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Stability of in-plane and out-of-plane chiral skyrmions in epitaxial MnSi(111)/Si(111) thin films:
Surface twists versus easy-plane anisotropy
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The revisited theoretical phase diagrams for thin films of cubic helimagnets with the easy-plane anisotropy are
shown to have different topology as previously reported [E. A. Karhu et al., Phys. Rev. B 85, 094429 (2012)].
For both in-plane and out-of-plane directions of an applied magnetic field, the phase diagrams exhibit extensive
areas of stable skyrmions, which overlap for a wide range of anisotropy parameters. Although the existence of
the out-of-plane skyrmions was contradicted within the previous theoretical models, we prove that additional
surface twists lead to their stability, while the moderate easy-plane anisotropy increases the stability range of in-
plane skyrmions. Moreover, the interplay between the anisotropy and the surface twists gives rise to a stable spiral
state canted with respect to the surfaces. Being absent in bulk helimagnets, this oblique spiral occupies vast areas
at the phase diagrams in thin-film nanosystems and serves as a connecting-link between cones and helicoids. Our
theory gives clear directions for renewed experimental studies of in-plane and out-of-plane skyrmions in epitaxial
MnSi(111)/Si(111) thin films.
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I. INTRODUCTION

Chiral magnetic skyrmions—nanoscale particle-like topo-
logical excitations [1–3]—were first observed in MnSi, a
helimagnet with the cubic chiral B20-structure [4,5]. In the
bulk MnSi, skyrmions condense into a periodic skyrmion lat-
tice (SkL) in a small pocket of the temperature-magnetic field
phase diagram surrounded by the vast region of the conical
state stability. It was shown that weak interactions such as the
softening of the magnetization modulus [6,7], dipolar interac-
tions, fluctuations [5,8], and so on grant the thermodynamical
stability to the SkL in the A-phase region.

The first direct observations of chiral skyrmions in
nanolayers of cubic helimagnets (Fe0.5Co0.5)Si [9] and FeGe
[10] swerved the research focus from the bulk helimagnets
to nanostructures with different geometries. High-symmetry
nanostructured objects (like magnetic nanowires [11], nan-
odisks [12,13], or nanoparticles [14]) provide the stabilization
effect of surfaces on the skyrmion states. As a result, the
skyrmions were observed in a much broader range of tem-
peratures and magnetic fields. Moreover, nanostructures open
up the perspectives to create chiral magnetic configurations
that do not exist in bulk materials, e.g., so called target-
skyrmions—skyrmions with a doubly twisted core and a
number of concentric helicoidal undulations [15,16]. Along-
side with the low critical currents needed to set skyrmions into
motion [17,18], the enhanced skyrmion stability in nanosys-
tems initiated a new active research field—skyrmionics,
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which is invoked to develop a skyrmion-based magnetic mem-
ory and data processing devices [19,20].

Two main physical mechanisms have been proposed to date
to explain the formation of skyrmion lattices in nanolayers of
cubic helimagnets.

In the first mechanism one mainly acts on the main rival
state, the conical phase, trying to impair its ideal rotational
configuration by small anisotropies, e.g., either by deforming
it with easy and hard axes of the cubic anisotropy [21] (which
is considered to be an intrinsic magnetocrystalline anisotropy)
or by closing the cone with the easy axis of the uniaxial
anisotropy [22] co-aligned with its wave vector (which is
considered to be the surface/interface-induced anisotropy).
Skyrmions are more resilient to these deformations and thus
gain stability in vast regions of the phase diagrams.

