact very
large, for instance in (b) the Heisenberg coupling increases
by ∼32 times with respect to the unbiased case. For different
chemical potentials the region of enhanced exchange coupling
shifts, but it still exists equally prominently. The existence
of a region with giant exchange couplings and its behavior
with chemical potential and bias is explained by looking at
the spin-resolved impurity resonance positions in Figs. 3(c)
and 3(d). As has been shown before in Ref. [27], the appli-
cation of an electric potential alters the position of impurities
resonance peaks inside the gap, which then also moves the
corresponding region with giant exchange couplings. Thus we
find a giant electric tunability with an extreme sensitivity of
the exchange interactions in an ultrathin topological insulator
film. This giant tunability of the magnetic coupling is very
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FIG. 4. Contour plots of energy-favorable angle between mag-
netic moments, �θ , in the plane of R − V for two different chemical
potentials (a) μ = −20 meV and (b) μ = 0. Here we set U = 4 eV
and JcS = U/8. The relative angles of moments is illustrated by
arrows at some points. Vertical axis in figure starts from R = 1 Å.

special to ultrathin TI films, as it is rooted in the tunable
impurity resonances inside the gap. In most previous studies
of electrical tunability, only around a few tens of percents
have been reported [21,32,33]. It is worth mentioning here
that qualitatively, all features exposed in Figs. 1–3 are also
valid for other impurity distances (See Appendix F).

C. Orientation of magnetic moments

Having shown how two magnetic impurities have a highly
unusual mutual interaction and also with a giant tunability,
we next calculate the spin configuration of two magnetic mo-
ments. We continue to assume classical spins, which means
that the Hamiltonian (6) can be rewritten as

Hex = |S|2 [(H + I ) cos θ1 cos θ2

+ H (cos �ϕ + cos ϕ̃1 cos ϕ̃2) sin θ1 sin θ2

+ D (sin θ1 cos θ2 cos ϕ̃1 − sin θ2 cos θ1 cos ϕ̃2)], (8)

where θ1,2 and ϕ1,2 are the polar and azimuthal angles of
the spin vectors S1,2, respectively. Here, the azimuthal angles
are considered with respect to ϕR, with ϕ̃1(2) = ϕ1(2) − ϕR

and we also define �ϕ = ϕ2 − ϕ1. Following straightforward
calculations presented in Appendix C, we find that the min-
imum energy of two magnetic impurities coupled to each
other is given by tan �θ = D/(H + J ), where �θ = θ2 − θ1

and ϕ1 = ϕ2 = ϕR. The nonalignment between the impurities
is thus described in terms of the phase �θ . This phase is
finite whenever the asymmetric anisotropy is finite (D 	= 0)
but vanishes in its absence. By introducing new spin vari-
ables S̄(θ ) with |S̄| = |S|, azimuthal angle ϕ = ϕR, and polar
angle θ , the effective spin Hamiltonian can be written as
H = S̄(0) · S̄(�θ ) for this arrangement [14].

To further investigate the spin configurations, we plot in
Fig. 4 the relative polar angle �θ between two magnetic
moments, as a function of both the interimpurity distance R
and electric field V for both μ = −20 meV (a) and μ = 0
(b). In both cases the configuration tends towards becoming
ferromagnetic, i.e., �θ = 0, for very small distances between
impurities and all values of V . At finite distances, however,
the phase diagrams display a wide range of different config-
urations, spanning from ferromagnetic through noncollinear
to antiferromagnetic configurations. In particular, at both

chemical potentials distinctive regimes exist where the mo-
ments align toward an antiferromagneticlike configuration,
�θ > π/2, for all distances R > 10 Å: in (a) −10 < V <

0 meV and in (b) 35 < V < 50 meV. We trace these regimes
directly back to the entry and exit of the chemical potential
between the impurity resonances, see, e.g., Figs. 3(a) and 3(b).
Beyond this electric field regime we find that most of the
phase space consists of clearly noncollinear configurations,
where the relative angle is both far from 0 and π , with the
exact configuration determined by R. This is due to the large
influence from the asymmetric anisotropy, which renders the
collinear cases less favorable compared to a noncollinear ar-
rangement.

