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Unconventional magnetism and electronic state in the frustrated layered system PdCrO2
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First-principles calculations and a model consideration of magnetically frustrated layered material PdCrO2 are
performed. The results on the exchange parameters are in agreement with the experimental data on the Curie-
Weiss temperature (θ ). We show that experimentally observed strong suppression of the Néel temperature (TN )
in comparison with the Curie-Weiss temperature is due to three main factors. First, as expected, this is connected
with the layered structure and relatively small exchange interaction along the c axis. Second, deformation of the
ideal in-plane 120◦ magnetic structure is crucial to provide finite TN value. However, these two factors are still
insufficient to explain low TN and the large frustration factor |θ |/TN . Thus, we suggest a scenario of an exotic
non-Fermi-liquid state in PdCrO2 above TN within the frameworks of the Anderson lattice model, which seems
to explain qualitatively all its main peculiarities.
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I. INTRODUCTION

The metallic layered system PdCrO2 possesses quite un-
conventional magnetic and electronic properties and demon-
strates a number of puzzling (even mysterious) features. First,
this is a rather low Néel temperature TN ≈ 37 K, while the
Curie-Weiss temperature θ characterizing average exchange
field is ∼500 K, so frustration factor |θ |/TN exceeds 13 [1,2].
There is also a number of anomalies in thermodynamic, spec-
troscopic, and transport characteristics. In particular, magnetic
diffuse scattering of neutrons is clearly seen above TN [1],
which implies that the short-range spin correlations start to
develop at temperatures much higher than TN . Moreover, the
magnetic Bragg peaks are broad even at temperatures much
below TN [2]. This fact implies that coherence length of the
ordered moments remains finite. Below TN , the conventional
120◦ spin structure has been observed [2] but later more
detailed investigations found some deformations of this or-
der [3,4].

The magnetic specific heat in PdCrO2 shows a critical
behavior that extends in an unusually wide temperature range
above TN . Interestingly, the critical exponents do not match
with the exponents of the standard models, and they are
also strongly asymmetric above and below TN . As for the
transport properties, a sublinear temperature dependence of
the electrical resistivity (with the exponent about 0.4) above
TN is observed [2]. Such a behavior is quite different from
what we typically have in conventional magnetic metals. The
magnetic entropy at TN is 3.9 J/mol-K [2]. This value is
rather small, being only one-third of the expected entropy
for a system with S = 3/2 localized spins (Cr is 3+ with
electronic configuration 3d3), R ln(2S + 1) = 11.5 J/mol-K
(with R being the universal gaseous constant). This again

stresses the presence of strong short-range spin correlations
at temperatures much above TN . The same conclusion was
made based on an analysis of magnetotransport, namely,
thermoelectric power in magnetic fields [5] and anisotropic
magnetoresistance [6].

To describe qualitatively these anomalous properties, the
model of completely localized Cr spins (which corresponds
to the s − d exchange model [7,8] when treating the elec-
tronic characteristics) was used in Refs. [5,6]. However,
the situation can be more complicated. First, in a very re-
cent spectroscopic study [9], strong enough hybridization
between Cr d − sites and metallic electrons of Pd has been
observed. Also, first-principles dynamical mean-field theory
(DMFT) calculations [10] show that, despite that the Cr
d − electron subsystem is strongly correlated and lies on
the insulating side of Mott transition, they are pretty far
from the atomic limit assumed in Refs. [5,6]. Last but not
least, it follows from the theory of quasi-two-dimensional
magnets [11] that such a high ratio |θ |/TN corresponds to
enormously strong anisotropy of exchange interactions, which
may be difficult to expect in systems with a three-dimensional
metallic Fermi surface clearly seen at low temperatures [6]
and therefore with (supposedly) Ruderman–Kittel–Kasuya–
Yosida (RKKY)-type exchange interactions [7,8]. From a
general point of view, it is much easier to expect a very large
anisotropy due to a strong suppression of interlayer hopping
and interactions in exotic [non-Fermi-liquid (NFL)] phases of
strongly correlated systems [12–14], especially in combina-
tion with magnetic frustrations [15].

In the present paper, we discuss the applicability of the
Heisenberg and Kondo-lattice model to describe magnetism
of PdCrO2. In particular, we calculate from the first principles
in-plane and out-of-plane exchange interactions and show that
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their anisotropy is far from being large enough to explain the
observed ratio of |θ |/TN within the Heisenberg model. Tiny
single ion anisotropy is also useless in solving this puzzle.

The paper is organized as follows. In Sec. II, we present
details of the computation methods. In Sec. III, the results
of density-functional theory (DFT) calculations of electronic
structure and exchange parameters are presented. These pa-
rameters are used to calculate various magnetic characteristics
within the Heisenberg model and to demonstrate that they
cannot explain the observed value of the Néel temperature
TN ≈ 37 K. In Sec. IV, we discuss qualitatively electronic
properties and the applicability of more itinerant Anderson-
lattice model to the system under consideration.