In the second stabilization mechanism one modulates the
internal structure of skyrmions by additional surface twists
[23]. Indeed in bulk helimagnets, only the Lifshitz invariants
(LI) L(x,y)

x,y govern the magnetization rotation in skyrmions.
Here L(k)

i, j = mi∂mj/∂xk − mj∂mi/∂xk are the energy terms
with the first derivatives of the magnetization m with respect
to the spatial coordinates xk . These LIs fix the skyrmion he-
licity at the value γ = π/2 (Bloch-like fashion of rotation).
In magnetic nanolayers on the contrary, the LI L(z)

x,y with the
magnetization derivative along z comes into play. This is the
energy term that stipulates the magnetization rotation within
the conical phase, as well. For skyrmions, L(z)

x,y leads to the
gradual change of the skyrmion helicity [γ = π/2 ± δ(z)]
towards the upper and lower surfaces with the penetration
depth 0.1LD (LD is the equilibrium spiral period) [23,24].
This effect accumulates additional negative energy compared
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FIG. 1. The phase diagrams of states for model (1) plotted on the planes (a) (ku, hx ) and (b) (ku, hz ). Filled areas indicate the regions of
global stability for the SkL (red), qx-spirals (yellow), qz-spirals (green), and an oblique spiral (blue). White area in (a) designates the FM state
with flat surface twists, whereas in (b) the FM state fully saturated along the field is shown. Solid lines stand for the phase transitions between
the corresponding states. The critical anisotropy values indicate an overlap interval [Kcr1, Kcr2] with coexisting out-of-plane and in-plane
skyrmions (see text for details).

with the cones not decorated by the additional surface twists
[23,24]. Hence, SkL is stabilized in a broad range of applied
out-of-plane magnetic fields and nanolayer thicknesses even
without any anisotropic contributions [24].

The epilayers of MnSi on Si (111) substrates represent a
system, in which both aforementioned stabilization mecha-
nisms interplay [25–28]. High-quality thin films of MnSi are
grown by molecular beam epitaxy [27]. Owing to the lattice
mismatch between the B20 crystal and the Si(111) substrate,
the film is tensiley strained with the strain monotonically
decreasing with the film thickness. This leads to the uniaxial
anisotropy K (UA) with a hard axis perpendicular to the layer.
To stabilize skyrmions with such an easy-plane UA, one ap-
plies a magnetic field in-plane: by this, the anisotropy leads
to elliptical deformation of the conical state with the wave
vector along the in-plane magnetic field and thus leads to the
stability of in-plane skyrmions [28] for a range of magnetic-
field strengths and the values of UA larger than some threshold
value, K > Kcr1 [Fig. 1(a)]. For the out-of-plane direction of
an applied magnetic field, the easy plane anisotropy, on the
contrary, increases the energy of (111)-oriented skyrmions
that are stable due to the surface twists and eventually sup-
presses them for K > Kcr2 [Fig. 1(b)]. Thus, we note that in
MnSi/Si (111) epilayers, surface effects enabling stability of
out-of-plane skyrmions compete with the uniaxial anisotropy
underlying stability of in-plane skyrmions.

The existence of the in-plane skyrmions in epitaxial
MnSi/Si(111) thin films was recently unambiguously proved
by the combination of polarized neutron reflectometry and
small-angle neutron scattering (SANS) [28]. Such indirect
experimental techniques should have been utilized since in-
plane skyrmions could hardly be spotted by the conventional
detection methods such as Lorentz transmission electron mi-
croscopy (TEM). In Ref. [29], the authors also detected
the characteristic planar Hall anomalies ascribed to the in-
plane skyrmion strings. With the in-plane skyrmions being an
undisputed experimental fact, the situation with out-of-plane
skyrmions in strained MnSi/Si(111) films remains rather con-
troversial. In Ref. [30] by a combination of the Lorentz
TEM and measurement of the topological Hall effect, an area
of out-of-plane skyrmions was revealed over a much wider

temperature-magnetic field range than the skyrmionic A-phase
of bulk MnSi range [4,5]. However in Ref. [31], the authors
excluded any possibility for out-of-plane skyrmions in epi-
taxial MnSi/Si(111) thin films. Such a radical statement was
based mainly on the theoretical arguments that the particular
anisotropy in MnSi/Si(111) entirely suppresses these states
in an out-of-plane magnetic field, and the cone phase is the
only stable magnetic texture below the saturation field. The
corresponding theoretical phase diagram, although for a bulk
MnSi with the easy-plane UA, was constructed in Fig. 3 of
Ref. [31]. Moreover, the authors underpinned their theoretical
arguments by the experimental results: they discovered no
first-order magnetic phase transitions that would signal the
appearance of (111) skyrmions [31].