Extending the results of Fig. 4 to a multi-impurity setup,
we conclude that impurities favor pair configurations that can
be represented by the angle �θ in the ρz plane, where ρ̂

defines the in-plane direction between impurities. Since the
impurities are located in different directions ρ̂, with respect
to each other, the only common axis of all magnetic mo-
ments is along the z axis. Hence, the resulting phase may
most likely be ascribed a noncollinear ferromagnetic nature
but with generally a z-axis component, i.e., an out-of-plane
common component.

IV. CONCLUDING REMARKS

In summary, we have investigated effects of impurity res-
onances on the magnetic exchange coupling between the
magnetic moments located on the surface of ultrathin topo-
logical insulator films. We find that the contribution from the
impurity resonances, typically, is of the same order as the bare
contribution originating from the unperturbed surface states
but become much larger under certain resonance conditions.
We further analyze the importance of the impurity resonances
on the magnetic interactions in terms of the isotropic, symmet-
ric, and antisymmetric anisotropy components. For a pristine
surface, the first two components are finite whereas the last
one vanishes identically. We find that the contribution from
the impurity states on the symmetric anisotropy and isotropic
components, which both leads to collinear alignment of the
magnetic moments, are within the same order of magnitude
as the corresponding contributions from the intrinsic elec-
tronic structure, however, with opposite signs. Overall, this
has a tendency to lead to a weakened collinear coupling.
Most importantly, the noncollinear asymmetric anisotropic
interaction, which is zero for pristine films, acquires a large
contribution from the impurity states and imply that the col-
lective ground state of the magnetic impurities should be
strongly noncollinear.

Furthermore, we show that the applications of an electric
field perpendicular to the ultrathin film can be used as a mech-
anism to shift the energy of the impurity resonances, which
opens up the possibility to electrically tune the properties of
the magnetic interactions. In effect, this mechanism should
provide a tool for tuning between isotropic and anisotropic
interactions, something which clearly has a great impact on
the magnetic state.

Based on our findings we conclude that calculations of the
magnetic exchange interactions, without considering effects
originating from the impurities themselves are oversimplified
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[42]. Hence, there is a great risk of losing interesting and
important features in the system. In particular, the exchange
interaction based on the pristine topological insulator surface
states misses the antisymmetric anisotropic component, which
inevitable leads to the prediction of a noncollinear ferromag-
netic phase. In fact, the easy axis of many magnetic impurities
on the surface of topological insulators is in-plane [28], where
calculations using the pristine system give in-plane ferromag-
netic phase, while some experiments have already shown a
perpendicular magnetic phase [43,44]. However, taking into
account the influence from the impurity states but merely
including the isotropic and symmetric anisotropic components
of the exchange coupling (H + I ) does not provide a sufficient
description, as it leads to an antiferromagnetic phase. Here, we
have shown the importance of the antisymmetric anisotropy
(D) term and the necessity to include it in calculations of
the magnetic phase of ultrathin topological insulator films.
It is this latter component (D) term that leads to a chiral
ferromagnetic phase. Such chiral magnetic phase will clearly
affect previous theoretical studies on QAHE experiments [45].
The QAHE has previously been assumed to be proportional
to the net magnetization in the system. However, it has more
recently been shown that the QAHE persists also in chiral
ferromagnet and chiral antiferromagnetic systems with zero
net magnetization [46], extending the effect to large parts of
the phase diagram uncovered in this work.
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APPENDIX A: REAL SPACE GREEN’S FUNCTION

In this Appendix we provide the components of the bare
Green’s function, i.e., for the pristine ultrathin topologi-
cal insulator film without any impurities, which is used in
the main text in Eq. (5) and also the onsite bare Green’s
function g(ω). The Matsubara Green’s function in recipro-
cal space is given by G0(k; ω) = [iω + μ − H0]−1, which
can be transformed into real-space by taking the Fourier
transformation as

