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Double-humped phonon resonance in doubly resonant vibration systems: Phonon metamaterials
analogy with doubly resonant electromagnetic structures
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Phononic metamaterial which consists of two (or several) nanolayers separated by a planar defect of atomic-
scale thickness is studied, under the assumption that the two-channel phonon interference mechanism of the
transverse (cross-plane) heat flux control is dominant at high temperatures. An analytically exactly solvable
discrete three-dimensional (3D) model of the multilayer interface between two semi-infinite bcc-lattice crystals is
used to simulate phononic metamirror, metafilter, and meta-absorber. Two options of the general model in which
two-path phonon interference reveals itself as double-humped resonance in the interface phonon absorption at
weak dissipation or as total phonon transmission and total phonon reflection in the lossless limit are considered.
An analogy is discussed between doubly resonant dissipative vibration systems and earlier investigated doubly
resonant electromagnetic structure exhibiting both types of behavior: induced transparency and superscatter-
ing. It is shown that triple-peaked absorption resonance may arise from superposition of two-path phonon
interference and Fabry-Pérot-type interference in the system with triple defect layer. The existence conditions
of double-peaked and triple-peaked resonances as well as total interface absorption are analyzed in terms of
nondissipative phonon scattering properties and dissipative parameters. Also additional peculiarities relevant
to the thermal interface resistance problem are described. The study provides insight into heat management in
phononic nanostructures and metamaterials like metamirrors, metafilters, and meta-absorbers.
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I. INTRODUCTION

At present a large number of electromagnetic systems
with different paths for an incoming wave to propagate have
been studied completely [1–9]. Among these systems the
most needed for practical applications are functional artificial
metamaterials [2–7] such as photonic periodic nanostructures
composed of metallic complexes embedded in optically trans-
parent medium where localized plasmon resonances [8–11]
can be excited, e.g., stereometamaterials arranged by stacked
split-ring coupling resonators [12,13] or three-dimensional
plasmon rulers [14]. In the planar versions of metamaterials,
called metasurfaces or metafilms, the polarizable inclusions
are arranged in two-dimensional (2D) arrays to achieve
the desirable scattering properties. Metafilms may be filled
with asymmetrical split-ring arrays [15], plasmonic oligomers
[16–19], or with plane resonators of other shapes. Metasur-
faces and bulk metamaterials may be fabricated on flexible
substrates [20]. Utilizing a metal ground plane behind a thin
absorbing metafilm [1,21–24] results in a perfect reflect-
ing metasurface (metamirror) with a wide absorption band,
whereas a periodic arrangement of different scale resonators
in the foreground of dielectric substrate gives perfect multi-
band absorption [24]. An alternative way to build a full-power
reflector (perfect metamirror) is to pack a metasheet without
a back metal plane with appropriate electrically and magnet-
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ically polarizable (chiral bianisotropic, Huygens’) inclusions
[25], as well as a choice of specifically designed right- and
left-handed helices as constituents in such a structure (Huy-
gens’ surface) permits us to create extremely thin perfect
absorbers [26] (see also reviews [20,27] for details and rel-
evant references). Similar wave scattering properties reveal
themselves in completely nonmetallic metamaterials [27,28].

In all above systems and for each wave path an internal (ini-
tial) resonance frequency exists. The partial waves interfere
constructively [resonant enhancement of the forward scatter-
ing (transmission), i.e., resonance] or destructively (resonant
suppression of the transmission, i.e., resonant reflection, i.e.,
antiresonance). Among the simplest doubly resonant systems
with two paths for an electromagnetic wave to propagate
are structures, periodically modulated along one spatial di-
mension, e.g., ultrathin metal films [29] or dual dielectric
structures with both short and long range periodicities [30].

