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Magnetic anisotropy of uniaxial ferromagnets near the Curie temperature
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We experimentally explore the orientation dependence of the magnetization in single-crystal Co0.77Ru0.23

alloy films and demonstrate that the material remains magnetically anisotropic near and even above the Curie
temperature TC , which is incompatible with the conventional description of anisotropy via temperature-dependent
anisotropy constants. To accomplish an appropriate description of magnetic anisotropy at all temperatures, we
derive an improved, but still simple free-energy description based upon the anisotropic Heisenberg model that is
in excellent agreement with our experimental data.
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I. INTRODUCTION

Magnetocrystalline anisotropy (MCA) is an essential as-
pect of ferromagnetism [1–15]. It defines the critical behavior
of ferromagnetic (FM) systems [4] and without it, FM order
would not exist in ultrathin films [16–19]. For applications,
FM materials are often selected based upon their MCA prop-
erties, as some technologies demand very stable remanent
magnetization states, such as in hard magnets or data stor-
age [20–24], and others require optimized susceptibilities as
in transformers, for instance [25]. Recently, the relevance
of MCA for the stability of skyrmions has been addressed
[26,27] and its electrical control has been enabled [28], illus-
trating the continued relevance of MCA as a crucial research
topic.

In the past two decades, substantial progress has been made
related to the theoretical description of MCA and sophisti-
cated first-principle calculation methods have been developed
to compute its values and even its temperature dependence
accurately, including cases of complex materials and non-
monotonic behavior [11,29,30]. However, even these most
advanced methodologies, which are theoretically and com-
putationally demanding, are generally mapped for analysis
purposes onto a free-energy density description that is depen-
dent on the orientation of the order parameter [3,11,28,29]:

F (T ) = K0(T ) +
∑

n

Kn(T ) · fn(m̂x, m̂y, m̂z ), (1)

for which K0(T ) is the orientation-independent FM energy,
fn(m̂x, m̂y, m̂z ) are functions describing the symmetry of the
system via projections m̂i of the normalized magnetization
vector m̂ onto Cartesian coordinates, and Kn(T ) are anisotropy
constants. Equation (1) is defined in the absence of a magnetic
field but, in practice, an external magnetic field is necessary
to align the magnetization along different crystal orientations.
For the here-relevant example of a system with only the
lowest-order uniaxial MCA, the effect of a magnetic field can
be incorporated as [3]:

FK (T )(T, H ) = K0(T ) − K1(T ) m̂2
z − μ0Ms(T ) m̂ · H. (2)

K1(T ) is the first-order uniaxial anisotropy coefficient and
the last term represents the Zeeman energy [31], where H is
the applied field [32], μ0 the vacuum permeability, and Ms(T )
the saturation magnetization at temperature T. The magnetic
easy axis (EA) is oriented along z. In this approach Kn(T ) and
Ms(T ) are assumed to be independent of H , which is a sen-
sible assumption for temperatures sufficiently below TC . The
temperature dependence of Kn(T ) has been predicted by using
statistical models with various degrees of refinement, includ-
ing detailed magnon spectra and their temperature-dependent
populations [5–11], as well as even more sophisticated first-
principles methods [11,28,29].

However, based upon the above definition, Kn(T ) will ap-
proach zero as T → TC because for formal consistency, the
orientation dependence of the free energy has to disappear if
the order parameter vanishes [5–11]. Given that the Kn are
only T dependent, a vanishing Kn seems to suggest that, for
T � TC no MCA persists. This is contradicted by experiments
where anisotropic susceptibility (AS) was observed in the
thermodynamic paramagnetic (PM) state [33–36]. For uniax-
ial symmetry specifically, one finds in the PM regime that the
free-energy density can be described as [37]

FAS(T, H ) = −μ0M0
s

2
χ‖(T ) H2

‖ − μ0M0
s

2
χ⊥(T ) H2

⊥, (3)

where χ‖ �= χ⊥ are the T-dependent susceptibilities parallel
and perpendicular to the EA, respectively, H‖ and H⊥ the cor-
responding applied field components, and M0

s the saturation
magnetization at T = 0.

This paradox of Kn(T ) vanishing at TC but magnetic sys-
tems retaining MCA reflects the fact that Eq. (1) is not a
useful concept for the description of magnetic systems near
or above TC , where the size of the order parameter itself is
greatly affected by H . Thus, the conventional approach of first
computing Kn(T ) for the magnetic-field-free case using any
level of sophistication and then introducing the outcome of
such calculations into Eq. (2) is bound to fail in the vicinity of
TC or in the paramagnetic regime in general. Correspondingly,
our work here aims at experimentally exploring the existence
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of anisotropic magnetic behavior in the vicinity of TC and
finding a suitable model to describe these experimental ob-
servations. Specifically, we study the magnetic behavior of
uniaxial ferromagnets near TC . Samples with minute mag-
netostatic interactions are hereby needed to avoid domain
formation [38,39] and make Eq. (2) directly applicable. Crys-
talline hexagonal-close-packed (hcp) (101̄0) Co1−xRux alloy
thin films constitute an excellent choice, given their uniaxial
MCA with an in-plane EA parallel to the hcp c axis that makes
the magnetostatic energy essentially irrelevant. In addition,
TC can be tuned by varying the Ru concentration x, while
conserving high crystalline quality [40–43]. Our work here
focuses on Co0.77Ru0.23 alloy samples, whose TC = 417 K
enabled measurements in the most relevant temperature range
from 0.8 � T/TC � 1.2.