In this paper, we revisit the theoretical phase diagrams for
thin films of cubic helimagnets with the easy-plane UA and
both directions of an applied magnetic field. We argue that
the topology of the phase diagrams is different from that con-
structed for a bulk MnSi in Ref. [31]. We show that both types
of skyrmion states are realized in a wide range of anisotropy
values with the significant overlap [Kcr1, Kcr2] (Fig. 1). We
focus on the internal properties of the SkL states as well as
on their field-driven evolution and instabilities. We also report
a novel oblique spiral state that occupies an extensive area of
the phase diagrams for nanolayers, but does not exist for bulk
cubic helimagnets. We determine the equilibrium parameters
of the oblique spiral as functions of applied fields and/or the
values of UA and speculate that this state can be considered
as an intermediate state between two conventional spirals with
the wave vectors parallel and perpendicular to the film. We
identify first-order phase transition between the oblique spiral
and its neighbors on the phase diagrams, which has not been
indicated so far by the experiments.

II. PHENOMENOLOGICAL MODEL

The standard model for magnetic states in cubic non-
centrosymmetric ferromagnets [32,33] includes an additional
strain induced uniaxial anisotropy [27,28] with constant K :

w = A (grad m)2 + D m · rot m − μ0 Mm · H + Km2
z . (1)
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FIG. 2. 1D spiral states in an in-plane magnetic field. The color plots stand for my-components of the magnetization. mx- and mz-
components are shown with thin black arrows. (a) A field-driven transformation of a qx-spiral into a twisted FM state. (b) A set of my − mz

traces through the film thickness: blue line designates a profile in the layer middle (z = 0), red curves at both surfaces (z = ±L/2). (c) A
qz-spiral has just one loop of the magnetization rotation, which is unwound by transforming into the twisted FM state [line b–c in Fig. 1(a)] or
into a qx-spiral (line B-D-b at the phase diagram). For hx = 0 [at the point A (e)], a qx-spiral gives rise to an oblique spiral (d) with some tilt
angle α [inset of (e)] that smoothly decreases depending on ku (e) up to its transition into a qz-spiral. (f) Field-driven evolution of the oblique
spiral for ku = 0.03 (blue curves) and ku = 0.05 (green curves) exhibits its jumps into conventional conical and helicoidal spirals (see text for
details).

The principal interactions essential to stabilize modulated
states are as follows: the exchange stiffness with constant
A, Dzyaloshinskii-Moriya interaction (DMI) with constant D,
and the Zeeman energy. m = (sin θ cos ψ ; sin θ sin ψ ; cos θ )
is the unity vector along the magnetization vector M = mM,
and H is the applied magnetic field. We investigate Eq. (1) for
both orientations of the applied magnetic field, out-of-plane
H||z and in-plane H ⊥ z. K > 0, which stands for an easy-
plane anisotropy or equivalently for a hard axis perpendicular
to the film.

The equilibrium magnetic states within the model (1) were
obtained by numerical energy minimization procedure using
finite-difference discretization on rectangular grids with ad-
justable grid spacings and periodic boundary conditions. The
minimization procedure is described in detail in Ref. [34]. The
solutions depend on the two control parameters of the model
(1), the reduced magnetic field h = H/HD and the value of
the UA ku = KA/D2. Here, LD = A/|D| is the characteristic
length unit of the modulated states. In the following, the
spatial coordinates are measured in units of LD. The value
4πLD for H = K = 0 is the helix period for bulk helimagnets
(18 nm for the bulk MnSi). μ0HD = D2/(AM ) is the critical
field. For a conical phase in bulk helimagnets, the saturation
field in units of HD equals h = 0.5.