Theoretical studies of multichannel interference phenom-
ena use different methods, such as purely dynamical approach
with or without consideration of dissipative effects, as well as
the idea of cross section [9,31]. The concept of electromag-
netic cross section suggests as the first step the introduction
of leakage rates to avoid divergence. A transmission cross
section is defined as the total transmitted power over the
intensity of the incident plane wave. Further investigation
is directed at finding the interference phase conditions for
suppression or enhancement of the scattering cross section.
Following this procedure a coupled-mode theory for a doubly
resonant two-slits system [32] was recently developed to show
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that electromagnetically induced transparency (EIT) and su-
perscattering (antiresonance) can be observed depending on
the excitation in a single structure. A model system used in
Ref. [32] consists of two slits in a metal film illuminated by
light on one side. Each slit can support a localized resonance,
and hence the transmission cross section of the individual slit
has a well-known Lorentzian line shape. The assumption that
similar slits have approximately the same leakage rates and
the spatial separation of the slits is small compared to the
wavelength results in the conclusion that the eigenmodes have
different damping factors, corresponding to superradiant and
subradiant eigenmodes, whose contributions to the total cross
section are regulated by the angle of incidence of the plane
wave. From the above it follows that the interference phenom-
ena in such an electromagnetic double-slit resonant structure
(DSRS) are described with the help of five parameters and the
angle of incidence.

At the same time, the resonance transmission and the
resonance reflection due to multipath phonon interference
are found experimentally [33] and described theoretically
[34–40]. Thereby, one can raise a question about the phonon
analog of DSRS. It may be, for example, a defect layer a few
atoms in thickness embedded between two perfect crystals.

Earlier such a system has been studied within the frame of
harmonic lattice dynamics [38–40], which is the simplest vari-
ant of atomistic approaches. In this theory the transmission
coefficient of the phonons passing through an atomic-scale
planar defect has the same definition as the electromagnetic
transmission cross section. Even if dissipation is left out, the
phonon scattering at the defect layer provides at its boundaries
the phase shifts of the complex amplitudes of atom displace-
ments, accompanying the reflected and transmitted phonons,
relative to the phase of the incident phonon. These phase
shifts have dynamical origin and in the case of a defect layer
with two different channels for phonon transmission and two
intrinsic frequencies, they result in both interference effects:
total transmission (constructive interference resonance) and
total reflection (destructive interference resonance) of the in-
cident wave. Notably, for the study of phonon scattering from
an intercalated impurity monolayer (or a few defect mono-
layers) between two semi-infinite crystal lattices, models of
lattice dynamics are quite adequate to describe all phonon
modes up to and including short-wave and high-frequency
vibrations significant for high temperature heat transport. Ac-
curate calculations of the thermal transmission across a single
boundary between two mismatch solids [41–44] and through
periodic nanostructures [45–49], already made in the frame-
work of these models, are in good agreement with different
experimental data on the cross-plane thermal conductivity in
two-segment systems [43,50] as well as in the superlattices
[47,51–53].

Thus, it is clear that the problem under discussion is di-
rectly related to the interface thermal resistance, often referred
to as the Kapitza thermal boundary resistance. This Kapitza
resistance creates a temperature drop across the interface be-
tween two dissimilar materials when a heat flux is applied. It
was first observed between a solid material and liquid helium
in 1941 [54]. More recently, the interface thermal resistance
was found at solid-solid interfaces; relevant earlier studies
are presented in the work of Swartz and Pohl in 1989 [50].

By now, phonon transport across interfaces between dissim-
ilar crystals has been investigated in a considerable number
of experimental and theoretical papers referred in textbooks
[55–57] and reviews [50,58–62].

At present, it is well known that the interface thermal
resistance depends on such parameters as the interface mi-
crostructure (roughness, disorder, dislocations, bonding), the
material utilized, the temperature regime, and other factors,
including inelastic phonon scattering at the interface. For the
last two decades, in order to explain or to predict the exper-
imental results on temperature discontinuity at the boundary
between two dissimilar media, in particular, an inelastic scat-
tering influence, it has been common to use methods based
on the atomistic approaches: equilibrium and nonequilib-
rium molecular dynamics simulations [63–68] as well as
equilibrium and nonequilibrium Green’s function techniques
[69–72].

