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We formulate a theoretical description of antiferromagnetic magnons and their transport in terms of an associ-
ated pseudospin. The need and strength of this formulation emerges from the antiferromagnetic eigenmodes
being formed from superpositions of spin-up and -down magnons, depending on the material anisotropies.
Consequently, a description analogous to that of spin- 1

2 electrons is demonstrated while accounting for the
bosonic nature of the antiferromagnetic eigenmodes. Introducing the concepts of a pseudospin chemical po-
tential together with a pseudofield and relating magnon spin to pseudospin allows a consistent description of
diffusive spin transport in antiferromagnetic insulators with any given anisotropies and interactions. Employing
the formalism developed, we elucidate the general features of recent nonlocal spin transport experiments in
antiferromagnetic insulators hosting magnons with different polarizations. The pseudospin formalism developed
herein is valid for any pair of coupled bosons and is likely to be useful in other systems comprising interacting
bosonic modes.

DOI: 10.1103/PhysRevB.102.174445

I. INTRODUCTION

The bosonic excitations of ordered magnets, magnons,
have become the active ingredient in an emerging paradigm
for spin information transport and processing via magnetic
insulators [1–14]. This has been enabled in part by accom-
plishing electronic injection and detection of magnon spin by
an adjacent normal metal with spin-orbit coupling [15–18].
Magnons in a uniformly ordered ferromagnet1 carry spin in
a fixed direction and were first exploited for such nonlocal
spin transport [19–24]. In this configuration, injection and de-
tection of magnonic spin is accomplished using two spatially
separated heavy metal electrodes via spin Hall effect [15–18].

Subsequently, nonlocal spin transport in easy-axis anti-
ferromagnetic insulators (AFIs) was demonstrated in similar
devices [25,26]. These AFIs host spin-up and -down magnons
as the eigenmodes such that an injection of spin along the
up direction is achieved by inducing an excess of spin-up
magnons [27,28]. Depending on the anisotropy landscape, the
eigenmodes in AFIs can have a variable spin [29,30], includ-
ing zero spin for certain configurations such as an easy-plane
anisotropy, raising the question whether such AFIs can medi-
ate nonlocal spin transport. Recent experimental observations
[31–33] answer this question in the affirmative and highlight
further nontrivial phenomena such as a modulation, including

*akashdeep.kamra@ntnu.no
1Here, we use the term “ferromagnet” in a general sense to include

ferrimagnets, such as yttrium iron garnet. Many of the experiments
have been carried out on the latter material, while the theoretical
models often treat it as a ferromagnet, for simplicity.

reversal, of the excitation spin interpreted in terms of an anti-
ferromagnetic magnon Hanle effect [33]. This paper develops
an understanding of such nonlocal spin transport studies in
AFIs with arbitrary anisotropies and eigenmodes.

The feature that makes bipartite AFIs unique with re-
spect to ferromagnets in the present context is that AFI
eigenmodes at a given wave vector occur in pairs and
thus enable linear combinations or superpositions [29,34,35].
This is reminiscent of a two-level system and inspires as-
sociating a pseudospin with the antiferromagnetic magnons
[33–37]. Such an analogy has previously been discussed
within the Landau-Lifshitz framework for describing the AFI
excitations [34,36]. Considering a quantum field-theoretic
treatment, AFI magnons with an associated pseudospin can
also be compared to itinerant electrons along with their spin.
The corresponding mathematical analogy has also been in-
voked in predicting emergent spin-orbit coupling effects with
AFI magnons [35,37,38], including topological states [9,37,
39–41]. Complementary to this similarity with electrons that
enable a comparison of their eigenmodes, crucial differences
arise from AFI magnons being bosonic excitations as will be
discussed here.

In this paper, we develop a quantum field-theoretic
pseudospin description of AFI eigenexcitations and their
nonequilibrium states demonstrating it to be especially useful
in understanding nonlocal magnonic spin transport. While
sharing similarities with various two-level systems or excita-
tions with two states, antiferromagnetic magnons are found
to provide a unique embodiment of pseudospin due to their
nonconserved bosonic nature. In this way, the similarities and
differences with respect to the case of spin- 1

2 electrons are rec-
ognized and a consistent theory for spin transport in AFIs with
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arbitrary anisotropies is developed. This comparison allows us
to gain physical insights based on the existing understanding
of electronic spin transport [42,43] while adequately account-
ing for the bosonic features of AFI magnons. This also enables
an intuitive understanding of recent nonlocal magnon trans-
port experiments in AFIs [25,31–33] and provides a simple
framework for further predictions.

II. OVERVIEW

In this section, we provide a qualitative discussion of the
physics reported herein and an overview of the results dis-
cussed in subsequent sections. For readers not interested in
mathematical details, this section strives to sum up the main
messages and should suffice for a physical understanding.
While we introduce the pseudospin description in a broader
context of understanding coherently coupled bosonic modes,
the discussion and assumptions are often biased by the sub-
sequent goal of addressing diffusive magnonic transport in
AFIs. The pseudospin description of AFI modes may take
inspiration from photons [32,44] or electrons [35,37], both
of them being two-state excitations. In the present analysis,
we largely compare AFI magnons with electrons. This is, in
part, because AFI magnons scatter strongly [45] and manifest
diffusive transport [27,28] for a wide range of physical param-
eters, similar to itinerant electrons [42]. Furthermore, while
our magnon-based description of an ordered AFI is, strictly
speaking, a low-temperature approximation, it has been found
to work well even at high temperatures [46,47].

Let us first outline some key assumptions made in our
analysis. We assume a Néel ordered AFI and capitalize on the
typical hierarchy of energy scales, i.e., exchange interaction
is assumed to be much stronger than all other energy contri-
butions. This enables a perturbative treatment of anisotropies
and other nonuniversal, material-dependent interactions. Fur-
ther, the ground state is assumed to have the two sublattice
magnetizations antiparallel and oriented collinear with the
z axis. Therefore, spin-up and -down AFI magnons carrying
unit spin parallel to the Néel vector (z axis) constitute our
natural basis. Spin-nonconserving interactions treated as per-
turbation couple the basis modes and enable the formation of
their superpositions [29,30,34,48,49]. This brings us to the
first key difference that AFI magnon pseudospin bears with
respect to electronic spin. The choice of spin quantization axis
for spin-up and -down electronic states is largely arbitrary and
a matter of convenience. Therefore, the basis for describing
electron spin can be chosen with respect to any convenient
axis. For AFI magnons, the Néel vector fixes this direction
and the corresponding spin-up and -down magnons constitute
a preferred natural basis. As a corollary, the magnons may
carry spin only along the equilibrium Néel vector direction,
chosen to be z axis here. This breaking of symmetry in the
pseudospin space is intricately related to the symmetry break-
ing associated with emergence of Néel order in the ground
state.

