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Spontaneous time-reversal symmetry breaking without magnetism in an S = 1 spin chain
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States of matter that break time-reversal symmetry are invariably associated with magnetism or circulating
currents. Recently, one of us proposed a phase, the directional scalar spin chiral order (DSSCO), as an exception:
it breaks time-reversal symmetry via chiral ordering of spins along a particular direction, but is spin-rotation
symmetric. In this work we prove the existence of this state via state-of-the-art density matrix renormalization
group (DMRG) analysis on a spin-1 chain with nearest-neighbor bilinear-biquadratic interactions and additional
third-neighbor ferromagnetic Heisenberg exchange. Despite the large entanglement introduced by the third-
neighbor coupling, we are able to access system sizes up to L = 918 sites. We find first-order phase transitions
from the DSSCO into the famous Haldane phase as well as a spin-quadrupolar phase where spin nematic
correlations dominate. In the Haldane phase we demonstrate a method for detecting the topological edge states
using DMRG that could be useful for other topological phases too. This method can be understood as the
well-known active operators applied only at the boundary.
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I. INTRODUCTION

Equilibrium states of matter that break time-reversal sym-
metry (TRS) invariably contain a finite density of angular
momentum, either spin or orbital. Common examples such
as magnets contain local spin moments, while more complex
ones include orbital moments, such as loop current phases
[1,2], anomalous Hall states [3,4], and various chiral topo-
logical phases [5–14]. A property shared by these phases is
that TRS is immediately restored when the moments melt.
Thus, TRS breaking is usually considered synonymous with
the formation of local moments, even though the latter also
violate spatial symmetries of the lattice.

On the other hand, one of the authors recently proposed
an exception to this rule, namely, the directional scalar spin
chiral order (DSSCO) [15]. In one dimension, the DSSCO
can be thought as a state in which quantum fluctuations have
melted classical spin order in accordance with the Mermin-
Wagner-Hohenberg-Coleman (MWHC) theorem [16–18] and
restored SU(2) spin-rotation symmetry (SRS), but a vestigial
scalar spin-chiral order captured by the order parameter

χ = 1

L

∑
i

〈Si · (Si+1 × Si+2)〉, (1)

where Si is the spin on the ith site, has survived. Since
S → −S under time reversal, χ is an Ising order parameter
that breaks TRS, but preserves SRS. It is reminiscent of some
other phases that involve scalar spin chirality [19,20] such as
chiral spin liquid [21]. The key difference is that the chirally
correlated spins in all these examples lie on the vertices of
a triangle. Hence, they break enough spatial symmetries to
permit a moment perpendicular to its face, even if the on-site
moment vanishes. In contrast, the corresponding sites in the
DSSCO are on a straight line, so no such current is possible.

However, such current is possible in other scalar chiral phases
based on ladders and two-dimensional (2D) lattices [22–34]. It
also differs from phases with vector spin chirality [35], which
preserves TRS but breaks SRS. Higher dimensional versions
of the DSSCO rely on thermal or disorder-driven fluctuations
for the restoration of SRS, with the latter proposed to be
pertinent to the long-standing problem of the pseudogap phase
of the cuprate superconductors, which show TRS breaking in
Kerr effect measurements [36–39] but no signs of magnetism
in nuclear magnetic resonance [40].

Reference [15] presented the DSSCO as a phase that is al-
lowed by fundamental laws of quantum mechanics. However,
it did not prove its existence in a realistic model. Through
large-scale density matrix renormalization group (DMRG)
analysis of a spin-1 chain, we fill this gap in knowledge by
showing that the following spin-1 chain has the DSSCO as its
ground state in a wide regime of parameters:

H =
∑

i

K[cos θ (Si · Si+1)2 + sin θSi · Si+1] − JSi · Si+3.