G0(R; ω) = 1

�BZ

∫
dk ei k·R G0(k; ω). (A1)

After some straightforward calculations, the general matrix
form of the bare Green’s function is a 4 × 4 matrix reading

G0(±R; ω) =

⎡
⎢⎢⎢⎣

Gtt ∓e−i ϕR G′
tt Gtb ∓e−i ϕR G′

tb

±ei ϕR G′
tt Gtt ±ei ϕR G′

tb Gtb

Gtb ∓e−i ϕR G′
tb Gbb ∓e−i ϕR G′

bb

±ei ϕR G′
tb Gtb ±ei ϕR G′

bb Gbb

⎤
⎥⎥⎥⎦, (A2)

where ϕR = arctan (Ry/Rx ) denotes the polar angle of the vector R = r − r′ between the two impurities. As we assume the
impurities to be located on the top surface of the ultrathin topological insulator film, we need the upper right block of this matrix,
in which Gtt and G′

tt represent the ↑↑ and ↑↓ spin configurations of the bare Green’s function, respectively, given by

Gtt (R; ω) = π

h̄2v2
F �BZ

∑
s=±

(
1 + sω̄√

ω̄2 − �2

)
(V − s

√
ω̄2 − �2) K0(R̃) (A3a)

G′
tt (R; ω) = −i π

h̄2v2
F �BZ

∑
s=±

(
1 + s

ω̄√
ω̄2 − �2

)
|V − s

√
ω̄2 − �2| K1(R̃) (A3b)

where ω̄ = iω + μ and R̃ = i R (V − s
√

ω̄2 − �2) / h̄vF , and K0,1 are the modified Bessel functions of the second kind. From
these expressions we also find the analytic expression of the onsite Green’s function

g = π

2 h̄2v2
F �BZ

[
(V − ω̄) ln

((h̄vF kc)2 + V 2 + �2 − ω̄2)2 − 4(h̄vF kcV )2

(V 2 + �2 − ω̄2)2

+ 2
V ω̄ + �2 − ω̄2

√
�2 − ω̄2

arctan 2V 2 (h̄vF kc)2 − V 2 + �2 + ω̄2

(�2 + ω̄2)(�2 + ω̄2 − 2V 2)

]
. (A4)

APPENDIX B: SPIN-RESOLVED LDOS

In this Appendix we provide the expression for the spin-resolved LDOS of an ultrathin topological insulator film in the
presence of a single impurity. We use the T -matrix approach to find the dressed Green’s functions. The T -matrix approach
allows for a simple treatment of the scattering of surface Rashba-type electrons from a single impurity placed on the surface of
the ultrathin topological insulator film. By considering a single impurity on the top surface including both an electrostatic and
magnetic scattering potential as in Eq. (3), the LDOS for spin up and down electrons on the top surface of the total system can
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be obtained from the expression

ρ± = − 1

2π
Im tr[(σ0 ± σ) G(R; ε)], (B1)

where G(R; ε) refers to retarded Green’s function, obtained from the Matsubara Green’s function G(R; ω), by letting iω →
ε + i0+. For a ẑ-axis polarized magnetic impurity, the spin-resolved LDOS is given by, see also Ref. [33],

ρ↑ =−1

π
Im

[
g + 4π2(JcS + U )

g(JcS + U ) − 1

( ∑
s=±

s (V − i sγ )K0(R̃)

)2

+ 4π2(JcS − U )

g(JcS − U ) + 1

(∑
s=±

iass(V − i sγ )K1(R̃)

)2]
, (B2a)

ρ↓ =−1

π
Im

[
g + 4π2(JcS − U )

g(JcS − U ) + 1

( ∑
s=±

s (V − i sγ )K0(R̃)

)2

+ 4π2(JcS + U )

g(JcS + U ) − 1

(∑
s=±

iass(V − i sγ )K1(R̃)

)2]
. (B2b)

In the above equations, γ =
√

�2 − (ε + i 0+)2 and as = 1
2 ( ε+i 0+

γ
+ is), with the remaining quantities defined in the main

text or in Appendix A.