In Secs. III–V, we analyze and develop the pseudospin
description of two coupled bosonic modes. For concrete-
ness, we consider the latter to be spin-up and -down AFI
magnons disregarding their wave-vector index. This allows us
to introduce the pseudospin operator in terms of the bosonic

FIG. 1. Schematic depiction of the two antiferromagnetic eigen-
modes. The pseudofield vector [see Eq. (19)] depicted as a blue arrow
intersects the Bloch sphere with unit radius at red and green points.
These respectively represent the lower- and higher-energy magnonic
eigenmodes [see Eq. (14)]. As discussed in the text, the depicted
sphere is in the creation operator space.

modes’ ladder operators. We show that the Hamiltonian for
the coupled modes may be expressed as a dot product between
the pseudospin operator and a fictitious pseudofield vector
defined in terms of the coupling. The eigenmodes that result
from a finite coupling may thus be represented by antiparallel
unit vectors aligned with the pseudofield (Fig. 1). For pseud-
ofield pointing along ẑ, the eigenmodes are spin-up and -down
magnons, corresponding to modes with circular precession of
the Néel vector within the Landau-Lifshitz description. For
pseudofield pointing in the x-y plane, the eigenmodes are
comprised by equal superpositions of the spin-up and -down
magnons thereby bearing zero spin, and correspond to linear
oscillation of the Néel vector. The actual eigenmode spin is
proportional to the z component of the pseudospin.

The measurable spin, however, is determined by both the
eigenmodes and their occupation. Thus, in Sec. IV, we in-
troduce a vector pseudospin chemical potential in order to
capture the nature of eigenmodes and their degree of occu-
pation in certain nonequilibrium situations. This also allows
us to conveniently address pseudospin dynamics as discussed
in Sec. V. We show that the pseudospin and its vector chem-
ical potential precess about the pseudofield, analogous to the
case of electron spin precessing about an applied magnetic
field.2 For AFI excitations, this pseudospin precession implies
a transmutation between the various kinds of magnons with
different spins or polarizations (circular and linear).

In Sec. VI, we employ the pseudospin and pseudofield
concepts to obtain a description of diffusive magnon trans-
port in AFIs. We derive a semiphenomenological diffusion
equation for the total pseudospin density and its chemical

2As per our chosen convention, the sense of precession for magnon
pseudospin about pseudofield is opposite to that of electron spin
about a magnetic field due to the negative gyromagnetic ratio of the
latter.
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potential, where the pseudofield averaged over the occupied
modes is shown to induce coherent pseudospin precession
dynamics. The spin and pseudospin decay are introduced via
phenomenological anisotropic relaxation times.

Solving the diffusion equation thus derived, in Sec. VII, we
investigate nonlocal magnon spin transport in an AFI. Here,
we consider a general model for the AFI that continuously
captures situations with spin-1 (circularly polarized) to spin-0
(linearly polarized) magnons as the eigenmodes. We find that,
for the case of spin-zero eigenmodes, the nonlocal magnon
spin signal manifests oscillations as a function of injector-
detector distance and pseudofield magnitude caused by a
pseudospin precession, consistent with the recently reported
AFI magnon Hanle effect [33]. For spin-1 eigenmodes, we
find the usual diffusive propagation of spin mediated by the
magnons. For intermediate cases, we find an oscillating Hanle
contribution that decays on shorter lengths and a positive off-
set [33] contributed by a longer-range transport mediated by
the finite spin of the eigenmode. We conclude with a summary
in Sec. VIII. A perturbative derivation of the pseudofield for
an example AFI model relevant to our discussion in Sec. VII
has been demonstrated in the Appendix.

III. PSEUDOSPIN, PSEUDOFIELD, EIGENMODES,
AND MAGNONIC SPIN

In this section, we analyze the full range of eigenmodes
admitted by two coupled bosonic modes and relate them to
a spin- 1

2 two-level system by describing the former in terms
of a pseudospin operator and a fictitious pseudofield. For
concreteness, we may consider the two bosonic modes to be
spin-up and -down AFI magnons with a fixed wave vector and
carrying a spin ±1 along the z axis.

A. Two coupled modes

We consider two coherently coupled bosonic modes de-
scribed by the Hamiltonian H̃ :

H̃ = ωα α̃†α̃ + ωβ β̃†β̃ + �

2
α̃β̃† + �∗

2
α̃†β̃ (1)

= (α̃† β̃†)

(
ωα �∗/2
�/2 ωβ

)(
α̃

β̃

)
(2)

= α̃†H inα̃, (3)

where α and β, respectively, denote the spin-up and -down
magnons, which constitute our preferred natural basis as dis-
cussed above in Sec. II. ωα,β are the energies of the uncoupled
modes and � accounts for the coherent mode coupling. In
this paper, we set h̄ = 1. We further identify operators with
overhead tilde and matrices and vectors with an underline. The
Hamiltonian in Eq. (1) can be brought to a diagonal form

H̃ = (
ψ̃

†
1 ψ̃

†
2

)(ω1 0
0 ω2

)(
ψ̃1

ψ̃2

)
(4)

= ψ̃
†
Hdiagψ̃, (5)

via a linear transformation α̃ = Pψ̃ substituted in Eq. (3)
leading to

Hdiag =P†H inP. (6)

Since α̃, β̃, ψ̃1, and ψ̃2 are annihilation operators for bosonic
modes, they obey the standard commutation relations which
lead to the condition

P P† = I = P† P, (7)

where I is the 2 × 2 identity matrix. P is thus a unitary matrix
with P† = P−1 making Eq. (6) a standard diagonalization pro-
cedure. The latter is accomplished by solving the eigenvalue
problem defined by

H inχ =λχ, (8)

where the two eigenvalues λ become ω1,2 of Eq. (4) and the
corresponding eigenvectors χ

1,2
make up the columns of P.

We may thus write explicitly

P = (χ
1

χ
2
) =

(
c1α c2α

c1β c2β

)
. (9)

The diagonal elements of Eq. (7) impose the constraints
|ciα|2 + |ciβ |2 = 1 for i = 1, 2, which allows us to express P
via the Bloch sphere representation of the eigenvectors χ

i
:

P =
(

cos
(

θ1
2

)
cos

(
θ2
2

)
e(iφ1 ) sin

(
θ1
2

)
e(iφ2 ) sin

(
θ2
2

)
)

, (10)

where θ1,2 and φ1,2 represent the two eigenvectors on the
Bloch sphere.3 The off-diagonal elements of Eq. (7) further
lead to the condition θ2 = π − θ1 and φ2 = π + φ1, which is
equivalent to reversing the direction of the Bloch sphere rep-
resentation of χ

1
in obtaining that of χ

2
. Employing this, the

transformation matrix P can be described via two antiparallel
vectors starting at the origin and ending on the unit-radius
Bloch sphere (Fig. 1) leading to the following convenient
parametrization:

P =
(

cos
(

θ
2

) −e(−iφ) sin
(

θ
2

)
e(iφ) sin

(
θ
2

)
cos

(
θ
2

) )
, (11)

where the subscript 1 has been dropped from θ and φ. The
relation between the eigenmodes and the assumed natural
basis then becomes

ψ̃ = P−1α̃ = P†α̃, (12)

ψ̃
† = α̃†P, (13)

(
ψ̃

†
1 ψ̃

†
2

) = (α̃† β̃†)

(
cos

(
θ
2

) −e(−iφ) sin
(

θ
2

)
e(iφ) sin

(
θ
2

)
cos

(
θ
2

)
)

.