(2)

Here J, K > 0 and θ ∈ [0, π/2] parametrizes the relative
strengths of the bilinear and the biquadratic nearest-neighbor
couplings. When J = 0, H reduces to the bilinear-biquadratic
model that was studied in Ref. [41] and shown to realize
a quasi-long-range ordered spin-quadrupolar (SQ) phase for
0 < θ < π/4 and the Haldane phase θ > π/4, separated by a
Berezinskii-Kosterlitz-Thouless type phase transition at θ =
π/4 [42]. We explore the effects of nonzero J on this model
and find that the SQ is driven into the DSSCO, either directly
or via intermediate Haldane and disordered phases, while the
Haldane phase simply disorders at finite J for most values
of θ . In the J → ∞ limit, H reduces to three copies of a
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FIG. 1. The ground state phase diagram of the spin-1 Hamil-
tonian in (2). The DSSCO, Haldane, spin-quadrupolar (SQ) and
disordered phases are identified. Dotted lines denote first-order phase
transitions between the DSSCO and the other three phases.

Heisenberg ferromagnet, while finite J introduces quantum
fluctuations that melt the ferromagnet in accordance with the
MWHC theorem [16–18]. The full phase diagram is shown in
Fig. 1.

The emergence of the DSSCO as a ground state of
H can be anticipated heuristically as follows. In the clas-
sical limit, S → ∞, the biquadratic term K cos θ domi-
nates and forces adjacent spins to be mutually orthog-
onal. At θ = 0, the remaining ferromagnetic coupling J
favors parallel third neighbors, resulting in two degener-
ate ground state manifolds R|x, y, z, x, y, z, . . . 〉 and R| −
x,−y,−z,−x,−y,−z, . . . 〉 that are related by time reversal
and have opposite expectation values of χ . Above, ±x at the
ith position in the ket denotes a state with spin at the ith site
maximally polarized along ±x and R ∈ SU(2) represents an
arbitrary global spin rotation. The classical ground state is
then randomly chosen from these manifolds, thus breaking
TRS and SRS spontaneously. For finite S, quantum fluc-
tuations produce smooth deformations in the magnetization
texture or gapless spin waves. In one dimension, these fluctu-
ations are strong enough to melt the underlying spin order and
restore SRS [16–18]. However, smooth deformations cannot
change the chirality of the ground state, thus yielding the
DSSCO. In this work we find that the ground state at θ = 0
is the boundary between ferromagnetic phase and DSSCO. A
nonzero θ is needed to stabilize the DSSCO. However, a large
θ again destabilizes it in favor of the Haldane or the disordered
phase.

II. NUMERICAL PROCEDURE

We carry out state-of-the-art DMRG calculations using the
ITensor library developed by Stoudenmire and White [43]. We
perform up to 215 sweeps with a final maximum bond dimen-
sion of m = 800, which restricts the truncation error to below
10−6. We are able to access system sizes up to L = 918 despite
our model containing a third-nearest-neighbor interaction.

In comparison, DMRG calculations on the simpler bilinear-
biquadratic spin-1 chain, which has only nearest-neighbor and
next-nearest-neighbor terms, went only to L = 300 sites [44].
Such a dramatic improvement in the performance results from
using a pinning field on open chains to diagnose the phases of
interest. We elaborate on this technique below.

Naively, ordering is captured by the unbiased correlation
function:

m = lim
L→∞

√
1

L

∑
i

eiqi〈A1Ai〉H , (3)

where Ai is an operator that corresponds to the order parameter
on the ith site and H is the Hamiltonian whose ground state the
expectation value is computed in. In the current problem we
consider three choices of Ai: spin Sz

i , quadrupole Qzz
i , and χi =

Si · (Si+1 × Si+2). A finite value of m signals long-ranged
order and spontaneous breaking of symmetry. However, this
approach requires very large system sizes and high precision
to obtain reliable results, since it computes the square of the
local order parameter, which can be a very small, especially
close to a phase boundary. This issue can be circumvented by
adding a training field with an appropriate Fourier component
H ′ = h

∑
i eiqiAi to H and computing

m = lim
h→0

lim
L→∞

1

L

∑
i

eiqi〈Ai〉H+h
∑

i eiqiAz
i
. (4)

The ordering of limits is crucial: one first has to take the
thermodynamic limit and then the limit of vanishing training
field h → 0. Such an approach was used, for instance, in
Ref. [45].