The paper is organized as follows: in Sec. II, we de-
scribe all key experimental aspects that were utilized in
the present work. Section III describes the experimental re-
sults and the key discrepancy in between our measurements
and the conventional anisotropy description according to
Eqs. (2) and (3). We then derive a new model description
of temperature-dependent anisotropy effects based upon a
microscopic Hamiltonian that simultaneously considers both
field-induced changes in the size of the magnetization as well
as field-induced magnetization reorientation processes, and
we demonstrate that this approach is suitable to describe all
our experimental results in a quantitatively accurate manner.
Section IV summarizes the conclusions of our study. Fur-
thermore, the Appendix provides detailed information about
the mathematical derivation of our model description, in-
cluding a further refinement to achieve proper behavior at
low temperatures, which is not the primary focus of this
work.

II. EXPERIMENTAL ASPECTS

A series of uniaxial magnetic samples was fabricated onto
Si (110) substrates by means of room-temperature sputter
deposition utilizing a UHV system (ATC series by AJA In-
ternational) with a base pressure of better than 1.2 × 10−6 Pa.
By means of hydrofluoric (HF) acid etching Si (110) sub-
strates immediately before sputter deposition, and by utilizing
a suitable template layer series of Ag (75 nm), Cr (20 nm),
and Cr0.72Ru0.28 (20 nm) prior to growing the ferromag-
netic 50-nm-thick Co0.77Ru0.23 films, the epitaxial growth
of hcp (101̄0) Co1−xRux films can be achieved [40–45].
The multilayer structure of the system is shown schemat-
ically in the inset of Fig. 1(a). Each of our samples was
covered by SiO2 for oxidation and degradation protection.
The crystallographic structure of our samples and especially
the proper epitaxial orientation have been investigated via
x-ray diffraction (XRD) θ -2θ scans utilizing a PANalyti-
cal X’Pert Pro diffractometer with Cu Kα radiation. The
magnetic characterization was performed using a commer-
cial MicroMag 3900 vibrating sample magnetometer. The
magnetometer is equipped with both a 360° rotational stage,
which allows for an angular precision of better than 1°,
and with a furnace, which permits temperature-dependent
magnetization measurements for 293 K � T � 1073 K. Dur-
ing the furnace operation, the sample zone was continuously

FIG. 1. (a) X-ray diffraction θ − 2θ scan of an epitaxial
Co0.77Ru0.23 film sample. Inset: multilayer structure of the sample.
The sample is covered by a 10-nm-thick SiO2 layer (not shown). (b)
Measured stable-state magnetization M (in color code, normalized to
M0, the largest value occurring in the range shown) as a function
of T and H, which was applied along the EA. Inset: computed
magnetization as a function of T/TC and H for the three-dimensional
Ising model.

evacuated by an extraction pump and filled with a constant
flow of helium gas to avoid undesired chemical reactions.
Moreover, to reduce temperature gradients, the oven was
covered by a radiation shield, which allows reliable measure-
ments under stable temperature conditions.

III. RESULTS AND DISCUSSION

The correct epitaxy and crystalline quality of our samples
was verified by means of XRD measurements, as shown in
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the main panel of Fig. 1(a). The scan exhibits only well-
defined diffraction peaks corresponding to Si (220), Ag (220),
Cr (211), Cr0.72Ru0.28 (211), and Co0.77Ru0.23 (101̄0) crystal
planes. The absence of any other diffraction peak and the
fact that the higher-order Co0.77Ru0.23 (202̄0) signal is clearly
visible are both convincing indicators of the excellent crys-
tallographic quality of our samples, which exhibit a uniform
in-plane c-axis orientation that is defining the EA of magneti-
zation for this alloy.

Figure 1(b) shows the measured EA magnetization of the
thermodynamically stable state as a function of T and ap-
plied field strength H in the vicinity of TC , whose value was
determined by the proper scaling analysis of these magneti-
zation data, following the scaling relation derived by Arrott
and Noakes [46]. For T < TC , the magnetization is nearly
independent of H and only changes its sign when H switches
direction, as represented by the discontinuous color change.
Correspondingly, the ferromagnetic system exhibits a phase
boundary along H = 0, whose high-temperature end defines
a critical point at the Curie temperature TC , which itself is
a field-independent quantity. Above TC , the magnetization is
zero for H = 0 and gradually increases with H. The inset in
Fig. 1(b) displays the theoretically expected M(T,H) behavior
of the three-dimensional Ising model [47], which is nearly
identical to our experimental data, thus verifying the suit-
ability of our sample selection to produce macroscopic film
samples that behave like ideal single-domain uniaxial ferro-
magnets. Therefore, our samples can be directly compared
with microscopic models, a fact that we will utilize in the
following discussion about magnetic anisotropy in the vicinity
of T = TC .