II. COMPUTATIONAL DETAILS

Crystal structure of PdCrO2 is described by the R3̄m (166)
space group. The lattice parameters were taken from Ref. [16]
(a = 2.930 Å and c = 18.097 Å), while atomic positions from
Ref. [17]. To estimate exchange interaction parameters, we
used the total energy calculations, which were performed for
the unit cell consisting of 12 formula units.

We used DFT within the generalized gradient approx-
imation (GGA) [18], taking into account strong Coulomb
correlations via the GGA+U method [19]. The on-site Hub-
bard U repulsion parameter was taken to be 3–4 eV and
Hund’s exchange JH = 0.7 eV. Similar values were suc-
cessfully used for description of electronic and magnetic
properties of various chromium oxides [20,21], including pre-
vious DFT+DMFT calculations of PdCrO2 [10].

Electronic structure GGA+U calculations were per-
formed in the VIENNA AB INITIO SIMULATION PACKAGE [22]
with exchange-correlation potential chosen as proposed in
Ref. [23]. The plane-wave energy cutoff was chosen to be
500 eV. The k-space integration was performed by the tetra-
hedron method and the density of the k mesh we used was
4 × 4 × 4. We checked that a finer mesh (6 × 6 × 6) and a
higher cutoff does not change the results of the calculations.
The convergence criterion for the total energy was chosen to
be 10−5 eV.

To find exchange parameters Ji j of the classical Heisenberg
model, which was written in the following form:

H =
∑
i> j

Ji jSiS j, (1)

where i and j numerate lattice sites, we used the total energy
method as realized in the JASS code [24].

We took advantage of the Luttinger-Tisza method [25]
to find the wave vector Q corresponding to the magnetic
ground state and then used it along with the isotropic ex-
change parameters to estimate the Néel temperature. There
are different options how this can be done for quasi-two-
dimensional and frustrated systems with a low ordering
temperature and strong short-range order above it. It is con-
venient to use various versions of the spin-wave theory
(SWT) which include self-consistent SWT, linear SWT, and
Tyablikov theory [11,26,27]. The spin-wave Tyablikov ap-
proximation corresponds to the large-S case of SWT (see Eqs.
2.34, 2.38, 2.43 in Ref. [27]). Explicit formulas for TN in the
case of the spiral spin configurations [28,29] can be written

for arbitrary spin value as

TN = 1

2
S2

(
1

N

∑
q

Aq

E2
q

)−1

, (2)

where N is the number of q points and the spin-wave dis-
persion E (q) is expressed via coefficients Aq and Bq in the
standard way,

Eq =
√

A2
q − B2

q, (3)

Aq = Jq + 1

2
(Jq+Q + Jq−Q) − 2JQ, (4)

Bq = Jq − 1

2
(Jq+Q + Jq−Q), (5)

where Jq are corresponding Fourier transforms of exchange
parameters Ji j .

It should be noted that these approximations are not valid
if TN is not small as compared to its mean-field value, so
SWT does not work in this case. In such a situation, we
can use the high-temperature Tyablikov approximation [30]
which takes into account non-Bose commutation relations of
spin operators and provides an interpolation to the mean-field
approximation:

TN = 1

2

S(S + 1)

3

(
1

N

∑
q

Aq

E2
q

)−1

. (6)

This result differs from Eq. (2), if S > 1/2. Also, an account
of renormalization factors of self-consistent SWT and field-
theoretical corrections can modify the results of linear SWT
by a factor of about 1.5 [11,26,27]. However, such uncertain-
ties will not be too important for our conclusions.

The summation in Eq. (2) was performed using 500 ×
500 × 500 mesh over the unit cell of the reciprocal space
given by the following vectors: b1 = ( 2π

a ,− 2π√
3a

,− 2π
3c ), b2 =

(0, 4π√
3a

,− 2π
3c ), and b3 = (0, 0, 2π

c ).

III. DFT RESULTS: EXCHANGE PARAMETERS AND
NÉEL TEMPERATURE

Previous DFT calculation of exchange parameters reported
in Ref. [31] unfortunately did not take into account strong
Coulomb correlations, which were recently shown to be im-
portant for PdCrO2 [9,10]. Also, only two in-plane isotropic
exchange parameters were calculated there, namely, between
the nearest and next-nearest neighbors. Interestingly, ab ini-
tio calculations for other Cr-based delafossites, systems with
M = Li, Na, K, Ag, and Au demonstrated that exchange in-
teractions between third-nearest neighbors are not small [32].
Moreover, it was shown to control the magnetic structure of
these materials. It motivated us to consider all these exchange
paths (and moreover two out-of-plane ones, see Fig. 1) in our
calculations and check whether the same situation realizes in
PdCrO2.