Both these advanced methods have the following lim-
itations. Molecular dynamics (MD) allows any type of
anharmonic interatomic interactions and accounts for both
elastic and inelastic phonon scattering at the interface through
consideration of multiple-phonon processes, i.e., there are
no restrictions on the mechanism of heat exchange between
dissimilar media in contact [64,67]. As a rule, more realistic
and more accurate numerical models are suggested when the
analytically solvable theoretical models describing physical
effects in the phonon transport control are not sufficient to
explain the experimental data. In turn, advances in computing
lead to new predictions in the thermal interface resistance
investigations [63–68]. But MD simulations do not consider
quantum effects and, because of this, are restricted to high
temperatures.

By contrast, the atomistic Green’s function technique is
quantum mechanical. However to account for only a simple
quadratic nonlinearity in the equations of motion of the atoms
at solid-solid interface we need very cumbrous analytical cal-
culations and also in the length scale where anharmonicity
is of the second order. Despite these difficulties, an essen-
tial result was obtained in the Refs. [70,71]: Nonlinearity
suppresses thermal transport across the interface even at mod-
erately high temperatures. The effect of anharmonicity on the
thermal interface resistance is discussed as well within the
frame of the simplest atomistic lattice-dynamics approach in
Refs. [43,45,47,68].

To study the role of inelastic phonon scattering on the
thermal interface resistance in real experiments [73–77], the
results from atomistic approaches are compared with those in
the modifications of the traditionally used semiclassical dif-
fuse mismatch model [50]: a joint frequency diffuse mismatch
model [73], an anharmonic inelastic model [74], a higher
harmonic inelastic model [75], an inelastic phonon radiation
limit [76] (see also Ref. [77]).

Current progress in the semiconductor nanotechnolo-
gies provides creation of new advanced engineered ma-
terials for using at continuous scaling down in high-
power nanoelectronics. The new opportunities stimulate
the search for other more efficient heat removal tech-
niques to control the increasing power density in materi-
als both with extremely high and extremely low thermal
conductivity.
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In this respect, a perfect crystal divided into halves (or
into several nanolayers) by a planar defect of atomic-scale
thickness is proposed to use for heat flux control in nanoscale
at high temperatures, provided that two-channel (or two-path)
phonon interference mechanism is dominant in the energy
transfer. In such systems the role of interface inelastic scat-
tering in the cross-plane phonon transmission has to be of the
same importance as in the classical problem of the thermal
interface resistance for the dissimilar media. Further in this
paper, the phenomena of two-path phonon interference are
studied on the base of a model, described in the previous work
[40]. In this model the interface scattering of one incident
phonon results in only one transmitted bulk phonon and only
one reflected bulk phonon whose amplitudes are defined by
the multipath interference of the partial waves passing through
different channels within the defect area only. No localized
defect vibration eigenmodes exist unlike the doubly resonant
electromagnetic structure [32] in which either of the two slits
can support a localized resonance.

Two types of vibration systems (doubly and thrice res-
onant) in the context of the discrete scalar model are
considered. One of these systems has a checkerboard-type
defect monolayer (doubly resonant CB model), in which the
impurities of two sorts alternate in staggered order and interact
only with their nearest neighbors in the harmonic approxima-
tion. The other model is a system with a triple defect layer
(thrice resonant TL model), consisting of three homogeneous
impurity monolayers: The intermediate layer is in between
two identical outer defect layers, interacting directly through
the next-to-nearest-neighbor elastic force, besides their basic
elastic coupling with nearest neighboring atoms.

It is shown that the simplest counterpart of DSRS in the
phonon dynamics is the CB model. In the nondissipative
CB model the phonon transmission peculiarities (resonance
and antiresonance) depend on two intrinsic frequencies and
two defect force constants. It should seem that these four
parameters correspond to two localized resonances and two
leakage rates in DSRS [32]. But in the couple-mode theory of
DSRS two additional values were entered into consideration:
direct and indirect coupling between the resonances. It is
apparent that in order to be the most convenient counterpart of
DSRS the CB model must include the local energy dissipation
within both phonon transmission channels as two additional
parameters. It means that phonon analog of DSRS is inverse
to electromagnetic couple-mode theory for DSRS in such a
sense that the roles of parameters change over. In other words,
to study a doubly resonant vibration systems (DRVS) as a
phonon analog of the electromagnetic double-slit resonant
structure (DSRS) from Ref. [32] it is necessary to change
paradigm.