To study the MCA near TC , we measured the sample
magnetization as a function of an applied field of decreasing
strength H and the angle α between the EA and the applied
field direction for fixed temperatures T [40,48]. Experimental
results are shown in the left column of Fig. 2, where the
color code represents the magnetization value MH along the
field axis. The measurements at T = 0.8 TC in Fig. 2(a) show
the prototypical behavior of a uniaxial ferromagnet. When
the field is along the EA (α = 0◦, 180°), the magnetization
keeps its saturation value as the field amplitude decreases.
For α = 90◦ and 270°, the magnetization is parallel to the
field direction for high-field values H, but as H decreases, the
magnetization vector rotates towards the EA, resulting in a
decrease of MH , giving the data an archlike appearance. For
T = 0.9 TC , Fig. 2(b) presents a similar behavior, even though
with a slightly weaker orientation dependence of MH . For
T > TC in Figs. 2(c) and 2(d), the magnetization is zero for all
α at H = 0 because the sample is in the PM phase. However,
α-dependent features persist in MH (α, H ) for H > 0, and the
sample displays relevant MCA.

Our experimental data were fitted to the K (T ) model ac-
cording to Eq. (2), with the resulting fits being shown in the
central column of Fig. 2. For T/TC = 0.8 the fit in Fig. 2(e) re-
produces the experimental data very well, so that the residuals
of the fit, shown in Fig. 2(i), nearly vanish everywhere. How-
ever, for temperatures close to and above TC , i.e., the datasets
in Figs. 2(b)–2(d), fits to the K (T ) model in Figs. 2(f)–2(h)
show significant deviations from the experimental data, which
are especially visible in the residual plots in Figs. 2(j)–2(l).

These discrepancies demonstrate that the K (T ) model can-
not reproduce our experimental data, especially near the EA,
where the K (T ) model fails to account for an H-dependent
magnetization. The inclusion of higher-order anisotropy con-
stants according to Eq. (1) does not resolve this discrepancy.

We furthermore fitted our T/TC = 1.1 and the T/TC = 1.2
datasets to the AS model of Eq. (3), which is valid for suf-
ficiently high temperatures. However, this model also does
not reproduce these data very accurately, because it does not
account for still relevant nonlinear MH vs H dependencies,
including magnetization rotations. Only at yet higher T is the
magnetization behavior well described by the AS model of
Eq. (3).

Thus, our data show that neither the K (T ) nor the AS
model can satisfactorily describe experimentally observed
MCA near TC . This is relevant, because experiments and
applications that operate near T = TC , such as pump-probe
experiments or thermally assisted recording, will be crucially
impacted by the evolution of MCA with T. Therefore, an
improved model that overcomes the limitations of Eq. (2) and
Eq. (3) is required. For its derivation, the microscopic Hamil-
tonian of a uniaxial ferromagnet in the presence of an external
field was taken as a starting point, so that the subsequently
computed equilibrium state at temperature T considers the
impact of both competing energies simultaneously. Resorting
to the mean-field approximation (MFA), we calculated the
corresponding free energy, from which self-consistent equa-
tions for the magnetization components resulted as described
in detail in the Appendix.

The energy density of a ferromagnet with single-ion first-
order uniaxial MCA in the presence of an applied field is

H = − 1

N

N,N∑
i< j

JSi · S j + 1

N

N∑
i

κ
[
1 − (

Sz
i

)2]

− μ0M0
s

N

N∑
i

H · Si. (4)

Hereby, Si and S j are spin operators (or unit vectors along
the direction of the spin, in the classical approach) of the ith

and jth out of N total spins in the system. The first term in
Eq. (4) accounts for the isotropic Heisenberg FM exchange
with J > 0 for spins on neighboring lattice sites, the second
term represents the uniaxial MCA energy of strength κ > 0,
which originates from the spin-orbit coupling of the ferromag-
netic material [49] and favors a spin alignment along ẑ, and the
last term is the Zeeman energy. If dipole-dipole interactions
are neglected, H and the thermal averages of Si and S j can be
assumed to lie within the xz plane without loss of generality,
which corresponds to the film plane in our experiments. J and
κ are temperature-independent constants.

Within the vectorial mean-field approximation (VMFA),
derived here and described in detail in the Appendix, and fur-
thermore assuming translational invariance, Eq. (4) simplifies
to

HVMFA = 1
2 qJ〈S〉2 + κ (1 + (ẑ · 〈S〉)2) − Heff · S, (5)
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FIG. 2. (a)–(d): Field-projected magnetization MH = M‖ cos α + M⊥ sin α, normalized to Ms(T ), measured as a function of α and H for
different T/TC (the actual measurement range is hereby α = 0–180◦ while the displayed range covers a full rotation for visual clarity); (e)–(h):
Least-squares fit of Eq. (2) to the datasets shown in (a)–(d), respectively; (i)–(l): Residuals maps, i.e., difference between experimental data
and fits for different T/Tc.