APPENDIX C: SPIN ORDERING

In this Appendix we discuss in more detail how to find
the minimizing condition for the relative spin configuration
of two magnetic moments. Equation (8) in the main text is
written in a rotated basis around the ẑ direction by an angle
ϕR, which makes the x̂ axis along the direction between the
two impurities. By applying another rotation of angle −π/2
around the newly defined x̂ axis, the ŷ axis is interchanged
with ẑ: ẑ → −ŷ. Then in this new basis, the Hamiltonian is
written as

Hex = |S|2(H cos θ ′
1 cos θ ′

2 + (H + I ) cos(ϕ′
1 − ϕ′

2) sin θ ′
1

× sin θ ′
2 + D sin(ϕ′

1 − ϕ′
2) sin θ ′

1 sin θ ′
2), (C1)

where θ ′ and ϕ′ are the polar and azimuthal angles, respec-
tively, of the spin vectors in the new basis. The benefit of
working in this new basis is that the Hamiltonian is dependent
only on three angles as it is only related to the difference
between azimuthal angles, φ = ϕ′

1 − ϕ′
2. By minimizing the

Hamiltonian with respect to these three angles we find that
the extrema of the system occur either at one of the five
following points: (θ ′

1, θ
′
2) =, (0,0), (0, π ), (π, 0), (π, π ), or

(π/2, π/2). For the first four points the azimuthal angles are
not well defined and the Hessian matrix, which defines the
concavity of the system, is zero and hence the system is at
a saddle point. At the last point, (θ ′

1, θ
′
2) = (π/2, π/2), the

minimization condition occurs for the relative azimuthal angle
φ = arctan(D/(H + I )). For a true minimum the determinant
of the Hessian matrix, given by

D = −x(x2 − J2) > 0, x = (H + I ) cos φ + D sin φ,

(C2)

should be positive [31,47]. With two φs satisfying the rela-
tion tan φ = D/(H + I ), we take the solution that makes D
positive and arrive at the minimum energy configuration.

APPENDIX D: EFFECT OF δ1k2 TERM

The model describing the hybridization between the two
surfaces of an ultrathin topological insulator film has a gen-
eral k-dependent form, � = δ0 − δ1k2. The k-dependent δ1k2

term is responsible for interesting topological effects [34,48].
However, in the two-dimensional infinite limit without

considering any edges, we expect that this term does not
change the qualitative picture of our results. Hence, for the
sake of simplicity and to be able to achieve at least some
analytical results for the real-space Green’s function, we use
in the main text of this work a hybridization parameter be-
tween the surfaces that is only consisting of the k-independent
constant � = δ0. In this Appendix we further justify our
choice and show how our results must be in agreement with
the result for k-dependent � = δ0 − δ1k2 hybridization pa-
rameter. Figure 5 shows the total density of states of an
ultrathin topological insulator film as a function of energy
for two choices of hybridization parameter; k-independent
� = δ0 and k-dependent � = δ0 − δ1k2. The figure shows
clearly both impurity resonances and their density of states
essentially completely coincide with each other for these two
models. Since the van-Vleck spin susceptibility is primarily
sensitive to the energy of the impurity resonances, we thus
expect that the k dependence of the surface hybridization can
only play a very minor role for the magnetic coupling. We
also note that Ref. [35] have studied the optical conductivity
response for ultrathin topological insulator films, i.e., a related
response function, and there also concluded that the addition