In the present work we analyze a spectral interface absorp-
tion behavior of DRVS analogous to a spectral behavior of
a cross section in DSRS characterized by two resonances: a
broad one and a narrow one. In such cases local maxima of the
phonon absorption fall on the frequencies where the scattering
coefficients of the corresponding nondissipative case show a
steep decline, steeper curve corresponding to narrow absorp-
tion resonance. The position of this narrow resonance with
respect to the broad peak remains approximately unchanged
as the weak local dissipation is varied in DRVS by analogy

with DSRS where resonance frequency locations are not de-
pendent of the angle of light incidence. An exact expression
of the interface phonon absorption is presented here approx-
imately as the sum of the contributions from the absorption
in either phonon channel and from dissipative motion of the
boundary planes.

The second model, the TL model, exhibits similar behav-
ior and also reveals properties different from those in the
CB model. Thus, a phenomenon of triple-peaked absorption
resonance may occur in the vibration system with two-path
phonon interference if triple defect layer is filled by fairly
heavy atoms and has weak coupling with adjacent host layers.
Such a system with three nondissipative total transmission
frequencies and three intrinsic frequencies produces dual in-
terference picture in which two-path phonon interference and
phonon analog of the Fabry-Pérot-type interference super-
pose. In another case, when the intrinsic frequency of two
tightly bound dense outer layers is close to that of a weakly
bound inner layer, anomalous total interface absorption should
be expected. The third distinctive feature of the TL model
as compared to the CB model is that the narrow peak may
exchange places with a broad peak in two close cases with
defect atoms little different in the material constants. From
the results obtained on the interfacial two-channel phonon
transmission it follows that within certain frequency ranges
the weak dissipation taken into account may lead to energy
redistribution between scattered and transmitted energy fluxes
and also phonon energy interface absorption in such a way that
the heat transport has to be either suppressed or increased.

The paper is organized as follows. Section II contains a
brief description of the general theoretical model for phonon
scattering by triple defect layer covering all simple cases of
two-path phonon interference under present consideration. In
Sec. III the resonance phonon interface absorption by the
checkerboard-type impurity monolayer intercalated between
two crystals (CB model) is discussed as a spectral analog
of doubly resonant electromagnetic system behavior and as
a mechanism of first importance in the thermal interface resis-
tance control.

Section IV presents an investigation of another vibration
system which is thrice resonant on condition of two-path
interference: the TL model with the two-dimensional triple
defect layer homogeneous along its plane. In this model, more
complex interference peculiarities are analyzed and the crite-
rion for total absorption maximum is obtained. Finally, the
main conclusions are given in Sec. V.

II. BRIEF DESCRIPTION OF CRYSTAL MODEL
WITH TRIPLE DEFECT LAYER

Following Ref. [40], a bcc lattice with planar triple de-
fect layer embedded between two semi-infinite crystals is
considered. A fragment of this structure is shown in Fig. 1.
Lines interconnecting nodes indicate cell borders. Circles at
the centers and sites of the cells are different sorts of atoms.
Lines between centers and sites as well as between two cen-
ters symbolize nearest-neighbor and next-to-nearest-neighbor
bonds. The atom position is specified by three integers pi,
i = 1, 2, 3. Numbering along the defect plane and across it
is carried out with p1,2 and p3, respectively. Even integers
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FIG. 1. General model.

pi = 2ni, where i = 1, 2, 3, correspond to cell sites and odd
integers pi = 2ni + 1, where i = 1, 2, 3, to cell centers. Host
atoms with masses m (black circles) are indexed by triplets
(2n1, 2n2, 2n3), where n3 �= 0, and (2n1 + 1, 2n2 + 1, 2n3 +
1), where n3 �= 0,−1. The defect region consists of three
atomic planes p3 = 0,±1. Impurities with masses m1 (empty
circles) and m1∗ (circular rings of the oplus type) lie in plane
p3 = n3 = 0 at cell sites and are labeled, respectively, by
(2n1 + 2, 2n2, 0) and (2n1, 2n2, 0). Impurities with masses
m2 (circular rings of the otimes type) take positions (2n1 +
1, 2n2 + 1,±1).