We go a step further and consider a local field H ′′ = h1A1

localized on the first site (or first three sites when Ai = χi).
This trick lifts the burden of taking h → 0 numerically. In fact,
we can make h1 strong enough to saturate the order at the first
site [46]. Then, long-range order is captured by

m = lim
i→∞

lim
L→∞

eiqi
〈
Az

i

〉
H+h1A1

. (5)

That is, one first has to take the thermodynamic limit and
then take the distance from the pinning center to infinity. This
approach has been shown to be less sensitive to finite-size
effects of the order parameter than the other two methods [47].
In following sections we will use this method to diagnose the
spin and spin-quadrupolar orders. Applying it to the DSSCO,
however, causes the code to get stuck in metastable states with
fractionalized Ising domain wall excitations [48]. Therefore,
we use Eq. (4) for DSSCO with q = 0 since a uniform field
destabilizes the domain walls and helps find the true ground
state.

Although the Hamiltonian has SRS and thus commutes
with Sz

total = ∑
i Sz

i , we found that implementing DMRG
separately within each Sz

total subspace resulted in signif-
icantly slower or sometimes no convergence. We specu-
late that this may be because fixing Sz

total to a nonzero
value N amounts to an interaction HU = U (Sz

total − N )2 =
U

∑
i, j Sz

i Sz
j + 2NU

∑
i Sz

i + const., U → ∞. This contains
coupling between spins that are far apart, which would tend to
slow down the DMRG calculation. Luckily, ordinary gapped
phases have short-ranged spin correlations, so the slowdown
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FIG. 2. Order parameters in the DSSCO phase measured by ap-
plying appropriate training fields. A weak uniform training chiral
field λ = 0.01 is used to probe the chiral order, whereas spin and
spin-quadrupolar correlations are probed by applying strong training
fields h1 = q1 = 50 at the first site. The spin and spin-quadrupolar
orders decay to zero over long distances, which suggests the absence
of long-range order in these variables. Data shown are for L = 918
at J/K = 1 and θ = 20◦.

and the net effect of this fixing Sz
total is to speed up the proce-

dure by reducing the size of the Hilbert space. In the current
problem, however, the range of spin-spin correlations is only
limited by the MWHC theorem and hence is extremely large
(as we also show below). Consequently, the speed-up because
of a smaller Hilbert space cannot offset the slowdown due to
the long-range coupling in HU . Thus, in our implementation,
we allow the program to explore different values of Sz

total while
searching for the ground state.

III. RESULTS: PHASE DIAGRAM

Figure 1 summarizes the phase diagram of the Hamiltonian
(2) obtained by DMRG. We reproduced known results on the
bilinear-biquadratic model [41] for the spin quadrupolar and
the Haldane phases on the J = 0 axis. For small negative θ

and J = 0 the ground state is known to be ferromagnetic [41].
Unsurprisingly, we found (but do not show in Fig. 1) that the
ferromagnet survives nonzero J . Interestingly, all the phases
share boundaries with the DSSCO, which is the primary focus
of this work.

A. DSSCO phase

The most exciting feature of the phase diagram is the
DSSCO, which breaks TRS but preserves SRS. We show nu-
merical evidence for this phase in Figs. 2 and 3. Computations
of on-site 〈χi〉 and chiral order χ shown in Figs. 2–4, and 7
adapt the method from (4) to the Hamiltonian (1) through the
equation

χ = lim
λ→0

lim
L→∞

1

L

∑
i

〈χi〉H+λ
∑

i χi
, (6)

while computations of 〈Sz
i 〉 and 〈Qzz

i 〉 use the method from
(5).