FIG. 5. Total density of states as a function of energy for two
choices of hybridization parameter between the two topological in-
sulator surfaces: k-independent � = δ0 and k-dependent � = δ0 −
δ1k2. Here we choose δ0 = 35 meV (as same as the main text) and
δ1 = 10 eVÅ2 [11]. All other parameters are as same as Fig. 1(c).
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FIG. 6. (a) Heisenberg exchange interaction H contribution from
the impurity states, δH = H − H0, as a function of chemical poten-
tial μ for two impurities located on different surfaces of an ultrathin
topological insulator film, with zero in-plane distance for V = 0,
U = 4 eV, with JcS = U/8, U/4. Response of the pristine ultrathin
topological insulator film is illustrated with a black line for compar-
ison. (b) Total exchange coupling H with respect to potential V for
the same impurity configuration as in (a) at two chemical potentials
μ = 0, −20 meV. Here U = 4 eV and Jc = U/8.

of the δ1k2 term does not change the qualitative behavior of
the system response.

APPENDIX E: INTERSURFACE COUPLING

The ferromagnetic alignment of impurities in topological
insulators have been experimentally observed for impurities
located only on the top surface of topological insulator thin
films [5,49]. This justifies the assumptions employed in this
work, where we study the coupling of impurities located on
only one of the surfaces. However, for the sake of com-
pleteness, and to also address other experiments for which
impurities are located in all parts of the sample, we in this
Appendix study the coupling of two impurities on opposite
surfaces of the ultrathin topological insulator film.

In Fig. 6(a) we show the impurity contributions to the
Heisenberg exchange coupling between two impurities lo-
cated on different surfaces with a zero in-plane distance and
for two choices of JcS. For the sake of comparison, the

FIG. 7. Exchange interactions J = H, I, D as a function of (a) chemical potential μ, (b) impurity strength potential U , and (c) biased
potential V at a distance between impurities of R = 20 Å. Other parameters are: (a) U = 4 eV, JcS = U/8, V = 0, (b) μ = −20 meV, JcS =
U/8, V = 0, and (c) μ = −20 meV, U = 4 eV, JcS = U/8.

contribution from a pristine topological insulator H0 is also
shown in black. The other two types of interactions, D and I ,
are identically zero for the intersurface coupling between im-
purities. This can easily understood since, despite the strong
spin-orbit coupling in TIs, the intersurface tunneling δ is
spin degenerate and, hence, the form of intersurface exchange
coupling reduces to a purely scalar, i.e. Heisenberg-like, in-
teraction [33]. Beyond the D and I interactions being zero,
we also see that the effect arising due to the impurities is
more suppressed for intersurface Heisenberg exchange cou-
pling than for the intrasurface exchange, although not entirely
negligible. In Fig. 6(b) we present the variation of the Heisen-
berg term with respect to the potential V at two different
chemical potentials, μ = 0 and −20 meV. This result sug-
gests that the Heisenberg term is tunable by ∼20% by the
potential V and is of antiferromagnetic type. We note that the
case of only Heisenberg-like interaction between the impuri-
ties on different surfaces technically breaks in the presence
of Rashba splitting generated by V [33]. However, for a
chemical potential inside the gap, pertaining to this work,
the Ising- and Dzyalosinskii-Moriya-like interactions are still
negligible.

APPENDIX F: INTERACTION AT LARGER DISTANCES

In Figs. 1–3 we focus on the exchange interaction at R =
12.48 Å consistent with experiment [2]. Here, we present sim-
ilar results but at the larger impurity-impurity distance, R =
20 Å. In Fig. 7, the exchange interaction is plotted with re-
spect to (a) the chemical potential μ, (b) the spin-independent
scattering potential U , and (c) the electric potential V . These
plots show that the increased impurity-impurity distance does
not change the qualitative behavior, but the results in the
main text hold also at other larger distances. Specifically,
the giant tunability of the interaction by an electric field,
presented in panel (c) remains qualitatively the same. Here
we note that, this larger distance R = 20 Å corresponds to
a density of x = 8% in Bi(2−x)Crx(SeTe)3, which is much
lower than the x = 22% used in experiment to observe the
QAHE [2]. Hence, studies of even larger distances between
the impurities are not important for the purpose of the current
work.
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