with

Heff = qJ〈S〉 + 2κ (ẑ · 〈S〉)ẑ + μ0M0
s H, (6)

and 〈S〉 being the thermodynamic average of S, which is
proportional to the magnetization M. The case we consider
here is that of a classical spin, which yields a free energy

FVMFA(T, H ) = C − 1

β
ln

(
sinh (βH eff )

βH eff

)
, (7)

where H eff is the modulus of Heff given by Eq. (6), C is a func-
tion independent of Heff , and β = 1/kBT . The magnetization
components parallel and perpendicular to the EA can now be
determined through

Mν

M0
s

= 〈Sν〉 =
(

coth(βH eff ) − 1

βH eff

)
H eff

ν

H eff
, (8)

where ν =‖,⊥. Given that H eff depends on both 〈Sν〉, the
equations for ν =‖ and ν = ⊥ are coupled and need to be
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FIG. 3. (a)–(c) Field-projected magnetization MH = M‖ cos α + M⊥ sin α, computed using Eq. (8), normalized to Ms(T ), as a function of
magnetic field orientation and amplitude for different T/TC . (d)–(f) Least-squares fit of Eq. (2) to the datasets shown in (a)–(c), respectively.
(g)–(i) Corresponding residuals maps.

solved self-consistently, as described in more detail in the
Appendix.

Equation (8) was solved numerically for different values
of H and α for a wide range of temperatures and the resulting
MH (α, H ) simulation data were analyzed. Selected plots are
shown in the left column of Fig. 3. A comparison between
the displayed calculations in Fig. 3 and the experimental data
in Fig. 2 yields an excellent qualitative correspondence further
corroborated by the fits of the VMFA model data in Figs. 3(a)–
3(c) to the K (T ) model. The fit in Fig. 3(d) and the residuals
in Fig. 3(g) reveal that the T/TC = 0.8 VMFA simulation data
are well described by the K (T ) model, i.e., the VMFA model
has the K (T ) model as its low-temperature limit. For higher
T, the VMFA model reproduces the experimentally observed
nonvanishing longitudinal susceptibility, which cannot be fit-
ted by the K (T ) model. In particular, the VMFA model data

for T/TC = 1.1 in Fig. 3(c) show the same features as the
experimental data in Fig. 2(c), including the characteristic be-
havior of the residuals in Fig. 3(i) and Fig. 2(k), respectively.

All calculated VMFA MH (α, H ) datasets were fitted using
the K (T ) model and the AS model. The corresponding coeffi-
cients of determination R2, which symbolize the matching of
the various theoretical models with each other, are shown in
Fig. 4(a) as a function of T. For low T, VMFA becomes in-
distinguishable from the conventional K (T ) model, as shown
by R2 → 1, given that the dominant field-induced process is
magnetization rotation. At high T > TC , the field response is
well described by a linear susceptibility tensor and VMFA
converges to the AS model. For T close to TC the magne-
tization vector rotates and changes its size simultaneously
when applying a field, and neither K (T ) nor AS model fit the
data.
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FIG. 4. (a) Coefficient of determination R2 for the fits of com-
puted MH (α, H ) datasets using the VMFA model of Eq. (8) to the
K (T ) model (blue circles) and the AS model (red squares), as a
function of temperature. (b), (c) Experimental MH (α, H ) datasets for
T/TC = 0.97 and T/TC = 1.03, respectively, with the magnetization
normalized to the maximum measured value (the actual measurement
range is hereby α = 0–180◦ while the displayed range covers a full
rotation for visual clarity). (d), (e) Corresponding maps utilizing the
VMFA model of Eq. (8) for T/TC = 0.97 and T/TC = 1.03.

Our experimental data show the same trend as the VMFA
model calculations. Table I shows R2 values for the fits of
several representative experimental datasets in the vicinity of
TC to all three models. The quality of the experimental data
fits to the K (T ) model decreases as T/TC gets larger, while
the fits to the AS model are only viable for T > TC and neither
model can reproduce our experimental data in the vicinity of
TC . The appropriateness of the VMFA model on the other hand

TABLE I. R2 for least-squares fits of selected experimental data
[shown in Figs. 2(b), 2(c), 4(b), and 4(c)] to the K (T ) model, Eq. (2),
the AS model, Eq. (3), and the VMFA model, Eq. (8).

T/Tc R2 K (T ) model R2 AS model R2 VMFA model

0.9 0.772 21 No convergence 0.932 67
0.97 0.701 13 No convergence 0.876 12
1.03 0.590 67 0.045 0.919 42
1.1 0.468 53 0.208 0.918 55

is corroborated by the high R2 values that we find for fits to
the experimental MH (α, H ) data for all T/TC ratios, including
those in the close vicinity of T = TC .

Figures 4(b) and 4(c) show experimental MH (α, H ) plots
for two temperatures close to TC , and the respective fits to
the VMFA model are shown in Figs. 4(d) and 4(e). The fits
capture all relevant features of the orientation-dependent mag-
netization in a quantitatively accurate manner. Specifically,
the VMFA model accounts for the vanishing magnetization
at H = 0 and T > TC and the nonvanishing longitudinal sus-
ceptibility, which cannot be described by the K (T ) model,
while simultaneously describing magnetization rotation and
saturation processes that the AS model cannot capture.