In this paper, we neglect effects imposed by spatial inho-
mogeneity of the induced anisotropy. The considered film is

infinite in x and y directions, i.e., we apply the periodic bound-
ary conditions. The thickness of the film is set to L = 1.2LD to
be comparable just with one row of in-plane skyrmions, and
the film is confined by the parallel planes at z = ±0.6LD. The
cubic anisotropy and the anisotropic exchange are omitted in
functional (1) although recently they were found to stabilize
SkL even in bulk helimagnets [35,36].

In the following discussion to avoid any ambiguity, we will
refer to qx- and qz-spirals with the corresponding orientation
of their wave vectors. In the Introduction, however, we ad-
hered to the terminology related to the direction of the field,
i.e., we called qz-spiral a conical state for H||z (qx-spiral being
a helicoid in this case), whereas for H ⊥ z the qx-spirals were
called cones (qz-spiral being a helicoid).

III. PHASE DIAGRAMS OF STATES

First of all, we identify the following modulated phases to
be considered: qz, qx, and oblique spirals, homogeneous states
[including those with additional surface twists as in Fig. 2(a)
for h = 0.4], and SkL with in-plane or out-of-plane orienta-
tion of skyrmion tubes. An appropriate choice of a numerical
grid size allows to maintain the initial state as an energy
minimum of Eq. (1) and to investigate its lability limits. In
particular, for different spiral states as well as for in-plane
skyrmion tubes, we use essentially two-dimensional (2D)
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FIG. 3. Magnetic structure of in-plane skyrmions (a) ku = 0.05, showing their elliptical instability in an applied magnetic field and out-
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(e) the out-of-plane orientations of the field demonstrate jumps at the lines of the phase transitions according to the phase diagrams in Fig. 1.

numerical grids in the plane yz or xz. Out-of-plane skyrmions
are numerically addressed by the three-dimensional (3D) nu-
merical grids with adjustable spacings along x and y. By
this, we exclude any particular scenario of a phase transition
between different phases. Indeed, the phase transition between
spiral states and SkL is known to occur via ruptures of spirals
and formation of bimerons [37,38] each with the topological
charge Q = 1/2. In the present paper, we merely compute the
energy density for all the states in a parameter space (magnetic
field)-(anisotropy) and by comparing the equilibrium energies
of one-dimensional (1D) spiral states, 2D SkL, and polarized
FM states, we construct the phase diagrams (PD) on the planes
(ku, hx ) [Fig. 1(a)] and (ku, hz ) [Fig. 1(b)]. The regions of
modulated states corresponding to the global minimum of the
energy functional (1) are indicated by different colors.

Note that the FM state magnetized along the in-plane mag-
netic field [white area in Fig. 1(a) and the color plot for hx =
0.4 in Fig. 2(a)] acquires the flat surface twists that never fully
saturate [26]. The structure of these surface twists is character-
ized by an angle ψ (z) of the magnetization with respect to the
field what makes them essentially one-dimensional, i.e., flat.
In the middle of the film ψ = 0. Near the surfaces, however,
the magnetization rotates away from the field direction and
reaches the value ψ0 (or −ψ0) at the upper (lower) surface
[26]. Such a state is a result of the cone state (called in
this configuration qx-spiral) saturation, i.e., the second-order
phase transition. An analytical expression for such a critical
field in bulk samples of cubic helimagnets has been derived,
e.g., in Ref. [22]. For the out-of-plane magnetic field, the FM
state is fully saturated [22] [white area in Fig. 1(b)] and is
a result of the cone (called in this configuration qz-spiral)
closing at the critical field, hz0 = (1 + 4ku)/2.