(14)

To summarize this subsection, the transformation (P) describ-
ing the eigenmodes (ψ̃

†
) in terms of the basis (α̃†) can be

represented via two antiparallel unit vectors on the Bloch
sphere (Fig. 1), which are also the eigenvectors of the Hamil-
tonian matrix H in [Eq. (3)]. This is already suggestive of its
relation to a spin- 1

2 system that we make more explicit in the
next subsection.

3In this representation, an overall phase factor in both the eigenvec-
tors has been disregarded.
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The Bloch sphere, depicted in Fig. 1, is in the space
of creation operators. This is because the transformation
matrix P, which is constituted by the two eigenvectors of the
2 × 2 matrix H in [Eq. (3)], relates the creation operators of
the eigenmodes with those of the basis [Eq. (14)]. This is
in contrast with the typical use of the Bloch sphere, which
is to depict the wave functions (and not any operators) of a
two-level system. Furthermore, it is customary to employ a
related device, Poincaré sphere, in representing polarization
states of classical light fields [50]. Our use of the unit sphere
in representing AFI modes shares similarities and differences
with both of these devices. Nevertheless, we chose to employ
the Bloch sphere terminology in our representation of the AFI
excitations, keeping in mind that it is not a Bloch sphere in the
strict sense and represents excitation creation operators.

B. Pseudospin, pseudofield, and magnon spin

Motivated by the suggestive connection between two cou-
pled modes and spin- 1

2 systems discussed above, we define
the pseudospin operator L̃ = L̃xx̂ + L̃yŷ + L̃z ẑ:

L̃x = 1
2 (α̃†σ xα̃) = 1

2 (α̃β̃† + α̃†β̃ ), (15)

L̃y = 1
2 (α̃†σ yα̃) = i

2 (α̃β̃† − α̃†β̃ ), (16)

L̃z = 1
2 (α̃†σ zα̃) = 1

2 (α̃†α̃ − β̃†β̃ ), (17)

where σ x,y,z are the Pauli matrices. The pseudospin operator
components can be shown to satisfy the standard angular mo-
mentum commutation relations: [L̃ j, L̃k] = iε jkl L̃l . It is also
convenient to define

L̃0 = 1
2 (α̃†σ 0α̃) = 1

2 (α̃†α̃ + β̃†β̃ ), (18)

where σ 0 is the 2 × 2 identity matrix. Employing
Eqs. (15)–(18), the Hamiltonian in Eq. (1) may be written in
terms of the pseudospin operator as

H̃ = 2ω0L̃0 − ω · L̃, (19)

where ω0 and the components of ω, assumed real, are
given by

ω0 = ωα + ωβ

2
, (20)

ωz = −(ωα − ωβ ), (21)

ωx + iωy = −�. (22)

Comparing Eq. (19) with the typical spin- 1
2 Hamiltonian and

employing the analysis of previous subsection, we can directly
see that the Bloch vectors that characterize the eigenmodes
are collinear with ω, as depicted in Fig. 1. The correspond-
ing eigenmode energies become ω0 ∓ |ω|/2. The quantity ω

is thus termed pseudofield as it couples to the pseudospin
in a manner similar to how a magnetic field couples to an
actual spin.

Finally, we can relate the actual magnonic spin to pseu-
dospin by recognizing that α and β modes correspond to spin
+1 and −1 magnons. Therefore, the excitation spin operator
is defined as

S̃ = α̃†α̃ − β̃†β̃ (23)

= 2L̃z. (24)

Knowledge of the pseudofield ω thus allows a simple and
direct understanding of the eigenmodes in terms of the asso-
ciated Bloch vectors that are collinear with the pseudofield
(Fig. 1). For ω ‖ ẑ, the eigenmodes are the same as our nat-
ural basis of spin-up and -down magnons [Fig. 2(a)]. When
ω ‖ x̂, the eigenmodes are spin-zero excitations comprising
equal superpositions of α and β modes [Fig. 2(b)]. In Landau-
Lifshitz description, the two eigenmodes correspond to linear
oscillations of the Néel vector in two orthogonal planes. For
ω ‖ ŷ, the eigenmodes are still spin-zero excitations with dif-
ferent phase factors in the superposition [Fig. 2(c)]. From
Landau-Lifshitz dynamics perspective, the eigenmodes still
correspond to linear oscillations of the Néel vector in two
orthogonal planes, which are rotated by 45◦ with respect to
the eigenmodes corresponding to ω ‖ x̂.

IV. PSEUDOSPIN CHEMICAL POTENTIAL

In the previous section, we have defined the pseudospin
operator along with other quantities and operators that allow
us to describe the eigenmodes. However, we did not discuss
observables and how they can be evaluated. We take up this
task in this section.

We begin by recognizing the problem at hand and compar-
ing it to the case of electrons. The spin carried by an electronic
state can be evaluated once the eigenstate is known since each
state can be occupied only once: the electron is either there
or not. In contrast, the bosonic modes under consideration
here can bear any integer occupation numbers and thus a
knowledge of the eigenmodes does not suffice in determining
the physical quantities such as spin. Our considered natural
basis of α and β modes is spanned by the basis wave functions
|Nα, Nβ〉, where Nα and Nβ denote the integer number of
corresponding excitations and run from 0 to ∞. This basis is,
in principle, complete and can be used to describe any state,
including those which are the eigenstates of ψ1 and ψ2 modes.
This requires keeping track of coherent superpositions and
off-diagonal elements in the density matrix describing the sys-
tem. Such a representation precludes a pragmatic description
in terms of quasiequilibrium distributions and quantities, such
as chemical potential, which only allow diagonal elements of
the density matrix to be nonzero.

To alleviate this problem, we employ an overcomplete ba-
sis by including the eigenstates of ψ1 and ψ2 for all θ and
φ [Eq. (14)]. We thus define a pseudospin chemical potential
vector that captures the necessary off-diagonal coherences in
the density matrix via its direction and vectorial nature. The
solution exploited is again motivated by the corresponding
analysis of electrons [42,43]. Simply put, our defined pseu-
dospin chemical potential vector contains information about
the eigenmodes as well as their nonequilibrium occupancy.