IV. CONCLUSIONS

In conclusion, the temperature evolution of uniaxial
magnetocrystalline anisotropy has been studied on care-
fully designed samples that allowed us to directly compare
experimental results with thermodynamic descriptions of
magnetic anisotropy. Specifically, we observed significant
anisotropy to persist close to and above TC , which is in-
compatible with the conventional thermodynamic description
based on temperature-dependent anisotropy constants Kn(T ).
High-temperature approximations based on anisotropic sus-
ceptibility are also not appropriate in the vicinity of TC .
The VMFA model described here, which stems from a more
accurate calculation of the temperature and field-dependent
free energy for an appropriate microscopic Hamiltonian, cap-
tures all relevant magnetization processes simultaneously,
including coherent magnetization rotation and nonvanishing
longitudinal susceptibility, and thus fully explains our exper-
imental data. The limiting cases of this VMFA model at low
and high T are the K (T ) and AS models, respectively. The
mathematical expressions for the free energy and magneti-
zation within the VMFA are relatively simple, so that they
can be easily and broadly applied in all studies, in which
temperatures near TC can occur, and for which traditional
models fail [50]. While having focused here on first-order
uniaxial anisotropy effects, the model can easily be extended
to account for higher-order anisotropy constants or other sym-
metries altogether.
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APPENDIX: VECTOR MEAN-FIELD APPROXIMATION

1. Derivation of the vector mean-field approximation

Starting with the energy density Hamiltonian in Eq. (4) in
Sec. III,

H = − 1

N

N,N∑
i< j

JSi · S j + 1

N

N∑
i

κ
[
1 − (

Sz
i

)2]

− μ0M0
s

N

N∑
i

H · Si, (A1)

we make the substitution

Si = 〈Si〉 + δSi, (A2)

where 〈Si〉 is the thermal expectation value of the spin opera-
tor Si and δSi are fluctuations. The substitution leads to

Si · S j = (〈Si〉 + δSi ) · (〈S j〉 + δS j )

= 〈Si〉 · 〈S j〉 + 〈Si〉 · δS j + 〈S j〉 · δSi + δSi · δS j .

(A3)

Within the MFA, fluctuations are assumed to be small, so
terms that are higher than first order in the fluctuations are
neglected, i.e., the term δSiδS j is neglected, leading to

(Si · S j )
MFA = 〈Si〉 · 〈S j〉 + 〈Si〉 · (S j − 〈S j〉)

+ 〈S j〉 · (Si − 〈Si〉)

= 〈Si〉 · 〈S j〉 + 〈Si〉 · S j − 〈Si〉 · 〈S j〉
+ 〈S j〉 · Si − 〈Si〉 · 〈S j〉

= −〈Si〉 · 〈S j〉 + 〈Si〉 · S j + 〈S j〉 · Si. (A4)

Furthermore,(
Sz

i

)2 = (ẑ · Si )
2 = (ẑ · (〈Si〉 + δSi ))

2

= (ẑ · 〈Si〉 + ẑ · δSi )(ẑ · 〈Si〉 + ẑ · δSi )

= (ẑ · 〈Si〉)2 + 2(ẑ · 〈Si〉)(ẑ · δSi ) + (ẑ · δSi )
2. (A5)

Again, neglecting terms of second order or higher in δSi,
i.e., the last term, (ẑ · δSi )2, we derive the MFA equivalent
representation

(Sz
i )2

MFA = (ẑ · 〈Si〉)2 + 2(ẑ · 〈Si〉)(ẑ · (Si − 〈Si〉))

= (ẑ · 〈Si〉)2 + 2(ẑ · 〈Si〉)(ẑ · Si ) − 2(ẑ · 〈Si〉)2

= − (ẑ · 〈Si〉)2 + 2(ẑ · 〈Si〉)(ẑ · Si ). (A6)

Thus, in the VMFA, which is the vector component-
resolved version of the MFA, terms of O(δSiδS j ) and O(δS2

i )
are neglected, so that both, the intersite correlations of fluctu-
ations, δSiδS j , and the intrasite ones, δS2

i , are assumed to be

small. With these approximations, Eq. (A1) can be rewritten
as

HVMFA = 1

2N

N,N∑
i, j

Ji j〈Si〉 · 〈S j〉 − 1

2N

N,N∑
i, j

Ji j (〈S j〉 · Si

+ 〈Si〉 · Sj ) + 1

N

N∑
i

κ[1 + (ẑ · 〈Si〉)2]

− 2

N

N∑
i

κ (ẑ · 〈Si〉)(ẑ · Si ) − μ0M0
s

N

N∑
i

H · Si,

(A7)

or equivalently

HVMFA = 1

2N

N,N∑
i, j

Ji j〈Si〉 · 〈S j〉 + 1

N

N∑
i

κ (1 + (ẑ · 〈Si〉)2)

− 1

N

N∑
i

Heff
i · Si (A8)

with Heff
i =

N∑
j

Ji j 〈S j〉 + 2κ (ẑ · 〈Si〉)ẑ + μ0M0
s H. (A9)