A. qx-spirals

In Fig. 1(a), the qx-spirals occupy the yellow-shaded area
of the PD. For hx = ku = 0 due to the additional surface twists
in thin-film nanosystems [indicated in Fig. 2(a)], such spirals
have lower energy as compared with the qz-spirals. Thus the
region 0–A needed for the easy-plane UA to outbalance the
energy of the spiral surface twists and to favor other 1D
states is a noticeable feature of the phase diagrams. For bulk
helimagnets, the point A tends to zero as constructed in Fig. 2
of Ref. [27]. The field-driven transformation of the qx-spiral
into the twisted FM state at the line a–b [Fig. 1(a)] is shown
in Fig. 2(a) for an in-plane magnetic field co-aligned with the
q-vector (see Appendix on the spiral transformation in the
field hy). Besides such a wiggling structure in the plane xz
connecting the cone-like fashion of rotation in the middle of
the film and the surface twists, the uniaxial anisotropy causes
slight elliptical distortions of the qx-spirals in the yz plane.
Figure 2(b) exhibits the traces of the magnetization rotation
by moving from the middle of the layer (blue curve) to the
confining surfaces (red curves).

B. qz-spirals

qz-spirals in this geometry are oriented perpendicular to the
field and inhabit the green-shaded region at the phase diagram
[Fig. 1(a)]. Since usually the film thickness is a noninteger
multiple of the helical wavelength (1.2 in the present paper),
the magnetization of the qz-spiral has an uncompensated value
even in zero magnetic field [see dotted line as a continua-
tion of the magnetization curve for a qz-spiral in Fig. 3(b)].
The solutions for this field-distorted spiral are obtained
from the well-known differential equations for the nonlinear
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pendulum [28,32]. Experimentally, one indicates a set of first-
order phase transitions related to the unwinding processes
of spiral loops in an applied magnetic field [26]. The line
b-c indicates a corresponding transition between the qz-spiral
[Fig. 2(c)] and the twisted FM state. Otherwise, the green area
of the phase diagram is free from this sort of phase transitions.
Along the transition line B–D–b, however, the twisted FM
state should acquire additional undulations and transform into
a qx-spiral shown in Fig. 2(a) (contour plots for hx = 0.2, 0.3).
At the line B–C by the first-order phase transition, the qz-spiral
acquires a tilt.

C. Oblique spirals

The thin-film geometry also permits a stable oblique spiral
[Fig. 2(d)], which originates from the interplay between the
surface twists and the easy-plane anisotropy [39]: whereas
the negative energy associated with the surface twists remains
almost unchanged, the canting leads to the lowering of the
positive anisotropy energy (for the details on the calculations
see Appendix). The angle of canting α for hx = 0 [inset of
Fig. 2(e)] monotonically decreases with the growing UA.
However, up to the point A (dashed line), the oblique spiral is
a metastable solution as compared with the “straight” spiral
(solid line). At ku = 0.069, the oblique spiral undergoes a
transition into the qz-spiral with α = 0.

Figure 2(f) shows the field evolution of the canting angle
for ku = 0.03 (blue curves) and ku = 0.05 (green curves),
which reflect abrupt jumps between the corresponding stable
spiral states (solid lines). Moreover, for ku = 0.05 the field
driven evolution may occur along two different paths. The
first option is shown by the dotted and solid green lines.
The oblique spiral jumps into the qz-spiral with α = 0, which
eventually jumps into the qx-spiral with α = 90◦. All the tran-
sitions occur at the boundaries of the corresponding stability
regions at the phase diagram [Fig. 1(a)]. In the second option
(shown by the dashed green lines), however, the oblique spiral
may last out as a metastable state with the higher energy and

then jump directly into the qx-spiral by omitting the region
with the qz-spiral.

For both field directions, the stability region of this spiral is
quite extensive and settles in the direct vicinity of other spiral
states. This can be the reason that experimentally such a state
has not been identified yet: the first-order phase transition of
this spiral into the conical state is easy to misinterpret as a
magnetization process related to the qz-spiral.