Let us consider eigenmodes characterized by θ , φ

[Eq. (14)] and assume an occupancy of N1 and N2. The
corresponding wave function |N1, N2〉θ,φ can, in principle,
be expressed as a sum over our natural basis states |n1, n2〉0,0,
the latter being a complete basis. However, as discussed
above, we employ an overcomplete basis via eigenstates cor-
responding to general θ and φ. The pseudospin expectation
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FIG. 2. Schematic depiction of AFI eigenmodes for pseudofield ω directed along (a) ẑ, (b) x̂, and (c) ŷ. In the quantum picture, the
eigenmodes are expressed as superpositions of the natural Bloch sphere basis, the spin-up and -down magnons. In the Landau-Lifshitz
description, the eigenmodes correspond to (a) circular precession or (b), (c) linear oscillations of the two sublattice magnetizations.

value for the wave function |N1, N2〉θ,φ is evaluated as

〈L̃x〉 = 1
2 〈α̃†σ xα̃〉 (25)

= 1
2 〈ψ̃†

P†σ xPψ̃〉 (26)

= 1
2 sin θ cos φ(N1 − N2), (27)

〈L̃y〉 = 1
2 sin θ sin φ(N1 − N2), (28)

〈L̃z〉 = 1
2 cos θ (N1 − N2). (29)

Motivated by our present goal of describing the nonequilib-
rium state via quasiequilibrium quantities, we further assume
that the two modes have the same temperature but different
chemical potentials μ1,2 such that

N1,2 =
[
exp

(ω1,2 − μ1,2

kBT

)
− 1

]−1

, (30)

where kB is the Boltzmann constant and T is the temperature.
Employing Eqs. (25)–(30) along with ω1,2 = ω0 ∓ |ω|/2 and
|ω|, |μ1 − μ2| 	 ω0, we obtain the following expression for
the pseudospin expectation value L ≡ 〈L̃〉:

L = 1

2

(
−∂N (ε)

∂ε

∣∣∣∣
ε=ω0

)
(ω + μs), (31)

where N (ε) ≡ 1/{exp[ε/(kBT )] − 1} is the Bose distribution
function and we have defined the pseudospin chemical
potential

μs ≡ (μ1 − μ2)(sin θ cos φx̂ + sin θ sin φŷ + cos θ ẑ). (32)

Thus, we see from Eq. (31) that the pseudospin value has
two contributions. The first is an equilibrium effect stemming
from the energy and, thus, occupancy difference between
the two eigenmodes. The second is caused by an imbalance
of quasichemical potentials making it a nonequilibrium

effect. Within the linear response considered here, both
of these contributions are adequately captured by the
vectors, pseudofield and pseudospin chemical potentials
defined via Eq. (32). The eigenmode information (θ, φ) has
conveniently been absorbed by the directions of pseudofield
and pseudospin chemical potentials allowing for a general
description employing the natural basis. Since the magnon
spin operator is proportional to L̃z [Eq. (24)], the typical
magnon spin accumulation corresponds to the z component
of our pseudospin chemical potential [Eq. (32)].

V. DYNAMICS

Thus far, we have largely considered the equilibrium de-
scription of the two coupled modes. Even in discussing the
pseudospin chemical potential, which represents a nonequi-
librium quantity, we assumed it to point along the pseudofield
that determines the equilibrium modes. We now consider the
situation when pseudospin is not necessarily collinear with the
pseudofield.

Once again, we begin by recognizing the problem at hand
and outlining the solution. Our general goal is to establish a
time dependence of the pseudospin expectation value. The
typical approach would be to determine the time evolution
of the initial wave function and evaluating expectation value
of the pseudospin operator using the time-dependent wave
function. This approach is complicated by the bosonic system
under consideration that allows for a large range of initial
wave functions with different occupancies of the basis states.
A convenient solution is found by working with the Heisen-
berg picture in which the operators themselves evolve while
wave function and density matrix remain constant. The system
dynamics can thus be captured via the operator evolution and
is applicable for any initial density matrix.
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FIG. 3. Schematic depicting the precession of pseudospin chemical potential vector about a pseudofield directed along x̂. The analogous
transmutation between the antiferromagnetic magnonic modes is also shown. The arrow of time goes from left to right.

The Heisenberg equation of motion for the pseudospin
operator becomes

dL̃
dt

= 1

i
[L̃, H̃ ], (33)

where we employ the Hamiltonian as expressed in Eq. (19).
Using the pseudospin commutation relations [L̃ j, L̃k] =
iε jkl L̃l , the time evolution becomes

dL̃
dt

= L̃ × ω, (34)

where ω is the pseudofield. Employing Eq. (31), we obtain the
dynamical equation for pseudospin chemical potential:

dμs

dt
= μs × ω. (35)

We thus see that the pseudospin chemical potential pre-
cesses about the pseudofield similar to the precession of
electron spin chemical potential about an applied magnetic
field [42,51,52]. A difference, however, in the sense of pre-
cession arises due to the negative gyromagnetic ratio of an
electron. To gain further physical insight, we consider the sit-
uation where μs initially points along ẑ while the pseudofield
is directed along x̂ (see Fig. 3). This can be accomplished, for
example, via a nonequilibrium injection of spin-up modes in
an AFI with a hard x-axis anisotropy as discussed in Sec. VII
and the Appendix. The chemical potential therefore precesses
about the x axis in the y-z plane resulting in a nonequilibrium
transformation of the modes. In terms of the classical Landau-
Lifshitz description, the polarization of the injected modes
transmutes from right circular to linear to left circular to linear
and back to right circular. While the modes become linearly
polarized in this transmutation process, the planes of their
polarization make an angle of 45◦ with respect to the planes
corresponding to the eigenmodes’ polarization. The latter cor-
respond to chemical potential pointing along the pseudofield,
x̂ in this case. Similar to the case of electronic spin, dephasing
and decoherence relax the pseudospin chemical potential to
zero while attempting to align it with the pseudofield.

VI. DIFFUSIVE TRANSPORT

In the previous sections, we have considered two coupled
bosonic modes in order to define and understand the key fea-
tures of pseudospin and pseudofield concepts. In an AFI, the
spin-up and -down magnon modes at each wave vector con-

stitute a pair of coupled bosonic modes. Thus, a pseudospin
and pseudofield can be associated with each wave vector k.
The physical response and properties of the AFI, however,
may bear contribution from all wave vectors. In this section,
we consider the diffusive transport of the AFI magnon modes
described in terms of pseudospin. We first resume our discus-
sion of two coupled modes with the goal of achieving physical
insights into the diffusion process. This is then generalized to
include all wave vectors. We thus obtain a semiphenomeno-
logical description of the spin and pseudospin transport in an
AFI. The description thus developed explicitly assumes that
mode coupling � is much smaller than the uncoupled mode
frequencies ωα,β . Since exchange interaction typically sets the
dominant energy scale, this assumption is valid for AFI modes
in all but a small part of the phase space near k = 0, where it
may break down.