Utilizing translational invariance and considering only
nearest-neighbor interactions, we find

HVMFA = 1
2 q J〈S〉2 + κ (1 + (ẑ · 〈S〉)2) − Heff · S, (A10)

with Heff = q J〈S〉 + 2κ (ẑ · 〈S〉)ẑ + μ0M0
s H, (A11)

where q is the number of nearest neighbors. In a quantum-
mechanical picture, S is the spin operator. In the classical
approach that will be utilized in the following, it is a spin
vector with fixed modulus and components Sx, Sy, and Sz.
Given that uniaxial anisotropy is considered, one can restrict
the analysis of the averages to the plane that contains the field
vector and the EA, which we define as the xz plane. The EA
is along the z axis, so Sz will be represented as S‖, and Sx as
S⊥. Thus, the components of Heff are

H eff
⊥ = qJ〈S⊥〉 + μ0M0

s H sin α, (A12)

H eff
‖ = q J〈S‖〉 + μ0M0

s H cos α + 2κ〈S‖〉, (A13)

where α is the angle between the applied field axis and the
easy axis, and H is the amplitude of the applied field. The
partition function of the system is

Z =
∑
{S}

exp (−βHVMFA), (A14)

and the free energy

FVMFA = − 1

β
ln Z

= 1

2
q J〈S〉2 + κ (1 + (ẑ · 〈S〉)2)

− 1

β
ln

∑
{S}

exp(β Heff · S) (A15)
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with β = 1
kBT . In spherical coordinates, one can write

Heff · S = |Heff ||S| cos θ = H eff cos θ, (A16)

where θ is the angle between the spins and the effective field.
The sum in the last term can be written as an integral over all
orientations that yields∑

{S}
exp(β Heff · S)

= 1

4π

∫ 2π

0
dϕ

∫ π

0
exp

(
βH eff cos θ

)
sin θ dθ

= sinh (βH eff )

βH eff
≡ Z0 (A17)

with

H eff =
√

(H eff
⊥ )2 + (H eff

‖ )2
. (A18)

So, FVMFA is given by

FVMFA = 1

2
qJ〈S〉2 + κ (1 + (ẑ · 〈S〉)2)

− 1

β
ln

(
sinh (βH eff )

βH eff

)
. (A19)

The components of the magnetization are obtained by
means of Mν = − ∂F

∂ (μ0Hν ) , where ν = ⊥, ‖. Useful relations
for the calculation of Mν are

∂H eff

∂ (μ0H⊥)
= M0

s

H eff
⊥

H eff
;

dH eff

d (μ0H‖)
= M0

s

H eff
‖

H eff
, (A20)

which lead to

M⊥
M0

s

= 〈S⊥〉 = − 1

M0
s

∂F
∂ (μ0H⊥)

= − 1

M0
s

∂F
∂H eff

∂H eff

∂ (μ0H⊥)

= 1

β

1

Z0

[
β2H eff cosh (βH eff ) − β sinh (βH eff )

(βH eff )2

]
H eff

⊥
H eff

=
(

coth(βH eff ) − 1

βH eff

)
H eff

⊥
H eff

. (A21)

In the same way, we find

M‖
M0

s

= 〈S‖〉 =
(

coth(βH eff ) − 1

βH eff

)
H eff

‖
H eff

, (A22)

which completes the derivation of Eq. (8) in Sec. III. Since
H eff depends on 〈S⊥〉 and 〈S‖〉, Eqs. (A21) and (A22) are
coupled and need to be solved self-consistently. By doing so
as a function of H and α for different temperatures T one can
compute the type of magnetization maps that are shown in
Figs. 3(a)–3(c), where the magnitude displayed in color code
is the field-projected magnetization 〈S‖〉 cos α + 〈S⊥〉 sin α.

2. Determination of Tc and high-temperature limit

In the vicinity of Tc and in the absence of a magnetic
field, the magnetization is small, so that βH eff 
 1 is ful-
filled. Making use of the Taylor expansion of sinh(x) and of
ln(1 + x), the H eff -dependent part of FVMFA reduces to

F = − 1

β
Ln

(
sinh (βH eff )

βH eff

)

≈ − 1

β
Ln

(
1 + 1

6
(βH eff )

2
)

≈ −1

6
βH eff2

, (A23)

from which follows

M‖
M0

s

= 〈S‖〉 = 1

3
βH eff

‖ , (A24)

M⊥
M0

s

= 〈S⊥〉 = 1

3
βH eff

⊥ . (A25)

Near Tc, the magnetization will be aligned near the z axis
for small H , and in the H → 0 limit it will be parallel to z.
From Eq. (A24) we derive for the limit H → 0 that

〈S‖〉 = β〈S‖〉
3

(qJ + 2κ ) → 〈S‖〉
(

1 − β

3
(qJ + 2κ )

)
= 0.