IV. SKYRMION TUBES

A. In-plane skyrmions

Skyrmions for the in-plane direction of the field are sand-
wiched between flat surface twists at both surfaces and are
confined to the middle of the film due to the potential well
formed by the surface twists. In such a geometry, the sur-
face twists mainly do not impact the internal structure of
skyrmions. Due to the UA with its easy-plane xy dissecting
skyrmion tubes parallel to the film surfaces, the skyrmions
undergo an elliptical instability [Fig. 3(a)]. This is also the
reason that skyrmions, in addition to the region of their
thermodynamical stability [red-shaded area in Fig. 1(a)], are
sustainable only in a very narrow parameter range. In general,
skyrmions in multiple rows occupy the cross-section of the
film [40]. Then upon tuning the magnetic field through the
skyrmion phase, the system would exhibit a cascade of first-
order phase transitions through the states with the different
number of skyrmion rows [40].

B. Out-of-plane skyrmions

As mentioned in the Introduction, the solutions for
skyrmions and qx-spirals are modulated along the film thick-
ness for the out-of-plane magnetic field [23,24]. In some
sense, such solutions can be considered as a superposition
of corresponding solutions in bulk helimagnets and specific
twisted modulations near the surfaces that involve all rota-
tional terms L(k)

i, j .
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For ku = 0, the following first-order phase transitions are
identified at the theoretical phase diagrams for thin layers of
cubic helimagnets: qx-spiral–SkL, SkL–qz-spiral, qz-spiral–
FM state [24,41]. Here we omit the regions of the phase
diagrams related to different surface states as chiral bobbers
and/or stacked spirals [41]. For ku = 0.02, two additional
transitions are present: the oblique spiral–SkL and qx-spiral–
oblique spiral. The second transition, however, is hardly
identified at the magnetization curves [Fig. 3(d)].

In free-standing layers, SkLs stabilized by the mecha-
nism of surface twists were predicted to exist up to very
large film thicknesses (L/4πLD ≈ 8) [24,41]. In FeGe free-
standing wedges, however, SkL was observed experimentally
only when the thickness is smaller than ≈130 nm, which is
less than 2 in the units of 4πLD. The reduced effect of surface
twists was explained by the temperature dependence of the
material parameters. In epitaxial MnSi(111)/Si(111), on the
contrary, a good agreement was found between the numerical
simulations for the flat surface twists and their experimental
realization [26]. Thus, the influence of the surface modula-
tions on the out-of-plane skyrmions might also turn out to
be unimpeded and lead to the skyrmion stability [24,41]. An
overlap interval [Kcr1, Kcr2] also implies that skyrmions can
be found for canted magnetic fields. This would also con-
stitute an experimental strategy to observe the out-of-plane
skyrmions: for the fixed value of an in-plane magnetic field

in the region of skyrmion stability, one would rotate the field
to transit into the region of out-of-plane skyrmions for the
same value of the field. We also do not exclude formation of
skyrmion clusters with mutually orthogonal skyrmion tubes
recently reported in chiral liquid crystals [42,43].

V. CONCLUSION

In conclusion, robust and thermodynamically stable
skyrmions can be induced for the out-of-plane orientation of
the magnetic field. To suppress the effect of the chiral surface
twists, relatively large values of the easy-plane anisotropy are
needed (ku > 0.058, i.e., larger than the critical value Kcr2)
as compared in particular with the anisotropy needed for
the stability of elliptically distorted in-plane skyrmions (ku >

0.042, i.e., larger than the critical value Kcr1). Thus, both
types of SkLs co-exist in some anisotropy parameter range
[Kcr1, Kcr2] = [0.042, 0.058]. However, additional analysis is
required for the evolution of the phase diagrams with the layer
thickness. Indeed, the impact of the surface twists decreases
with the growing thickness what would mean diminishing area
of skyrmion stability for the out-of-plane magnetic fields and
the lower value of Kcr2. At the same time, the value of ku due
to the tensile strain also decreases what makes out-of-plane
skyrmions feasible up to relatively large thicknesses. The in-
fluence of demagnetizing effects that were neglected in the
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FIG. 6. A field-driven evolution of qx-spiral for H||y (see text for details).
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FIG. 7. Oblique spiral states with two senses of canting (see text for details).

present paper should also be studied systematically especially
for the out-of-plane direction of the field.