Table I summarizes our results obtained within the
GGA+U calculations for various U , while Fig. 2 illustrates
them. First, we notice that they are somehow different from
results of fitting inelastic neutron data, but such a fitting is
based only on the linear SWT and takes into account as many
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FIG. 1. (a) In-plane exchanges paths J1, J2, J3, and (b) out-of-
plane Jc

1 , Jc
2 considered in the paper.

as seven parameters [4]. Second, the mean-field calculated
Curie-Weiss temperature, estimated from the values reported
in Ref. [4], significantly exceeds the experimentally observed
∼−500 K. In addition, one might see that while the exchange
constants depend on Hubbard U , the results do not change
qualitatively if U is varied within reasonable limits.

It is revealing that, similarly to the results of Ref. [32], in
our case interaction between the third in-plane neighbors (J3)
also appears to be of the same order as for the second (J2)
ones. This J3 coupling was argued to occur by means of a
super-super exchange mechanism via p orbitals of two adja-
cent ligands [32,33]. While in MCrS2 it is even larger than the
exchange interaction between nearest neighbors (by absolute
value), in our case much less spatially extended O 2p orbitals
(comparing to S 3p) make this coupling less efficient. Also,
an additional mechanism—RKKY interaction—in metallic
PdCrO2 can modify exchange coupling in our case. The
U dependence of the interaction between the third in-plane
neighbors appears to be of the same order as the second ones.

Strong antiferromagnetic exchange coupling between the
first-nearest neighbors suggests the 120◦ spin ordering, while
both antiferromagnetic J2 and J3 frustrate it. We used
the Luttinger-Tisza method [25] to determine the mag-
netic ground state for calculated exchange parameters and
found that it does correspond to the 120◦ structure [Q =
( 2π

3a , 2π
√

3
3a , ...)] if we consider a purely 2D triangular lat-

tice. An account of both interlayer Jc
1 and Jc

2 exchange
interactions leads to a slightly different in-plane magnetic

TABLE I. Calculated in the GGA+U approximation parameters
of the isotropic exchange interactions (in meV) for various values
of Hubbard U (JH = 0.7 eV). J1–J3 are in-plane exchange paths,
while Jc

1 and Jc
2 correspond to the exchange interaction between the

first and second out-of-plane neighbors. In the last row, Curie-Weiss
temperatures (in K) recalculated from these exchange parameters are
presented.

Ji j U = 3 eV U = 3.2 eV U = 3.5 eV U = 4.eV

J1 5.55 5.15 4.61 3.81
J2 0.20 0.17 0.13 0.09
J3 0.27 0.24 0.21 0.16
Jc

1 −0.11 −0.14 −0.19 −0.23
Jc

2 0.27 0.24 0.20 0.14
θCW −539 −493 −431 −346

FIG. 2. Dependence of the calculated isotropic exchange param-
eters and Néel temperature on Hubbard U . J1, J2, and J3 are first-,
second-, and third-nearest-neighbor exchange couplings (in the ab
plane), while Jc

1 and Jc
2 stand for exchanges between triangular

planes.

structure so an almost 120◦ structure is realized. The new
Q = ( 2π

3a + δx,
2π

√
3

3a + δy,
π
3c ), where δx = 0.078/a and δy =

0.352/a, corresponds to one ≈110◦ and two ≈125◦ in-plane
angles between the magnetic moments in one triangle. It is
interesting that interlayer exchange interaction is of the order
of J3, with one of the out-of-plane exchange parameters being
ferromagnetic. It is also important that for the ideal 120◦
magnetic structure, the exchange interaction between triangle
planes should be zero.

Before we proceed with discussion of the mechanism,
which may explain suppression of the long-range magnetic
order in PdCrO2, one must mention that the ground-state mag-
netic structure found using the Luttinger-Tisza method with
exchange parameters calculated in DFT+U differs from what
was extracted from neutron experiments. While analysis of
experimental results is not straightforward and different mod-
els can be used equally well to describe them, nevertheless,
all of them suggest that spins are not in the ab plane, but are
canted forming coplanar or noncoplanar structures [3,4]. A
dipole-dipole interaction or symmetric anisotropic exchange
were suggested to be the origin of this [4]. Subsequent DFT
calculations found that the energy scale, which is responsible
for this spin canting, is of the order of several 10 μeV [4].
While these fine details of exchange interaction are intriguing,

174438-3



EVGENIA V. KOMLEVA et al. PHYSICAL REVIEW B 102, 174438 (2020)

they are unimportant for further consideration and for our
main conclusion.