(A26)

At Tc the term in the parentheses vanishes, from which we
obtain

Tc = 1

3kB
(qJ + 2κ ). (A27)

The βH eff 
 1 approximation is valid for low magnetiza-
tion values. This is the case near Tc for very small H values
only, but for higher temperatures the H range increases, for
which the approximation is valid, because a small H is not
sufficient to induce relevant magnetization levels. Thus, one
can use Eqs. (A24) and (A25) to determine the field depen-
dence of the magnetization at high T . By solving for 〈S⊥〉 and
〈S‖〉, we find

M⊥
M0

s

= 〈S⊥〉 = 1

(3kBT − q J )
H⊥ ≡ χ⊥H⊥, (A28)

M‖
M0

s

= 〈S‖〉 = 1

(3kBT − q J − 2κ )
H‖ ≡ χ‖H‖. (A29)

Equations (A28) and (A29) show that the magnetization
components are proportional to the field components with
different temperature-dependent proportionality factors, i.e.,
susceptibilities, along the easy and hard axes, meaning that the
anisotropic susceptibility model is obtained in the βH eff 
 1
limit. Using Eq. (A27) one can see that the longitudinal sus-
ceptibility χ‖ diverges at Tc while χ⊥ remains finite. Finally,
Eqs. (A28) and (A29) enable us to write the free energy in the
high-temperature limit as

FAS = −μ0M0
s

2
χ‖(T )H2

‖ − μ0M0
s

2
χ⊥(T )H2

⊥, (A30)

and thus enable us to reproduce Eq. (3) of the main text.
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3. Low-temperature behavior and proper refinement

In order to determine the M dependence of the phenomeno-
logical K (T ) resulting from the VMFA model and verify
whether it satisfies the Callen-Callen law, which predicts
K (T ) ∼ M3 at low temperatures for uniaxial anisotropy, the
VMFA model is compared to the macrospin K (T ) model. The
phenomenological expression for the macrospin free energy is
considered

FK (T ) = −μ0Ms(T )m̂ · H − K (T )(m̂ · ẑ)2. (A31)

Taking H to lie perpendicular to the EA, we have

FK (T ) = −μ0Ms(T )H sin θz − K (T )cos2θz, (A32)

where θz is the angle between the EA (z) and the mag-
netization. To obtain the equilibrium condition, FK (T ) is
differentiated with respect to θz and is set to zero:

∂FK (T )

∂θz
= 2K cos θz sin θz − μ0MsH cos θz = 0. (A33)

The equilibrium magnetization orientation is thus given by

sin θz = μ0MsH

2K
= μ0HM0

s 〈S〉
2K

. (A34)

Let us compare Eq. (A34) with the equilibrium magnetiza-
tion angle obtained from Eq. (A19), representing the VMFA,
again assuming that H is perpendicular to the EA:

∂FVMFA

∂θz
= qJ〈S〉∂〈S〉

∂θz
+ 2κcos2θz〈S〉∂〈S〉

∂θz

− 2κ cos θz sin θz〈S〉2 − 〈S〉∂H eff

∂θz
. (A35)

From Eqs. (A12) and (A13), and assuming that μ0M0
s H 


qJ and κ 
 qJ , we find

H eff ≈
√

(qJ )2〈S〉2 + 4qJκ〈S〉2cos2θz + 2qJμ0M0
s H〈S〉 sin θz

= qJ〈S〉
√

1 +
(

4κ

qJ
cos2θz + 2μ0M0

s H

qJ〈S〉 sin θz

)

≈ (qJ + 2κcos2θz )〈S〉 + μ0M0
s H sin θz, (A36)

so that

∂H eff

∂θz
= qJ

∂〈S〉
∂θz

− 4κ〈S〉 cos θz sin θz + 2κcos2θz
∂〈S〉
∂θz

+ μ0M0
s H cos θz. (A37)

Thus, the equilibrium condition is

∂FVMFA

∂θz
= 2κ〈S〉2 cos θz sin θz − μ0M0

s H〈S〉 cos θz = 0,

(A38)

from which

sin θz = μ0M0
s H

2κ〈S〉 (A39)

follows. If we compare Eq. (A39) to Eq. (A34), we see that

K (T ) = κ〈S〉2 ∼ M2, (A40)

and therefore, the Callen-Callen law is not satisfied in the
VMFA approximation. However, this very low-temperature
effect can be overcome if intersite fluctuation correlation ef-
fects O(δSiδS j ) are neglected, but intrasite ones, O(δS2

i ),
are taken into consideration, i.e., if the MFA is applied to
the exchange energy term, but not to the anisotropy energy
term. In this case, the MFA Hamiltonian can be expressed
as follows, after considering nearest-neighbor interactions and
translational invariance:

H̃MFA = 1
2 qJ〈S〉2 + κ − κ (Sz )2 − H̃

eff · S, (A41)

with

H̃
eff = qJ〈S〉 + μ0M0

s H. (A42)

Thus, the free energy has the form

F̃MFA = − 1

β
lnZ

= 1

2
qJ〈S〉2 + κ

− 1

β
ln

(∑
{S}

exp
(
β
(
H̃

eff · S + κS2
z

)))
. (A43)

In order to carry out the spin-state integration explicitly, an
approximation of small anisotropy βκ 
 1 is applied, namely

exp
(
β
(
H̃

eff · S + κS2
z

)) ≈ exp(βH̃
eff · S)

(
1 + βκS2

z

)
. (A44)

The logarithm term in Eq. (A43) can be thus be rewritten
and separated, so that

ln

(∑
{S}

(
1 + βκS2

z

)
exp(βH̃

eff · S)

)

= ln

(∑
{S}

exp(βH̃
eff · S) +

∑
{S}

βκS2
z exp(βH̃

eff · S)

)
.