Figure 2 shows that pinning the chirality of the first three
sites induces chiral ordering of O(1) magnitude throughout

FIG. 3. Finite-size scaling of χ for multiple weak uniform train-
ing chiral fields at J = 1 and θ = 20◦. Clearly χ survives as the
training field is switched off, which indicates the formation of
an ordered phase, namely, the DSSCO, via spontaneous symmetry
breaking.

the chain. Moreover, as shown in Fig. 3, it robustly survives
finite size scaling to the thermodynamic limit L → ∞, even as
the pinning field λ is tuned down. In contrast, Fig. 2 shows that
spin and spin-quadrupolar orders decay to zero despite pin-
ning their values on the first site. Note, 〈Si〉 and 〈Q̂i〉 have been
shown on every third site. This is because the classical mag-
netic order that the DSSCO emerges from induces q = 2π/3
oscillations in them that are not the subject of our interest;
we are interested in the amplitude of these oscillations only.
Thus, in accordance with the MWHC theorem [16–18] which
allows (forbids) discrete (continuous) symmetry breaking in
one dimension, the DSSCO breaks TRS and shows long-range
order while spin and spin quadrupoles only show short-range
order, since their order parameters break continuous SRS. The
oscillations of spin and quadrupolar are macroscopic, with
periods comparable to the system size. As J increases, the
periods increase, and diverge in the limit J → ∞ where the
system reduces to three copies of the Heisenberg ferromagnet.

FIG. 4. Order parameters in the disorder phase measured by the
same training fields in Fig. 2. The chiral order is nearly zero ev-
erywhere indicating the system has no response to weak uniform
chiral field while the spin and spin-quadrupolar orders decay to zero
over long distances, which suggests the absence of long-range order
in these variables. Data shown are for L = 918 at J/K = 1.3 and
θ = 45◦.
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FIG. 5. Edge states in the Haldane phase. Two degenerate ground states for Haldane phases at θ = 15◦, J/K = 0.3 and for AKLT point
θ = 71.5◦, J = 0 are shown and the spins on the edges are marked by dashed arrows. The moment at the first site is saturated by a local training
field, and 〈Sz

i 〉 is measured at all the sites. For each set of parameters (θ, J/K ), 〈Sz
i 〉 on the right edge is large while 〈Sz

i 〉 in the bulk is extremely
small. Note, bulk sites between i ≈ 100 and i ≈ 820 are not shown to highlight the edge states.

A plausible reason for the periods of spin and quadrupolar
orders to be different is that the latter is a higher-order spin
operator. However, this is difficult to verify with the current
numerics because both orders have extremely large correla-
tion lengths. Outside the DSSCO, χ vanishes in the Haldane,
spin-quadrupolar, and disordered phases. In the disorder phase
as in Fig. 4, based on the same training fields in Fig. 2, the
chiral order vanishes indicating the system has no response to
weak uniform chiral field while the spin and spin-quadrupolar
orders decay to zero over long distances similar to DSSCO,
which suggests the absence of long-range order in these vari-
ables.

In the following we will discuss spin order in the Haldane
phase, where the bulk is naively disordered but a hidden order
exists between the edges, as well as the spin-quadrupolar
phase where either quasi-long-range order or disorder exists.

FIG. 6. Spin and spin-quadrupolar orders in the spin-quadrupolar
phase, at θ = 5◦ and J/K = 0.1, determined by measuring Sz and Qzz

on every third site after pinning Sz and Qzz on the first site with large
training fields h1 = 50 and q1 = 50, respectively. The system size is
L = 918. Flattening of the curves for a broad range of sites suggest a
large correlation length.

B. Pinning the Haldane phase

The Haldane phase is one of the simplest examples of
a symmetry-protected topological phase [49–51]. Its sim-
plest realization is in the antiferromagnetic Heisenberg model,
which is the θ = π/2, J = 0 limit of H , while the point
θ = tan−1 3 ≈ 71.5◦, J = 0 is in the same phase and corre-
sponds to the exactly soluble Affleck-Kennedy-Lieb-Tasaki
(AKLT) point [52]. The Haldane phase has no local order
parameter; instead, it can be characterized by a nonlocal
string order parameter [53,54] that captures entanglement
between states on opposite ends of the chain. In particular,
the ground state in the Haldane phase is fourfold degener-
ate on an infinite open chain. The degeneracy stems from
the two effective spin-1/2s, one exponentially localized at
each end [54,55]. For a finite chain, the states at opposite
ends hybridize, resulting in a unique singlet ground state:

1√
2
(|↑1↓L〉 − |↓1↑L〉), and a threefold-degenerate triplet of

excited states: |↑1↑L〉, 1√
2
(|↑1↓L〉 + |↓1↑L〉), and |↓1↓L〉. In

the thermodynamic limit the singlet and triplet sectors become
exactly degenerate. Therefore, the edge states can be detected
by directly computing spin-spin correlation function in the
ground state using (3), which is equivalent to calculating the
string order. The correlation is nontrivial between the opposite
ends of the chain, but vanishes between an edge site and a bulk
site.