In the mean-field theory, one may recalculate the Curie-
Weiss temperature:

θCW = −S(S + 1)

3
Jq=0. (7)

Resulting values for different choices of Hubbard U are sum-
marized in Table. I. We see that the best agreement with the
experimentally observed θ

exp
CW ≈ −500 K [1] takes place for

U = 3.2 eV. We note also that |θCW| in PdCrO2 is much larger
than in sulfides, where the largest θCW is only 108 K [34].

The corresponding mean-field value of the Néel tempera-
ture is somewhat lower owing to frustrations and is mainly
determined by intralayer exchange parameters,

T MF
N = −S(S + 1)

3
Jq=Q, (8)

and is about 250 K.
In fact, in the purely two-dimensional situation, one should

have TN = 0 according to the Mermin-Wagner theorem. The
finite interlayer exchanges determine suppression of TN in our
layered structure [11]. Since the experimental Néel tempera-
ture is very low, TN = 37 K, we can use the linear SWT result
Eq. (2) to estimate its value. To clarify the physical picture, we
consider the spin-wave spectrum near its zeros at q = 0 and
q = Q, which lead to singularities at calculating TN according
to Eq. (2). This can be done by expansions

E2
q = 4(4.5J1 + 0.05J2 + 4.5J3)F (q), (9)

E2
Q−q = (9J1 − 0.2J2 + 9J3)F (q), (10)

where

F (q) = (1.4J1 − 9J2 + 6J3)q2
x

+ (1.6J1 − 9J2 + 6J3)q2
y

+ ( − 0.26Jc
1 + 0.56Jc

2

)
q2

z

+ (
0.36J1 − 0.1J2 − 2.6J3 + 0.9Jc

1 + 3.1Jc
2

)
qxqy

+ (
Jc

1 − 1.74Jc
2

)
(3.1qxqz + 1.8qyqz ). (11)

After diagonalization, this can be written in the new axes
representation as

F (q) = axq2
x + ayq2

y + azq
2
z , (12)

where

ax = 1.7J1 − 9J2 + 6J3,

ay = 1.3J1 − 9J2 + 6J3,

az = −0.26Jc
1 + 0.56Jc

2 − 1.95
(
Jc

1 − 1.74Jc
2

)2
/J1

≈ 0.01J1. (13)

The last (approximate) value for az is rewritten according to
the previously obtained Ji/J1 values.

Formally, at az → 0, the integral (sum) in Eq. (2) is log-
arithmically divergent in the z direction at the singularity
points, and a finite value of az provides a natural cutoff for
the divergence, which defines suppression of the Néel temper-
ature due to quasi-2D magnetic structure.

FIG. 3. Calculated phase diagram (Q-vector) of a 2D triangular
lattice model with three in-plane exchange parameters. Our values
of J2/J1 and J3/J1 are close to 0.03 and 0.05, respectively. In the
green region, Q vector depends on exchange constants and changes
with J2/J1 and J3/J1 ratios. Without going into detail, we would
only like to mention that in fact there are two different phases in
the green region. The dashed black line corresponds to the spin-wave
instability, vanishing ã parameter in Eq. (14).

In the purely two-dimensional situation, one returns to the
ideal 120◦ structure with

F (q) = ã
(
q2

x + q2
y

)
, ã = 1.5J1 − 9J2 + 6J3. (14)

Then the J dependence of the prefactor ã demonstrates
the role of frustrations of exchange interactions. For ã → 0
(straight line in Fig. 3), we have softening of spin-wave spec-
trum, so the zero-point spin-wave correction to the sublattice
magnetization of the triangular lattice diverges and the mag-
netic structure becomes unstable (cf. Ref. [35]).

The numerical integration in Eq. (2) gives Néel temper-
atures equal to 114 K (U = 3 eV), 105 K (U = 3.2 eV),
95 K (U = 3.5 eV), and 79 K (U = 4 eV), as illustrated in
Fig. 2. We see that, first, the calculated values of TN are not
too low and therefore the SWT should be applicable. Second,
as has been explained above, the exchange parameters cor-
responding to U = 3.2 eV fit the experimental Curie-Weiss
temperature the best and therefore a realistic estimation of
Néel temperature, which can be obtained by the SWT is TN =
105 K. This still overestimates TN nearly three times. Thus our
calculations demonstrate insufficiency of the localized-spin
model to describe PdCrO2.

Here we stress once again that even though the transition
temperature estimated from the fitted values given in Ref. [4]
using our above described scheme is closer to the experi-
mentally observed (T [4]

N = 49 K); in this case, one seriously
overestimates the mean-field calculated Curie-Weiss tempera-
ture. In contrast to the reported −725 K, using first-principles
calculations we come to a significantly better agreement
(−493 K).