(A45)

We already demonstrated that∑
{S}

exp(βSH̃
eff

) = sinh (βH̃ eff )

βH̃ eff
≡ Z̃0, (A46)
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where H̃ eff is the magnitude of H̃
eff

. Thus, we only need to
compute∑

{S}
βκS2

z exp(βH̃
eff · S)

= 1

4π

∫ 2π

0
dϕ

∫ π

0
βκcos2θz exp(βH̃ eff cos θ ) sin θ dθ

(A47)

to determine the free energy according to Eq. (A43). Taking
into account that S2

z = cos2θz, where θz is the angle between
the spin and the anisotropy axis, and θ is the angle between
S and H̃

eff
, one can rewrite the integral by using the auxiliary

angle θ̃ , which is the angle between H̃
eff

and the anisotropy
axis z.

The result yields∑
{S}

βκS2
z exp(βH̃

eff · S) = βκZ̃0 f , (A48)

with

f = cos2θ̃ + (1 − 3cos2θ̃ )
1

βH̃ eff

(
coth(βH̃ eff ) − 1

βH̃ eff

)
.

(A49)

The free energy can be written as

F̃MFA = 1

2
qJ〈S〉2 + κ − 1

β
ln(Z̃0(1 + βκ f )), (A50)

which can be further simplified to

F̃MFA = 1

2
qJ〈S〉2 − 1

β
ln

(
Z̃0

) + κ (1 − f ), (A51)

taking again advantage of the assumption βκ 
 1. Following
the procedure in part 1 of the Appendix, the expressions for
the spin components are

〈S⊥〉 = H̃ eff
⊥

H̃ eff
A + f⊥B, (A52)

〈S‖〉 = H̃ eff
‖

H̃ eff
A + f‖B, (A53)

with

A = deff

(
1 + 3

f0κ̃

heff

)
− 3 f0κ̃

(
1 − (ceff )2 + 1

(heff )2

)
,

(A54)

B =
(

1 − 3
deff

heff

)
¯̄κ, (A55)

deff = ceff − 1

heff
, (A56)

ceff = coth (heff ), (A57)

κ̃ = κ

H̃ eff
, (A58)

¯̄κ = κ

qJ
, (A59)

heff = βH̃ eff , (A60)

f⊥ = −2
〈S‖〉2〈S⊥〉

(〈S⊥〉2 + 〈S‖〉2)
2 , (A61)

f‖ = 2
〈S⊥〉2〈 S‖〉

(〈S⊥〉2 + 〈S‖〉2)
2 , (A62)

f0 = 〈S‖〉2

〈S⊥〉2 + 〈S‖〉2 . (A63)

This is a refined version of the VMFA model and at the
temperatures of interest in the experiments, which are close
to Tc, it is basically equivalent to the VMFA model presented
earlier. Utilizing this refined model, we derive from Eq. (A51)
that

∂F̃MFA

∂θz
= qJ〈S〉∂〈S〉

∂θz
−

(
coth(βH̃ eff ) − 1

βH̃ eff

)
∂H̃ eff

∂θz

− κ
∂ f

∂θz

= qJ〈S〉∂〈S〉
∂θz

−
(

〈S〉 − κ
∂ f

∂H̃ eff

)
∂H̃ eff

∂θz
− κ

∂ f

∂θz
.

(A64)

Using the same approximations as for Eq. (A36) we obtain

∂H̃ eff

∂θz
= qJ

∂〈S〉
∂θz

+ μ0M0
s H cos θz. (A65)

On the other hand

∂ f

∂θz
= −2 cos θz sin θz + 6 cos θz sin θz

(
〈S〉 − κ

∂ f

∂H̃ eff

)

× 1

βH̃ eff
+ ∂ f

∂H̃ eff

∂H̃ eff

∂θz
, (A66)

from which follows that

∂F̃MFA

∂θz
= −μ0M0

s H〈S〉 cos θz + 2κ cos θz sin θz

×
(

1 − 3〈S〉
βH̃ eff

(1 − γ )

)
, (A67)

with γ = κ
〈S〉

∂ f
∂H̃ eff 
 1. In equilibrium, Eq. (A67) needs to be

equal to zero, so that

sin θz = μ0M0
s H〈S〉

2κ
(
1 − 3〈S〉

βH̃ eff (1 − γ )
) ≈ μ0M0

s H〈S〉
2κ

(
1 − 3〈S〉

βH̃ eff

) . (A68)

When compared to Eq. (A34), one can identify

K (T ) = κ

(
1 − 3〈S〉

βH̃ eff

)
, (A69)

which for low temperatures can be written as K (T ) ∼ 〈S〉3,
thus recovering the Callen-Callen law.
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