We expect the Haldane phase to occur in our model as well
in a region of phase space around the Heisenberg and AKLT
points. However, the third-neighbor interactions increase the
ground state entanglement, which drastically increases the
cost of computing the nonlocal order. We therefore adopt
an alternate strategy to detect the edge states that not only
avoids measuring the nonlocal order but also reduces the
entanglement of our ground state. We apply a spin-pinning
field on the first site, which reduces the fourfold degenerate
space to two doubly degenerate subspaces, (|↑1↑L〉, |↑1↓L〉)
and (|↓1↑L〉, |↓1↓L〉), since the pinning field favors (disfa-
vors) states with spin at the first site parallel (antiparallel)
to the field. Figure 5 shows signatures of the edge states in
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FIG. 7. Phase transitions out of the DSSCO phase into the disor-
dered, Haldane, and spin-quadrupolar phases for two different sizes
L. The abrupt change in χ as well as the weak L dependence indicates
the first-order phase transitions. Here uniform field λ = 0.01 is used
to train χ .

the Haldane phase at θ = 15◦, J/K = 0.3, and at the AKLT
point [52]. The exactly soluble AKLT point shows sharp spin
moments at the edges, whereas the moments elsewhere in the
Haldane phase decay exponentially into the bulk.

Our method is in contrast to the trick used in the early
days of DMRG to detect the Haldane phase, which involved
artificial spin-1/2 degrees of freedom to the ends of the spin-1
chain to lift the fourfold degeneracy and achieve convergence
[46,54]. It is more closely related to the idea of active op-
erators [56], where a small field was added throughout the
system to lift the ground state degeneracy resulting from edge
states. Our approach involves a nonperturbative field only at
the edges in DMRG to lift the degeneracy and is better suited
for numerical implementation.

C. Spin-quadrupole phase

We apply pinning spin and spin-quadrupolar fields at the
first site separately and measure spin and spin-quadrupolar
orders, respectively, far away from pinning center and edges
according to Eq. (5). Again, q = 2π/3 oscillations are re-
moved by computing order parameters every three sites. The
results are shown in Fig. 6. It shows that correlation length is

extremely large and possibly diverges. Reference [57] shows
that the correlation length indeed diverges at J = 0, 0 < θ <

π/4 and the dominant correlations are spin quadrupolar. At
the systems sizes we can access, we are unable to determine
decisively whether nonzero J induces a gapped phase with
exponentially decaying spin-quadrupolar correlations with a
large correlation length or a critical phase like the J = 0 limit.
The resolution of this issue is left for future work.

D. Phase transitions out of the DSSCO

In Fig. 7 we show phase transitions from the DSSCO to
the other phases which are disordered phase, Haldane phase,
and spin-quadrupole phase by calculating chiral order χ using
Eqs. (2) and (6). The abrupt drops in χ to zero clearly at
the phase boundaries indicate first-order phase transitions.
Another indication of first-order transitions is the weak de-
pendence of χ on the system size. Since the correlation length
does not diverge at the critical point for first-order phase
transitions, boundary effects are small, which result in a weak
system-size dependence. Similar ideas were used to diagnose
first-order phase transitions in Ref. [44].

IV. CONCLUSIONS

The DSSCO is a novel phase of matter that violates TRS
but has no density of moments, unlike other TRS-breaking
phases known in condensed matter. Using DMRG, we find
that it appears when spin and quadrupolar orders melt, leaving
behind residual broken TRS but unbroken continuous SRS.
The chiral order is O(1) in the DSSCO, which is much larger
than that in other existing chiral phases such as the chiral spin
liquid, where χ ∼ O(10−1) [21]. Besides, we demonstrate a
numerical method to study edge states by pinning one edge
and observing the other. It would be interesting to study other
one-dimensional topological phases using this method.
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