It’s worth mentioning that the Tyablikov approximation
Eq. (6) for S = 3/2 (which is appropriate for higher TN and
seems to be inapplicable in the present situation) yields the
values which are lower by a factor of 5/9 and underesti-
mate TN in the Heisenberg model. Other versions of modified
SWT [27] can provide the values which are slightly smaller as
compared to Eq. (2). However, this does not change the above
conclusion.
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FIG. 4. Dependence of the transition temperature on the J2/J1,
J3/J1, |Jc

1 /J1|, and Jc
2 /J1 ratios. For each presented set, all the rest ex-

change parameters were fixed at the DFT calculated ratios obtained
with the Hubbard U = 3 eV (see Table I).

One can see from Fig. 4 that TN depends appreciably on
small exchange parameters J2 and J3, so the role of frustra-
tions in formation of the magnetic state is considerable but
not decisive. At the same time, fitting of Ref. [4] introduces
strong frustration (J2/J1 about 0.2), which leads to some in-
consistencies. This figure also illustrates the lowering of the
transition temperature TN with the decrease of the total out-
of-plane exchange parameters Jc

1 and Jc
2 , thus confirming that

our calculations are in agreement with the Mermin-Wagner
theorem.

Finally, another factor, that is, magnetic anisotropy should
be taken into account in discussions of the long-range
magnetic order. The Dzyaloshinskii-Morya interaction is for-
bidden by symmetry and thus we computed only single-ion
anisotropy, again, via total energy method, but now taking into
account the spin-orbit coupling.

The simplest ferromagnetic structure was used for this
purpose. For U = 3.0 eV, we obtained that the configura-
tion with all spins lying in the ab plane is slightly lower in
energy than others, while the single-ion anisotropy constant
D [introduced via the D(Sz )2 term in the spin-Hamiltonian]

is tiny, ∼0.04 meV, and is in fact beyond the accuracy of
our calculations. D is significantly smaller than any of the
calculated out-of-plane exchange interactions, Jc

1 or Jc
2 . Thus,

the single-ion anisotropy cannot practically influence the Néel
temperature.

IV. DISCUSSION OF ELECTRONIC PROPERTIES:
KONDO LATTICE MODEL

Anomalous transport properties of PdCrO2 were discussed
in Refs. [5,6] within the picture of completely localized
chromium spins described by the quasi-two-dimensional
Heisenberg model. However, microscopic calculations of the
exchange parameters presented above clearly show that this
model does not provide, at least, a quantitatively correct
description of the system since the ratio of in-plane to out-
of-plane exchange parameters is clearly not large enough to
explain the very broad range of short-range order without
long-range order, that is, the experimentally observable value
of |θ |/TN . We have to think therefore on an alternative and
probably more complicated picture.

Recent first-principles DFT+DMFT calculations of elec-
tronic structure [10] clearly showed that a 3d electron
subsystem of Cr is strongly correlated and lies in the Mott-
insulator region of the phase diagram. Nevertheless, the
situation is far from the atomic limit—it is definitely not like
in rare-earth elements [36].

Note that despite the importance of correlation effects for
the electronic structure within the DFT+DMFT approach,
it does not mean that these effects are equally important
for the value of exchange parameters. It is known (although
not understood completely) that the DMFT corrections (i.e.,
frequency dependence of the self-energy) to the exchange pa-
rameters are typically much weaker than those for the spectral
density, and one can safely use DFT or DFT+U values [37].

According to Ref. [9], weak binding energy dependence
and the Cr character of the reconstructed weight indicate
that the spectroscopic properties of PdCrO2 are essentially
determined by a Kondo coupling of nearly free electrons in
metallic layers, with localized electrons in a Mott insulating
state in adjacent layers.

Thus, the system can be described by the Anderson lattice
model (or s − d exchange model, which corresponds to the
case where d states are not close to the Fermi level). How-
ever, the situation is outside the Kondo-lattice strong-coupling
heavy Fermi liquid regime (heavy-fermion situation) which
occurs at rather small s − d exchange coupling parameter |I|,
so we have an exponentially small energy scale, the Kondo
temperature of the order of

TK ∼ exp( − 1

2|I|N (EF )
), (15)

where N (EF ) is the bare density of states at the Fermi level.
In the s − d exchange model situation, the exchange cou-
pling parameter I is related to the hybridization Vkd via the
Schrieffer-Wolf transformation [38],

I ∼ |Vkd |2, (16)
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FIG. 5. Hybridization function for the d states of Cr atom ob-
tained according to Ref. [39]. For comparison, the hybridization
function for the f states in γ Ce is also presented [40]. The Fermi
level corresponds to zero energy.

which in turn is related to the hybridization function:

�(ω) =
∑

k

V ∗
kdVkdδ(ω − εk ). (17)

With the values of hybridization function �(ω) as large as
shown in Fig. 5, we are definitely far from the Kondo (or
heavy-fermion) limit. Therefore, the electronic specific heat
is not considerably enhanced. The situation is closer to a
spin-liquid regime. Indeed, in the case of moderate frustration,
even relatively small |I| results in tendency to its stabilization
(the Kondo-stabilized spin liquid) [41,42]. At the same time,
the Néel temperature can remain finite, although small. Below
TN , we have an ordered localized-moment regime, in agree-
ment with the experimental data on PdCrO2. However, with
increasing T we come to an exotic regime with disordered
moments.