Below the atom displacements are assumed to be one-
component and directed perpendicular to the defect planes.
The displacement of an atom in position (p1, p2, p3) is de-
noted by up2,p3

p1 . All three pi in each triplet of indices are
either even or odd, i.e., either pi = 2ni or pi = 2ni + 1 for
i = 1, 2, 3.

As a first approximation, the nearest-neighbor interaction
is taken into account—namely, the interaction between an
atom at the cell center and its nearest eight neighbors at
lattice nodes. The force constant γ characterizes the inter-
action between host atoms. The symbols γ1 and γ1∗ stand
for the force constants of nearest-neighbor interactions be-
tween impurities m1 ←→ m2 and m1∗ ←→ m2, respectively.
The force constant γ2 characterizes the nearest-neighbor in-
teraction between host atoms and impurities m2. Besides, the
next-to-nearest-neighbor interaction with the force constant γ3

between the impurities m2 in the opposite layers is allowed
for. Below, for the sake of convenience, all the above force
constants are assumed to characterize the interaction along the
direction perpendicular to the defect planes.

The equations of lattice dynamics can be presented in the
following form:

müp2,p3
p1

= −γ
∑
δi

�
δ2,δδ3
δ1

, |p3| � 3, (1)

where

�
δ2,δ3
δ1

= up2,p3
p1

− up2+δ2,p3+δ3
p1+δ1

, (2)

p1,2,3 are the triplets of even and odd integers; the index δi at
the summation symbol means that the summation is over eight
combinations of δ1, δ2, δ3 = ±1;

mü2n2,2δ3
2n1

= −
∑
δ1,2

(
γ�

δ2
δ1

+ γ2�̄
δ2
δ1

)
, (3)

where

�
δ2
δ1

= u2n2,2δ3
2n1

− u2n2+δ2,3δ3
2n1+δ1

,

�̄
δ2
δ1

= u2n2,2δ3
2n1

− u2n2+δ2,δ3
2n1+δ1

, (4)

the index δ1,2 at the summation symbol implies the summation
over four possible combinations of δ1, δ2 = ±1;

m1ü2n2,0
2n1+2 = −γ1

∑
δi

(
u2n2,0

2n1+2 − u2n2+δ2,δ3
2n1+2+δ1

)
, (5)

m1∗ü2n2,0
2n1

= −γ1∗
∑
δi

(
u2n2,0

2n1
− u2n2+δ2,δ3

2n1+δ1

)
, (6)

and

m2ü2n2+1,δ3
2n1+1 = −γ2

∑
δ1,2

�̃
δ2
δ1

− γ1�1 − γ1∗�1∗ − δ3γ3�3,

(7)
where

�̃
δ2
δ1

= u2n2+1,δ3
2n1+1 − u2n2+1+δ2,2δ3

2n1+1+δ1
,

�1 = 2u2n2+1,δ3
2n1+1 − u2n2+2,0

2n1
− u2n2,0

2n1+2,

�1∗ = 2u2n2+1,δ3
2n1+1 − u2n2+2,0

2n1+2 − u2n2,0
2n1

,

�3 = u2n2+1,1
2n1+1 − u2n2+1,−1

2n1+1 . (8)

These equations describe, respectively, the vibrations of the
host atoms in planes |p3| � 3 and p3 = ±2 [Eqs. (1) and (3)],
the vibrations of impurities in plane p3 = 0 [Eqs. (5) and (6)],
and the vibrations of impurities in planes p3 = ±1 [Eq. (7)].