A. Two coupled modes

We now derive a diffusive transport equation for the pseu-
dospin carried by two coupled modes. We employ a random
walk model treating the quasiparticles represented by the
modes to scatter after an average time τ while moving with
a speed v. A detailed derivation in the context of electronic
spin transport has been produced elsewhere [42]. Following
a similar procedure and exploiting Eq. (34), we may directly
write the pseudospin diffusion equation in three dimensions:

∂L
∂t

= D∇2L − L − L0

τs
+ L × ω, (36)

where L is now the pseudospin density, D = v2τ/3 is the
diffusion coefficient, L0 is the equilibrium pseudospin den-
sity, and τs is the phenomenological pseudospin relaxation
time. In arriving at the equation above, we have transitioned
from pseudospin to pseudospin per unit volume (density) by
assuming that there is a unit density of states for the two
coupled modes in our system. This transition appears more
natural when we discuss modes characterized by different
wave vectors in the next subsection. Employing Eq. (31), we
can express the pseudospin density as

L = 1

2V

(
−∂N (ε)

∂ε

∣∣∣∣
ε=ω0

)
(ω + μs)

= L0 + 1

2V

(
−∂N (ε)

∂ε

∣∣∣∣
ε=ω0

)
μs, (37)
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where V is the sample volume and the equilibrium contribu-
tion L0 (∝ ω) has been separated. Substituting the expression
above into Eq. (36), we obtain the corresponding diffusive
transport equation in terms of the pseudospin chemical po-
tential:

∂μs

∂t
= D∇2μs − μs←→τ s

+ μs × ω, (38)

where we have also allowed for an anisotropy in the
pseudospin relaxation via a tensorial relaxation time ←→τ s

representing different values for the three components.
Thus, we have obtained a description of diffusive pseu-

dospin transport within our toy model of two coupled modes.
In the next subsection, this will be generalized to the realistic
case of pseudospin transport in an AFI and provides insights
into the approximations involved. We now discuss one such
simplification that has already been employed in the above
derivation. Our considered case of coupled bosonic modes dif-
fers from the case of electrons in two crucial ways. First, in the
case at hand, the total number of quasiparticles is governed by
the mode occupancy given by the Bose-Einstein distribution
while the number of electrons is fixed by the density of states
at the Fermi level. Second, for the case of electrons, charge
neutrality imposes a spatially invariant electron density which
allows a separation of spin and charge transport enabling
the simple diffusive description [42,43]. The corresponding
condition for our case is μ1 + μ2 = 0 [Eq. (30)] and has been
invoked implicitly in achieving Eq. (38). This condition is
fulfilled in typical AFIs due to the strong exchange-mediated
and spin-conserving magnon-magnon scattering processes as
has been shown recently [27,28,45]. Shen explicitly points out
the equivalence of this condition to that of charge neutrality
and screening in metals [27]. While this has been rigorously
derived for easy-axis AFIs only which correspond to pseu-
dospin aligned with the z axis, the more general result for
arbitrary pseudospin directions is treated as an assumption in
our analysis.

B. Contribution from all wave vectors

In this section, we discuss diffusive transport of AFI
magnons in terms of their pseudospin density. For each value
of the wave vector k, an AFI hosts two coupled modes with
the natural basis of spin-up and -down magnons. Therefore,
we may associate a pseudospin with each k and employ the
analysis developed above. As in the case of electrons [42],
we characterize the entire magnon ensemble with a common
pseudospin chemical potential μs. Employing Eq. (37), we
may thus introduce a total pseudospin density S as the sum
over all wave vectors:

S ≡
∑

k

1

2V

(
−∂N (ε)

∂ε

∣∣∣∣
ε=ω0k

)
(ωk + μs) (39)

= χ (ω + μs), (40)

where ω0k is the uncoupled mode energy thereby consti-
tuting the dispersion relation obtained by disregarding the
coupling between the spin-up and -down magnons. Further,

we have defined an effective susceptibility χ and average
pseudofield ω as

χ ≡
∫

d3k

(2π )3

1

2

(
−∂N (ε)

∂ε

∣∣∣∣
ε=ω0k

)
, (41)

ω = 〈ωk〉BZ ≡
∫

d3k
(2π )3 ωk

(− ∂N (ε)
∂ε

∣∣
ε=ω0k

)
∫

d3k
(2π )3

(− ∂N (ε)
∂ε

∣∣
ε=ω0k

) . (42)

With these definitions, we may sum Eq. (36) over all modes
thereby obtaining

∂S
∂t

= D∇2S − S − S0

τs
+ S × ω, (43)

where the quantities now include contribution from all wave
vectors. We continue to assume wave-vector-independent spin
relaxation (τs) and momentum scattering (τ ) times for sim-
plicity. The diffusion constant D is now given by its average
value:

D = 〈Dk〉BZ ≡
∫

d3k
(2π )3

1
3τ (∇kω0k)2

(− ∂N (ε)
∂ε

∣∣
ε=ω0k

)
∫

d3k
(2π )3

(− ∂N (ε)
∂ε

∣∣
ε=ω0k

) , (44)

where (∇kω0k)2 is the squared group velocity of the mode.
Finally, substituting Eq. (40) into Eq. (43) and allowing for
tensorial pseudospin relaxation, we obtain the desired diffu-
sion equation for the AFI pseudospin chemical potential:

∂μs

∂t
= D∇2μs − μs←→τ s

+ μs × ω. (45)

We note again that the usual magnon spin accumulation in
AFIs is given by the z component of the pseudospin chem-
ical potential and is detected in typical nonlocal transport
experiments. Furthermore, the pseudospin current density is
obtained as

js = −D∇S = −Dχ∇μs, (46)

where the current has two directions: one associated with its
flow and the other with its pseudospin component. In Eq. (46)
above, ∇ provides the direction of current flow while the
pseudospin direction is associated with μs.

In our analysis above, we first introduced pseudospin and
related quantities by considering coupling between modes at a
given k. Then, we summed over all modes in achieving the dif-
fusive transport description for the entire magnon ensemble.
As a result, the averaging of various physical quantities over
the Brillouin zone, denoted by 〈·〉BZ, employs −∂N (ω0k)/∂ε

as the weighting function. Partly due to historical reasons, it
is more common to sum over all modes and then consider the
mode coupling or spin, for example, in the case of electrons.
For that order, the weighting function would simply become
N (ω0k). The macroscopic physics observed in typical exper-
iments is expected to be relatively insensitive to the exact
weighting function. This is because the two weighting func-
tions appear similar at not too small temperatures employed in
most experiments and therefore yield comparable values for
the averaged quantities. Furthermore, these effective param-
eters, such as average pseudofield, can be extracted directly
from the experimental fits without making any assumptions
regarding the weighting function.
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FIG. 4. Device schematic for nonlocal magnon spin transport
experiments. A z-polarized magnon spin and pseudospin currents are
injected into and detected from the antiferromagnetic insulator (AFI)
using two spatial separated heavy metal (HM) electrodes.