The scaling consideration of magnetic ordering formation
in the Kondo lattices with usual spin-wave dynamics [43,44]
gives, as a rule, a sharp crossover with a NFL behavior in a
narrow region. A scaling theory of the Kondo lattices with
frustrated exchange interactions in spirit of the self-consistent
spin-wave theory (SSWT), where spin-wave frequency does
not vanish in the paramagnetic region [27,35], was presented
in Ref. [44]. This yields, depending on the model parameters,
one or two quantum phase transitions into nonmagnetic spin-
liquid and Kondo Fermi-liquid ground states with increasing
the bare coupling constant. Whereas the renormalization of
the magnetic moment in the ordered phase can reach orders of
magnitude, spin fluctuation frequency and coupling constants
are moderately renormalized in the spin-liquid phase.

In our case, we have a different situation—the ground-state
moment is weakly renormalized, so the magnetic transition
is rather sharp. At the same time, strong short-range order
and NFL features are observed in transport properties, so
the SSWT picture is insufficient and we have to go beyond
spin-wave picture, e.g., including spinon excitations (see dis-
cussion in Ref. [44]).

Moreover, it seems that the simple one-parameter scal-
ing consideration is inappropriate, and the PdCrO2 situation
corresponds to an exotic strong-coupling regime, so a more
detailed treatment of this region is required. A description
can be given in terms of the fractionalized Fermi liquid (FL∗)
concept [45,46], the non-Fermi-liquid FL∗ state with decon-
fined neutral S = 1/2 excitations being essentially a metallic
spin-liquid state. Here we have an instability of the heavy
Fermi-liquid (FL) Kondo-lattice state toward a magnetic metal
where the local moments [d ( f ) states] are not part of the
Fermi sea.

In Ref. [45], the FL∗ state was considered as a ground state.
However, in Ref. [46], it was concluded that with lowering
temperature this state ultimately goes to an antiferromag-
netic state. The FL∗ theory includes two distinct diverging
timescales, the shorter one describing fluctuations owing to
the reconstruction of the Fermi surface, and a longer one due
to fluctuations of the magnetic order parameter. The interme-
diate timescale physics on the “magnetic” side is suggested
to be that of a FL∗ state. Thus, on the magnetic side of the
quantum phase transition into the FL state, there should be
an intermediate temperature regime TN < T < T ∗

coh where we
have the FL∗ picture with the small Fermi surface which does
not include d ( f ) states (see Fig. 5 of Ref. [46]). The pres-
ence of two diverging length scales will influence the scaling
properties of a number of physical quantities near the quantum
critical point.

This picture naturally explains the incoherent character
of electron motion perpendicular to Cr layers observed by
angular-dependence magnetoresistance in Ref. [6]. One can
simply adopt an old theory of Anderson [12] suggested for
high-temperature superconducting cuprates. There is a con-
sensus now that his initial suggestion contradicts experimental
data for the cuprates. Nevertheless, theoretically it is cor-
rect that the tunneling between layers is strongly suppressed
and becomes incoherent, if the electronic states within the
layers are not Fermi liquids and demonstrate some kind of
charge-spin separation. It well may be that this idea initially
suggested for the cuprates is applicable rather to PdCrO2. It
would be extremely interesting to check it experimentally in
more detail.

In particular, the study of optical conductivity in the direc-
tion normal to Cr layer, σcc(ω), can be very informative. If
our picture is correct and we have more or less normal Fermi
liquid below TN and incoherent state above TN one can expect
some decrease of the optical spectral weight,

S =
∫ ω0

0
σcc(ω)dω,

when the temperature crosses the Néel point (here ω0 is
some properly chosen cutoff parameter). Importantly, S is
proportional to the kinetic energy of electron motion in the
c direction and therefore provides direct information on the
renormalization of interlayer electron hopping. Second, in the
model of incoherent interlayer electron tunneling one could
expect a peculiar frequency dependence σcc(ω) ∝ ωα with
some noninteger α [12].

Since the effective exchange interaction between Cr ions
is indirect, most likely of the RKKY type, the suppression
of the interlayer electron hopping should also lead to strong
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temperature dependence of effective interlayer exchange pa-
rameters. The latter can be extracted from measurements of
spin-wave spectra at different temperatures by inelastic neu-
tron scattering. Note that for quasi-two-dimensional magnets,
the spin waves are well defined in almost the whole Brillouin
zone up to the temperatures of the order of |θ | rather than
TN [11]. This kind of experiment also looks very promising to
solve the mystery of PdCrO2.