To understand the key features of the resonance interface
absorption discussed in the present work the phonon prop-
agation in the direction perpendicular to the defect layer is
considered. In this case, under the assumption that the half
length of the bcc cell edge is 1, one obtains from Eq. (1)
the bulk phonon spectrum in the host material, i.e., the de-
pendence of the phonon frequency ω on the one-dimensional
normalized wave vector k > 0:

ω = ωph sin(k/2), (9)

where ωph = 4
√

γ /m. The host lattice parameters γ and m
define the upper limit of the resonance frequency which must
be smaller than the maximum phonon frequency ωph. By
Eq. (9) the maximum frequency is on the Brillouin zone edge.

The reflection R and transmission T coefficients of
phonons incident onto defect planes p3 = 0,±1 are defined as
R = |aR|2 and T = |aT |2, where aR and aT are the amplitudes
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of the displacements up2,p3
p1,R

and up2,p3
p1,T

of the reflected and
transmitted phonons, respectively. The amplitude of the dis-
placement associated with the incident phonon up2,p3

p1,I
equals to

1. It is assumed that the incident phonon propagates with wave
vector k > 0 in the part of the lattice where the indices p3

are negative, so the phase factors take the form exp[i(±kp3 −
ωt )], where the upper sign corresponds to the incident and
transmitted phonons and the lower sign appropriates to the
reflected phonon.

The expressions for complex reflection aR and transmission
aT amplitudes may be found after substitution of the displace-
ments of host atoms

up2,p3
p1

= [exp(ikp3)

+ aR exp(−ikp3)] exp(−iωt ), p3 < −1,

up2,p3
p1

= aT exp[i(kp3 − ωt )], p3 > 1,

into Eqs. (1)–(8). According to Ref. [40], the simple calcula-
tions give aR,T in the form

aR = − e−i4k

2

[
�(−)

�
(−)
∗

+ �(+)

�
(+)
∗

]
, (10)

aT = e−i4k

2

[
�(−)

�
(−)
∗

− �(+)

�
(+)
∗

]
, (11)

where

�(±) = A + 16γ 2
2

B(±)
, �(±)

∗ = A∗ + 16γ 2
2

B(±)
,

A = 0.5mω2 − 4γ2 − i4γ sin k,

B(−) = 2(γ1 + γ1∗ + γ3 + 2γ2) − m2ω
2,

B(+) = B(−) − 2γ3 + 2B,

B = γ1ω
2
1

ω2 − ω2
1

+ γ1∗ω2
1∗

ω2 − ω2
1∗

, (12)

and

ω1 = 2
√

2γ1/m1, ω1∗ = 2
√

2γ1∗/m1∗ (13)

are the intrinsic frequencies attributed to the defects lying in
plane p3 = 0. The asterisk at A means complex conjugation.
If all constants are real, then �

(±)
∗ = �(±)∗ and the equality

T + R = 1 holds true.
In the general case the proposed vibration system falls

into the category of fourfold resonant due to three intrinsic
frequencies corresponding to three paths for phonon transmis-
sion across the defect—namely, two paths through different
impurities in the plane p3 = 0 and a third path through the
next-to-nearest-neighbor interatomic bond γ3 between impu-
rities in the planes p3 = ±1 (Fig. 1). The fourth intrinsic
frequency is associated with one-channel phonon transmis-
sion between triple defect layer and each adjacent layer p3 =
±2 through interatomic bond γ2. Accordingly, four total trans-
mission frequencies ω = ωT may be found as four roots of
biquartic equation resulting from Eqs. (10) and (12) at aR = 0.
Generally the frequencies ωT depend on parameters of the
adjacent layers p3 = ±2 [see, e.g. Eqs. (24) and (25)]. This
points to the fact that resonance phonon propagation is due
to the synchronism in the motion of the defect atoms with
the motion of their neighboring host atoms. At the same

time, from Eqs. (11) and (12) it follows that aT = 0 at two
antiresonance frequencies ω = ωR which obey the biquadratic
equation

γ1ω
2
1

ω2
R − ω2

1

+ γ1∗ω2
1∗

ω2
R − ω2

1∗
− γ3 = 0. (14)

In accordance with Eq. (14), ωR is independent of the
mass m2 of impurities in planes p3 = ±1 and of the force
constant γ2 specifying the interaction of these impurities with
host atoms. It means that Eq. (14) for the total reflection
frequencies presents an equality of the energy fluxes, which
pass across the defect layer in opposite directions only through
the inner parallel channels.