VII. NONLOCAL SPIN TRANSPORT
IN ANISOTROPIC ANTIFERROMAGNETS

A key goal of our endeavor has been a description of
magnonic spin transport in Néel ordered AFIs with arbi-
trary anisotropies. This is motivated by recent experiments
investigating nonlocal magnon transport in ferrimagnets
[19–21,53,54] and antiferromagnets [25,26,31,33]. In these
experiments (see Fig. 4 for a schematic), a spin current is in-
jected electrically into the magnetic insulator by the electronic
spin accumulation generated in an adjacent heavy metal via
the spin Hall effect [15,17]. The reverse mechanism allows for
an electrical detection of the magnonic spin using a separate
and distant detector heavy metal electrode. In this section, we
employ the diffusive transport description developed above
to investigate magnonic spin and pseudospin transport for
AFIs with a varying nature of their magnonic eigenmodes. We
consider a thin AFI film so that the problem is effectively one
dimensional.

A. Boundary conditions

We first introduce a simplified version of the boundary con-
ditions relevant for the magnon spin injection and detection
via heavy metal electrodes. A thorough analysis and deriva-
tion of these has been accomplished for ferromagnets [22]
and easy-axis AFIs [27,28]. In our analysis above, we have
exploited the hierarchy of energy scales and treated the coher-
ent mode coupling as a perturbation. The latter is a weaker
effect, but determines the nature of AFI eigenmodes. Disre-
garding this coupling, AFI hosts spin-up and -down magnons
as in the case of easy-axis AFIs. Thus, to the lowest (zeroth)
order in mode coupling, we may carry over the boundary
conditions based on easy-axis AFIs. This is tantamount to
treating coupling of the AFI with electrons in the heavy metal
leads to the zeroth order in the perturbation: coherent mode
coupling. In other words, the coherent mode coupling has
been neglected in treating the boundary conditions as it only
contributes a subleading correction to the latter. We further
work in the limit of small spin conductance of the AFI/heavy

metal interfaces [22,27,28]. Thus, the boundary conditions at
the injector electrode become

−Dχ
∂μsz

∂z
= js0, (47)

∂μsx,sy

∂z
= 0, (48)

where js0 is the magnonic spin current density injected into
the AFI by the injector electrode. In typical experiments, js0 is
proportional to the charge current driven through the injector
electrode.

The boundary conditions above imply that only spin-up
and -down magnons can be injected into the AFI by a heavy
metal consistent with our mathematical procedure of dis-
regarding the mode coupling as a perturbation. A physical
picture of this assumption can be painted as follows. Due to
interfacial exchange interaction, an electron spin flip in the
heavy metal can induce a flipping of an AFI spin localized at
the interface. This delivers a localized spin of +1 or −1 to the
AFI which becomes delocalized, respectively, into a spin-up
or -down magnon mode at a timescale inversely proportional
to the exchange energy. Only at a much longer timescale,
inversely proportional to the mode coupling frequency, these
delocalized spin-up or -down magnons recognize that they are
not eigenmodes leading to pseudospin precession as captured
by our diffusion equation (45). Finally, we treat the detec-
tor electrode to be weakly coupled to the AFI such that it
does not significantly influence the magnon transport. The
inverse spin Hall effect voltage in the detector electrode is
thus proportional to μsz, thereby providing a measure of the
magnon spin.

B. One-dimensional pseudospin diffusion

With the goal of understanding nonlocal magnon spin
transport in AFIs hosting different kinds of eigenmodes, we
aim to solve Eq. (45) in one dimension and steady state:

0 = D
∂2μs

∂z2
− μs

τs
+ μs × ω, (49)

where we consider ω = ωxx̂ + ωz ẑ. We have assumed an
isotropic pseudospin relaxation parametrized via time τs.
Here, as discussed in Sec. III, ωx = 0 pertains to the AFI host-
ing as eigenmodes’ spin-1 magnons corresponding to circular
precession of the Néel vector in the Landau-Lifshitz descrip-
tion. On the other hand, ωz = 0 and ωx �= 0 pertains to the AFI
bearing as eigenmodes spin-zero magnons, which correspond
to a linear oscillation of the Néel vector. In the general case
of ωx,z �= 0, the eigenmodes have a spin magnitude between
0 and 1 corresponding to an elliptical precession of the Néel
vector [29,30].

We assume the injector electrode to be located at z = 0 and
extend uniformly along the x direction. The AFI is assumed
to be thin along the y direction (Fig. 4). The problem at
hand is thus one dimensional with physical quantities varying
only with z. Employing boundary conditions as specified by
Eqs. (47) and (48) along with the requirement μs(z → ∞) →
0, Eq. (49) yields the following solution after some algebra:

μsz(z) = μosc(z) + μdec(z), (50)
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(a) (b)

FIG. 5. Oscillating magnon spin chemical potential [Eq. (51)]vs (a) distance from the injector electrode and (b) normalized pseudofield
magnitude. The z component of the pseudospin chemical potential vector corresponds to the magnonic spin accumulation detected in a typical
nonlocal magnon spin transport setup. In (a), we plot the appropriately normalized oscillating contribution to it μosc [Eq. (51)] as a function of
the distance z, normalized by the spin diffusion length ls, from the injector electrode for various values of the normalized pseudofield magnitude
β [Eq. (55)]. A sign reversal in the spin accumulation, resulting from pseudospin precession about the pseudofield, occurs for β � 1 and can
be seen in the curve corresponding to β = 10. In (b), we plot a normalized magnon spin accumulation μosc [Eq. (51)] detected at an electrode a
distance d from the injector as a function of the pseudofield magnitude. Several oscillations can be seen for distances d significantly larger than
the spin diffusion length. The absolute value of μosc, however, diminishes with d making it harder to detect multiple oscillations in experiments.