Another interesting consequence of our calculations is
the closeness of the system to the border of stability of
120◦ Néel ground state (see Fig. 3). In Ref. [5], a giant
magnetothermoelectric power was observed and explained
in terms of magnon drag suppressed by magnetic field.
Strong magnon drag corresponds to the regime where the
rate of electron-magnon scattering is much higher than that
of magnon-magnon one. For the triangular-lattice Heisen-
berg model, three-magnon scattering processes are forbidden;
the magnetic field allows such processes and thereby es-
sentially increases the magnon-magnon scattering rate [47].
Since the amplitude of the three-magnon scattering is
proportional to the ratio of magnetic field to some combi-
nation of exchange energies related to the stability of the
Néel state, relative closeness to the transition into a stripy
phase should enhance further the probability of these pro-
cesses and the effect of magnetic field on thermoelectric
power.

V. CONCLUSIONS

Based on the first-principles calculations of exchange in-
teractions, we have demonstrated that PdCrO2 cannot be
described by the frustrated Heisenberg model. In particular,
it is impossible to explain within this picture a very large ratio
|θ |/TN characteristic of this system. Interestingly enough, the
far-neighbor exchange interactions turn out to be relevant in
the determination of the magnetic ground state which shows
a small deviation from the 120◦ magnetic structure suggested
before.

Also keeping in mind anomalous transport properties of
PdCrO2, we hypothesize the formation of an exotic state, pos-
sibly of FL∗ (metallic spin liquid) type. The issue definitely
deserves further theoretical and experimental studies.
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T. K. Kim, T. L. Lee, P. K. Thakur, H. Rosner, A. Georges, R.
Moessner, T. Oka, A. P. Mackenzie, and P. D. C. King, Sci. Adv.
6, eaaz0611 (2020).

[10] F. Lechermann, Phys. Rev. Mater. 2, 085004 (2018).
[11] V. Yu. Irkhin, A. A. Katanin, and M. I. Katsnelson, Phys. Rev.

B 60, 1082 (1999).
[12] P. W. Anderson, The Theory of Superconductivity in the High-Tc

Cuprates (Princeton University Press, Princeton, 1997).

[13] P. A. Lee, N. Nagaosa, and X.-G. Wen, Rev. Mod. Phys. 78, 17
(2006).

[14] X.-G. Wen, Quantum Field Theory of Many-Body Systems
(Oxford University Press, Oxford, 2004).

[15] M. Vojta, Rep. Prog. Phys. 81, 064501 (2018).
[16] R. D. Shannon, D. B. Rogers, and C. T. Prewitt, Inorg. Chem.

10, 713 (1971).
[17] J. P. Doumerc, A. Ammar, A. Wichainchai, M. Pouchard, and

P. Hagenmuller, J. Phys. Chem. Solids 48, 37 (1987).
[18] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,

3865 (1996).
[19] A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Phys. Rev. B

52, R5467 (1995).
[20] M. A. Korotin, V. I. Anisimov, D. I. Khomskii, and G. A.

Sawatzky, Phys. Rev. Lett. 80, 4305 (1998).
[21] S. V. Streltsov, M. A. Korotin, V. I. Anisimov, and D. I.

Khomskii, Phys. Rev. B 78, 054425 (2008).
[22] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
[23] R. Elmér, M. Berg, L. Carlén, B. Jakobsson, B. Norén, A.

Oskarsson, G. Ericsson, J. Julien, T. F. Thorsteinsen, M.
Guttormsen, G. Løvhøiden, V. Bellini, E. Grosse, C. Müntz, P.
Senger, and L. Westerberg, Phys. Rev. Lett. 78, 1396 (1997).

[24] S. Streltsov, Z. Pchelkina, P. Igoshev, and V. Gapontsev, www.
jass-code.org.

[25] J. M. Luttinger and L. Tisza, Phys. Rev. 70, 954 (1946).
[26] V. Yu. Irkhin and A. A. Katanin, Phys. Rev. B. 55, 12318 (1997).
[27] A. A. Katanin and V. Yu. Irkhin, Phys. Usp. 50, 613 (2007).
[28] B. Schmidt, M. Siahatgar, and P. Thalmeier, EPJ Web Conf. 40,

04001 (2013).
[29] B. Schmidt and P. Thalmeier, Phys. Rep. 703, 1 (2017).