From this point on we will consider the systems with
two-path phonon interference and only one antiresonance
frequency ωR. The first system contains checkerboard-
type monolayer of the simplest structure with four defect
parameters—namely, force constants γ1 and γ1∗ and impurity
masses m1 and m1∗ (or intrinsic frequencies ω1 and ω1∗). This
model is designated as the checkerboard-type (CB) model.
In the CB model antiresonance frequency ωR is defined by
Eq. (14) at γ3 = 0. In the second simple system a triple defect
layer consists of three homogeneous monolayers. In this case
one antiresonance frequency ωR is the root of Eq. (14) with pa-
rameters γ1 = γ1∗ and ω1 = ω1∗, determining homogeneous
inner layer. This model is referred to as the triple-defect-layer
(TL) model.

In both models two different paths for phonon transmission
exist only within the very thin defect layer. However, it is
impossible to excite local vibrations of the planar defect if
the bulk crystal is at rest, i.e., no localized eigenmodes ex-
ist in contrast to the motion of free oscillators [78], whose
eigenfrequencies (e.g., ω1 and ω1∗) are used as intrinsic fre-
quencies. An interface scattering of an incident phonon leads
to formation of one transmitted and one reflected waves whose
amplitudes are defined by two-path phonon interference and
Fabry-Pérot-type interference. It is correct to treat these waves
as a collective mode appearing in the crystal with a planar
defect under incidence of a plane wave. In a particular case
the collective mode can switch from a total transmission mode
to a total reflection mode depending on the incoming wave
frequency. Such significant changes of the collective mode
are due to specific dynamics of the defect atoms, which is
very sensitive to local weak dissipation. That is why the effect
of local weak dissipation on collective dynamic motion and
interface energy absorption may be of essential interest for
investigations of the thermal interface resistance and will be
studied below on the basis of the conventional phenomeno-
logical approach [78]. In this approach local weak dissipation
is taken into account by adding a small imaginary component
γ ′

i in the defect force constants γi. Namely, for the general
model (Fig. 1) the real force constants γi (i = 1, 1∗, 2, 3) in
Eqs. (10)–(13) have to be replaced by the complex values
γi → γi − iγ ′

i . In particular cases, this problem is considered
in Sec. III B and Sec. IV more fully.

In what follows, an analogy is discussed between dou-
bly resonant dissipative vibration systems and the earlier
investigated doubly resonant electromagnetic structure [32].
The connection between double-humped resonance in the
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FIG. 2. Spectra of phonon energy transmission T (dashed line),
reflection R (dotted-dashed line), and absorption �A (solid line)
versus reduced frequency ω/ωph at a checkerboard-type defect layer
with parameters m2 = m, γ2 = γ1 = γ1∗ = γ , m1∗ = m and impurity
mass m1 = 3m for the cases: (a) without dissipation, (b) with dis-
sipative parameters γ ′

1 = γ ′
1∗ = 0.014γ , intrinsic frequencies ω1 =

ωph/
√

6 and ω1∗ = ωph/
√

2.

interface phonon absorption at weak dissipation on one hand,
and total phonon transmission and total phonon reflection in
the lossless limit under two-path phonon interference on the
other hand, is analyzed. It is shown that resonance trans-
mission frequencies, resonance reflection frequencies, and
resonance absorption frequencies do not always coincide with
the intrinsic frequencies. It is demonstrated that triple-peaked
absorption resonance arises from superposition of two-path
phonon interference and Fabry-Pérot-type interference in the
system with triple defect layer. Also, total interface absorp-
tion and other peculiarities relevant to the thermal interface
resistance problem are described.