μosc(z) = ω2
x

ω2
x + ω2

z

ls js0

Dχ (a2 + b2)
e− az

ls

×
[
−b sin

(
bz

ls

)
+ a cos

(
bz

ls

)]
, (51)

μdec(z) = ω2
z

ω2
x + ω2

z

ls js0

Dχ
e− z

ls , (52)

where ls ≡ √
Dτs is the spin diffusion length and we have

additionally defined

a ≡ 1√
2

√
1 +

√
1 + β2, (53)

b ≡ 1√
2

√
−1 +

√
1 + β2, (54)

β2 ≡τ 2
s

(
ω2

x + ω2
z

)
. (55)

Hence, we see that μsz, and thus the nonlocal magnon spin
transport signal, bears a contribution [Eq. (51)] that oscillates
with z [see Fig. 5(a)] on account of the pseudospin precession
while decaying with a characteristic length of ls/a in addition
to a decaying contribution [Eq. (52)] with the usual relaxation
length of ls. The solution provided by Eqs. (50)–(55) allows
the desired general understanding of nonlocal magnon trans-
port in AFIs and constitutes a key result of this work.

C. Discussion of key features

We pause to discuss the physical content of the solution
[Eqs. (50)–(55)] obtained above. For ωx = 0, the AFI hosts
spin-1 magnons that carry a diffusive spin current [Eq. (52)]
decaying with the length scale of ls defined above. This is
consistent with the literature on easy-axis AFIs [25,27,28].

For ωz = 0 and ωx �= 0, spin-1 magnons are injected at
z = 0 but they are no longer the eigenmodes, the latter being
spin-zero magnons. The pseudospin therefore precesses about

the pseudofield giving rise to an oscillation in the magnon spin
and chemical potential arriving at the detector as described
by Eq. (51) [see Fig. 5(a)] [33]. In addition, the relaxation
length is decreased by the factor a [Eq. (53)] on account
of destructive interference in the pseudospin from different
k modes arriving at the detector. For ωz �= 0 and ωx �= 0,
the eigenmodes bear spin between 0 and 1 corresponding
to elliptical precession of the Néel vector and the nonlocal
signal is provided by an interplay between both oscillating
[Eq. (51)] and decaying [Eq. (52)] contributions [33]. In this
case, the pseudospin precession frequency is determined by
the total magnitude of the pseudofield bearing contributions
from ωx and ωz. On the other hand, the decaying contribution
to the nonlocal signal [Eq. (52)] is determined essentially by
the fractional circular polarization content of the eigenmodes
[ω2

z /(ω2
z + ω2

x )].
The pseudospin precession and nonlocal spin transport dis-

cussed here is analogous to the case of spin precession with
electrons [42,51,52], as anticipated at the outset. Thus, our
analysis above allows an understanding of the AFI magnon
pseudospin dynamics and Hanle effect observed recently [33].
The net pseudofield ω can be controlled by changing the
equilibrium configuration of the AFI, e.g., via an externally
applied magnetic field. Thus, the nonlocal signal observed at a
fixed detector electrode oscillates [see Fig. 5(b)] as a function
of an applied field and in accordance with Eqs. (50)–(55).
The exact dependence of the pseudofield on an applied field
depends on the microscopic details of the AFI and can be
evaluated using the results obtained in our Sec. VI. The ob-
served AFI magnon Hanle effect [33] invokes a control of
noncollinearity between the two sublattice magnetizations via
an external field and, thus, strictly speaking, goes beyond
our analysis here restricted to collinear ground states. How-
ever, a successful accounting of the observed signal using
the formalism introduced here justifies its use a posteriori.
A rigorous accounting of the noncollinearity effects will be
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addressed elsewhere. We also note that conventions employed
in this paper differ significantly at various places from those
in Ref. [33].

In obtaining the solution (50)–(55), we have assumed
isotropic pseudospin relaxation parametrized by a single time
τs for simplicity. However, since our preferred natural basis
is spin-up and -down magnons corresponding to pseudospin
pointing along the z direction, we may expect the correspond-
ing relaxation time τsz to be different from τsx,sy for other
pseudospin components. More specifically, we may expect
τsz > τsx,sy since spin-up and -down magnons are our natural
basis while other eigenmodes are formed from their coher-
ent superpositions that are expected to suffer from additional
dephasing mechanisms. Further, in the case considered here,
τsx can be expected to differ from τsy as the pseudofield has
a component along the x direction, thereby breaking the x-y
symmetry.

Solving the diffusion equation (49) above with anisotropic
spin relaxation appears to be, for practical purposes, analyti-
cally intractable. However, we may use the solution (50)–(55)
for the isotropic case to develop qualitative insights for the
anisotropic case. Let us consider τsx ≈ τsy < τsz which may
be expected on physical grounds as discussed above. This im-
plies that pseudospin relaxes faster when it points away from
the z axis. Since the decaying contribution to the nonlocal
signal [Eq. (52)] is mediated simply by the finite magnon spin
and does not involve any pseudospin precession, it is practi-
cally unaffected by smaller dephasing times τsx,sy. Therefore,
this contribution continues to propagate with a length scale
ls. On the other hand, the oscillating contribution to the non-
local signal [Eq. (51)] is a direct consequence of pseudospin
precession requiring it to deviate away from the z axis, it is
expected to decay even faster than ls/a and might be damped
before any oscillation can be manifested.

VIII. SUMMARY

Taking inspiration from the coupled-boson representa-
tion of spin, we have developed a quantum field-theoretic
pseudospin description of the magnonic excitations in an anti-
ferromagnetic insulator (AFI). Employing the simple case of
two coherently coupled bosonic modes, we have introduced
the concepts of pseudospin and pseudofield. These have been
shown to provide a general and intuitive understanding of
eigenmodes in an AFI. The nature of an antiferromagnetic
eigenmode, circular precession, or linear oscillation of Néel
vector has been shown to be associated with points on a
Bloch sphere. The z coordinate of this point pertains to the
actual spin carried by the corresponding magnon mode. We
have shown that in nonequilibrium situations, the pseudospin
precesses about the pseudofield similar to Larmor precession
of an electron spin about an applied magnetic field. This
pseudospin precession corresponds to a transmutation of the
antiferromagnetic modes. Employing these ideas, we have ob-
tained a description for diffusive transport of magnonic spin in
AFIs. Solving the equation thus obtained, we have delineated
the qualitative features of recent experimental reports on non-
local magnon spin transport in AFIs. The role of eigenmode
ellipticity or spin in nonlocal experiments as well as the recent
observation of antiferromagnetic magnon Hanle effect have

been clarified. The methodology developed herein is expected
to find applications in understanding magnonic spin transport
in a broad range of AFIs. Due to its validity for any coherently
coupled bosonic modes, it may also trigger development of
spin-dynamics-inspired physical insights for, among others,
coupled optomechanical [55] and optomagnonic [49,56–59]
systems.
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APPENDIX: MAGNON HAMILTONIAN: PERTURBATIVE
TREATMENT AND PSEUDOFIELD

Considering a concrete antiferromagnetic insulator (AFI)
Hamiltonian, we now elucidate the perturbative evaluation
of the corresponding pseudofield. Furthermore, we wish to
consider a model that allows a continuous transition between
spin-1 and spin-0 magnons as the eigenmodes. Thus, we as-
sume a two-sublattice AFI described by the Hamiltonian