Moreover, we found a new low-field spiral state that inter-
venes between the conventional conical and helicoidal states
and is stable in a broad parameter range. Such an oblique
spiral constitutes an interesting deviation from the previously
published phase diagrams for bulk helimagnets, which may
have important consequences for the field of chiral mag-
netism. In particular, the spiral tilt can also give rise to new
topological magnetic defects, such as isolated skyrmions, with
interesting static and dynamic properties.

In total, our findings underscore the paramount role
of magnetic anisotropies and surface twists in stabilizing
skyrmionic states with different orientation and provide valu-
able directions to manipulate and tune skyrmions in real
experiments, e.g., in epitaxial MnSi(111)/Si(111) thin films.
Recent experiments on strained itinerant helimagnet FeGe
[44] also demonstrate a promising role of tensile strain for the
creation and manipulation of magnetic solitonic textures: the
theoretical concepts of the present paper could also be tested
in this system.
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APPENDIX: SOLUTIONS FOR AN
OBLIQUE SPIRAL STATE

1. Energy minimization procedure for an oblique spiral

The energy density of an oblique spiral is minimized with
respect to the spiral period along x. For each point (ku, h)
at the phase diagrams (Fig. 1) we find an equilibrium spiral
period. Figure 4(a) shows the zero-field energy densities for
ku = 0 (green curve) and ku = 0.05 (blue curve) depending
on the spiral period. The canting angle of the oblique spiral
varies along these energy curves. Interestingly, for ku = 0,
the spiral remains “straight” [Fig. 4(b)] in the range λ/4π <

1.05LD, i.e., up to the energy minimum shown by the green
circle. However, at λ/4π > 1.05LD, a spiral becomes oblique
[Fig. 4(b)] with the canting angle growing with the spiral
period. By this, the oblique spiral tries to retain its equi-
librium period determined by the exchange and DMI. This
can be judged also by the projection of the spiral period
λ cos α/4πLD [Fig. 4(d)]. For ku = 0.05 the equilibrium pe-
riod is achieved at a slightly higher value [blue curve in
Fig. 4(a)], and the canting angle varies along the whole energy
curve [Fig. 4(c)].

2. Procedure to determine a canting angle
for an oblique spiral state

An oblique spiral represents a combination of a flat spiral
with some canting angle α in the middle of the layer and a
roundish part near the surfaces related to the chiral surface
twists [Fig. 5(b)]. By varying its canting angle, the oblique
spiral optimizes the impact of the surface twists and an easy-
plane anisotropy. To introduce a procedure for defining a
canting angle, we consider two profiles of the my-components
of the magnetization located at some fixed distance b from
each other near the layer middle [Fig. 5(a)]. In this undistorted
part of an oblique spiral, these profiles are essentially the same
but acquire a phase shift a with respect to each other. Thus,
the canting angle is defined as tan α = b/a (Fig. 5, inset). For
a straight qx-spiral α = 90◦, for a qz-spiral–α = 0.

3. Field-driven evolution of qx-spiral for H||y
In the main part of the paper, we considered 1D spiral states

only for an applied magnetic field coaligned with the in-plane
q-vectors, i.e., H||x. The energy of such states has been found
to be lower as compared with the corresponding states for the
field perpendicular to their in-plane wave vectors. As an ex-
ample, Fig. 6(a) shows the energy densities for qx-spirals and
both direction of the field. The qx-spiral gradually expands
[Fig. 6(b)] in the field hy as would also be the case in bulk
helimagnets.
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4. Oblique spiral states with two senses of canting

An oblique spiral may cant equivalently along both direc-
tions. Then, one could envision some sort of Y-shaped domain

walls between domains of an oblique spiral with a particular
sense of canting (Fig. 7). Such a shape enables formation of
half skyrmions running parallel to the surface and having both
polarities.
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