174438-7

https://doi.org/10.1016/0921-4526(95)00111-L
https://doi.org/10.1103/PhysRevB.79.104424
https://doi.org/10.1103/PhysRevB.89.104408
https://doi.org/10.1103/PhysRevB.98.024429
https://doi.org/10.1103/PhysRevLett.116.087202
https://doi.org/10.1038/ncomms15001
https://doi.org/10.1126/sciadv.aaz0611
https://doi.org/10.1103/PhysRevMaterials.2.085004
https://doi.org/10.1103/PhysRevB.60.1082
https://doi.org/10.1103/RevModPhys.78.17
https://doi.org/10.1088/1361-6633/aab6be
https://doi.org/10.1021/ic50098a011
https://doi.org/10.1016/0022-3697(87)90140-5
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevB.52.R5467
https://doi.org/10.1103/PhysRevLett.80.4305
https://doi.org/10.1103/PhysRevB.78.054425
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevLett.78.1396.2
http://www.jass-code.org
https://doi.org/10.1103/PhysRev.70.954
https://doi.org/10.1103/PhysRevB.55.12318
https://doi.org/10.1070/PU2007v050n06ABEH006313
https://doi.org/10.1051/epjconf/20134004001
https://doi.org/10.1016/j.physrep.2017.06.004


EVGENIA V. KOMLEVA et al. PHYSICAL REVIEW B 102, 174438 (2020)

[30] A. A. Vladimirov, D. Ihle, N. M. Plakida, Theor. Mat. Phys.
177, 1540 (2013).

[31] Khuong P. Ong and David J. Singh, Phys. Rev. B 85, 134403
(2012).

[32] A. V. Ushakov, D. A. Kukusta, A. N. Yaresko, and D. I.
Khomskii, Phys. Rev. B 87, 014418 (2013).

[33] S. V. Streltsov and D. I. Khomskii, Phys. Usp. 60, 1121 (2017).
[34] P. F. Bongers, C. F. Van Bruggen, J. Koopstra, W. P. F. A. M.

Omloo, G. A. Wiegers, and F. Jellinek, J. Phys. Chem. Solids
29, 977 (1968).

[35] V. Yu. Irkhin, A. A. Katanin, and M. I. Katsnelson, J. Phys.:
Condens. Matter 4, 5227 (1992).

[36] I. L. M. Locht, Y. O. Kvashnin, D. C. M. Rodrigues, M. Pereiro,
A. Bergman, L. Bergqvist, A. I. Lichtenstein, M. I. Katsnelson,
A. Delin, A. B. Klautau, B. Johansson, I. Di Marco, and O.
Eriksson, Phys. Rev. B 94, 085137 (2016).

[37] Y. O. Kvashnin, O. Granas, I. Di Marco, M. I. Katsnelson, A. I.
Lichtenstein, and O. Eriksson, Phys. Rev. B 91, 125133 (2015).

[38] J. R. Schrieffer and P. A. Wolff, Phys. Rev. 149, 491 (1966).
[39] O. Gunnarsson, O. K. Andersen, O. Jepsen, and J. Zaanen,

Phys. Rev. B 39, 1708 (1989).
[40] S. V. Streltsov, A. O. Shorikov, and V. I. Anisimov, JETP Lett.

92, 543 (2010).
[41] P. Coleman and N. Andrei, J. Phys.: Condens. Matter. 1, 4057

(1989).
[42] P. Coleman and A. H. Nevidomskyy, J. Low Temp. Phys. 161,

182 (2010).
[43] V. Yu. Irkhin and M. I. Katsnelson, Phys. Rev. B 56, 8109

(1997).
[44] V. Yu. Irkhin, J. Phys.: Condens. Matter. 32, 125601 (2020).
[45] T. Senthil, M. Vojta, and S. Sachdev, Phys. Rev. B 69, 035111

(2004).
[46] T. Senthil, S. Sachdev, and M. Vojta, Physica B 359–361, 9

(2005).
[47] A. L. Chernyshev and M. E. Zhitomirsky, Phys. Rev. B 79,

144416 (2009).

174438-8

https://doi.org/10.1007/s11232-013-0121-2
https://doi.org/10.1103/PhysRevB.85.134403
https://doi.org/10.1103/PhysRevB.87.014418
https://doi.org/10.3367/UFNe.2017.08.038196
https://doi.org/10.1016/0022-3697(68)90234-5
https://doi.org/10.1088/0953-8984/4/22/019
https://doi.org/10.1103/PhysRevB.94.085137
https://doi.org/10.1103/PhysRevB.91.125133
https://doi.org/10.1103/PhysRev.149.491
https://doi.org/10.1103/PhysRevB.39.1708
https://doi.org/10.1134/S0021364010200105
https://doi.org/10.1088/0953-8984/1/26/003
https://doi.org/10.1007/s10909-010-0213-4
https://doi.org/10.1103/PhysRevB.56.8109
https://doi.org/10.1088/1361-648X/ab5cb0
https://doi.org/10.1103/PhysRevB.69.035111
https://doi.org/10.1016/j.physb.2004.12.041
https://doi.org/10.1103/PhysRevB.79.144416