H̃AFI = H̃Z + H̃ex + H̃ea + H̃ha, (A1)

accounting for contributions from the Zeeman (Z), exchange
(ex), easy-axis (ea), and hard-axis (ha) anisotropies given by

H̃Z = μ0|γ |H0

∑
[S̃Az(ri ) + S̃Bz(r j )], (A2)

H̃ex = J
∑
ri,δ

S̃A(ri ) · S̃B(ri + δ), (A3)

H̃ea = −Kea

∑
[(S̃Az(ri ))

2 + (S̃Bz(r j ))
2], (A4)

H̃ha = Kha

∑
[(S̃Ax(ri ))

2 + (S̃Bx(r j ))
2], (A5)

where we continue to set h̄ = 1. Here, S̃A(ri ) [S̃B(r j )] is op-
erator for the spin located at ri (r j) on sublattice A (B), while
δ denotes the vector to a nearest neighbor. We have assumed
an applied magnetic field H0ẑ and γ (< 0) is the gyromag-
netic ratio, same for both sublattices. J (> 0) parametrizes
the antiferromagnetic exchange interaction between the two
sublattices. The positive parameters Kea and Kha account for
anisotropies with easy-axis and hard-axis along z and x di-
rections, respectively. As we will see later, the hard-axis
anisotropy in this model breaks the axial symmetry and spin
conservation about the z axis thereby coherently coupling the
spin-up and -down magnons [29,48,49].

We assume a Néel ordered ground state with the sublattice
A spin pointing along −ẑ while the spin for sublattice B is ori-
ented along ẑ. With this assumed ground state, the linearized
Holstein-Primakoff transformation [60,61] becomes

S̃A+(ri ) =
√

2S ã†
i , S̃A−(ri ) =

√
2S ãi,

S̃Az(ri ) = −S + ã†
i ãi, (A6)
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S̃B+(r j ) =
√

2S b̃ j, S̃B−(r j ) =
√

2S b̃†
j,

S̃Bz(r j ) = S − b̃†
j b̃ j, (A7)

where S̃A± = S̃Ax ± iS̃Ay, S̃B± = S̃Bx ± iS̃By, and S is the spin
magnitude at each site. ãi and b̃ j are the magnon annihilation
operators on sublattices A and B, respectively. Employing
the Holstein-Primakoff transformation above and switching to
Fourier space, the AFI Hamiltonian in Eq. (A1) is simplified
to the following magnon Hamiltonian (disregarding a constant
energy offset):

H̃mag =
∑

k

[Akã†
kãk + Bkb̃†

kb̃k + (Ckãkb̃−k + H.c.)

+ (Dkãkã−k + Ekb̃kb̃−k + H.c.)], (A8)

where

Ak = JSZ + 2KeaS + KhaS + μ0|γ |H0, (A9)

Bk = JSZ + 2KeaS + KhaS − μ0|γ |H0, (A10)

Ck = JSZγk, (A11)

Dk = Ek = KhaS

2
, (A12)

where Z is the coordination number of the lattice, and γk ≡
(1/Z )

∑
δ eik·δ with δ running over nearest neighbors.

In order to perform a perturbative analysis [48,49], we now
split the total magnon Hamiltonian [Eq. (A8)] into base and
perturbation contributions H̃mag = H̃base + H̃pert with

H̃base =
∑

k

[Āk(ã†
kãk + b̃†

kb̃k) + (Ckãkb̃−k + H.c.)], (A13)

H̃pert =
∑

k

[�Ak(ã†
kãk − b̃†

kb̃k)

+ (Dkãkã−k + Ekb̃kb̃−k + H.c.)], (A14)

where we define Āk ≡ (Ak + Bk)/2 and �Ak ≡ (Ak − Bk)/2.
The base Hamiltonian can be diagonalized using a Bogoli-
ubov transformation resulting in [48]

H̃base =
∑

k

ω0k(α̃†
k α̃k + β̃

†
k β̃k), (A15)

where ω0k =
√

Ā2
k − C2

k becomes the dispersion of the uncou-
pled modes. Here, α and β modes are the spin-up and -down
magnons bearing a spin along ẑ of +1 and −1, respectively.
These constitute our natural basis as discussed in the main

text. The Bogoliubov transformation that allowed us to obtain
the diagonal base Hamiltonian (A15) is given by [48]

ãk = ukα̃k − vkβ̃
†
−k, b̃k = ukβ̃k − vkα̃

†
−k, (A16)

uk =
√

Āk + ω0k

2ω0k
, vk =

√
Āk − ω0k

2ω0k
. (A17)

Employing Eq. (A16) above, we may express the perturbation
Hamiltonian [Eq. (A14)] as

H̃pert =
∑

k

�Ak(α̃†
k α̃k − β̃

†
k β̃k) − 4Dkukvk(α̃kβ̃

†
k + α̃

†
k β̃k).

(A18)
In obtaining Eq. (A18) above, we have exploited the relation
Dk = Ek [Eq. (A12)] and the inversion symmetry of the prob-
lem, i.e., all coefficients such as Ak, Dk, . . . remain the same
on replacing k with −k. Furthermore, we have disregarded the
terms, such as ∼α̃kα̃−k, that do not conserve the excitation
number, thereby making the rotating-wave approximation.
Employing Eqs. (21) and (22), the pseudofield ωk can be read
off from Eq. (A18) as

ωk = 8Dkukvk x̂ − 2�Ak ẑ (A19)

= 4KhaSukvk x̂ − 2μ0|γ |H0 ẑ, (A20)

where we have employed Eqs. (A9)–(A12) in simplifying the
expression above.

Thus, we see that the pseudofield [Eq. (A20)] bears
a k-dependent x component resulting from the hard-axis
anisotropy that breaks the axial symmetry about the Néel
vector (z axis). This contribution depends on the base Hamil-
tonian via the factors uk, vk [Eq. (A17)] and decreases with
an increasing wave number. As a result, its contribution ωx

to the pseudofield averaged over all modes is expected to
decrease with an increasing temperature since the thermally
excited modes have larger wave vectors on an average at
higher temperatures. This is reminiscent of a similar argument
presented by Han and coworkers in explaining the temperature
dependence of the spin diffusion length observed in their
experiments [32]. The pseudofield [Eq. (A20)] also bears a
k-independent contribution parallel to the z axis which stems
from the applied field and, therefore, can be controlled di-
rectly. Thus, for the model AFI considered in this section
[Eq. (A1)], it appears easy to tune the relative strengths of
the pseudofield components and, thus, the nature of eigen-
modes hosted. Together with the results discussed in Sec. VII
[Eqs. (50)–(55)], this could enable an experimental investi-
gation of nonlocal magnon spin transport with continuously
varying nature of the eigenmodes.
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