Namely, it will be seen that availability of two-path
phonon interference antiresonance in the lossless phonon
spectrum does not assure noticeable interface absorption at
weak dissipation taken into account, such as in the case of
checkerboard-type defect layer filled with host atoms and
heavy impurities (Fig. 2). On the other hand, the single in-
terface absorption resonance may be due to different reasons.
For example, in the case of single homogeneous light impurity
monolayer weakly bound with host atoms at both opposite
boundaries (provided that these boundaries interact through
an extremely weak direct next-to-nearest-neighbor bonds) a
phonon transmission may be considered as one-path. This
situation is characterized by nondissipative narrow transmis-
sion resonance [Fig. 13(c)] and pronounce single absorption
resonance [Fig. 13(d)] when the weak dissipation is allowed
for. Similar absorption spectra are realized also in the systems
with two-path phonon interference [Figs. 3(b), 6(d), 13(b),
and 14(b); see also Figs. (b+), 6(d+), 13(b), and 14(b) in
Ref. [79]].

III. RESONANCE PHONON SCATTERING BY
CHECKERBOARD-TYPE IMPURITY MONOLAYER

INTERCALATED BETWEEN TWO
CRYSTALS (CB MODEL)

A. Two-channel phonon interference in nondissipative
checkerboard-type model

As already noted, in the CB model a defect plane, embed-
ded in a crystal, consists of two types of impurities alternating
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0
1.00 0.2 0.4 0.6 0.8 1.00 0.2 0.4 0.6 0.8
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FIG. 3. Spectra of phonon energy transmission T (dashed line),
reflection R (dotted-dashed line), and absorption �A (solid line)
versus reduced frequency ω/ωph at a checkerboard-type defect layer
with parameters m2 = m, γ2 = γ , γ1 = 0.14γ , γ1∗ = 1.8γ , and im-
purity masses m1 = m1∗ = 2m for the cases: (a) without dissipation,
(b) with dissipative parameters γ ′

1 = 0.014γ , γ ′
1∗ = 0.018γ ; intrinsic

frequencies ω1 ≈ 0.187ωph and ω1∗ ≈ 0.671ωph.

in staggered order. It is assumed that all defect masses m1, m1∗
and elastic constants γ1, γ1∗, coupling the impurities with the
boundary host atoms with m2 = m, γ2 = γ , are different and
there is no interaction between boundary planes p3 = ±1 [see
Eqs. (1)–(8) and Fig. 1 at γ3 = 0, m2 = m, γ2 = γ ]. The force
constants γ1 and γ1∗ are taken to be real unless dissipation in
the defect layer is non-negligible.

In this model two channels of the phonon propagation
through the defect plane exist already in the nearest-neighbor
approximation. One of them passes through the impurity bond
γ1 and the other runs across the impurity bond γ1∗. In such a
situation, the expressions (10) and (11) for the reflection and
transmission amplitudes can be written as follows:

aR = Nr (ω) exp(−2ik)

DCB(ω)[4γ exp(ik) − B(−)
CB ]

, (15)

aT = Nt (ω) exp(−2ik)

DCB(ω)[4γ exp(ik) − B(−)
CB ]

, (16)

where

Nr (ω) = −2ω
{
2(2γ − γ1 − γ1∗)ω4 − ω2[2(2γ

− γ1 − γ1∗)
(
ω2

1 + ω2
1∗

) + γ1ω
2
1 + γ1∗ω2

1∗

−ω2
ph(γ1 + γ1∗)2/4γ

] + ω2
1ω

2
1∗(4γ − γ1 − γ1∗)

−ω2
ph(γ1 + γ1∗)

(
γ1ω

2
1∗ + γ1∗ω2

1

)
/4γ

}
, (17)

Nt (ω) = 2i
√

ω2
ph − ω2

[
ω2(γ1ω

2
1 + γ1∗ω2

1∗
)

−ω2
1ω

2
1∗(γ1 + γ1∗)

]
, (18)

B(−)
CB = 4γ exp(ik) − 8γω

ω2
ph

(
i
√

ω2
ph − ω2 + ω

)
+ 2(γ1 + γ1∗), (19)

DCB(ω) = i
√

ω2
ph − ω2

(
ω2 − ω2

1

)(
ω2 − ω2

1∗
) + ω

{
ω4

−ω2
[
ω2

1 + ω2
1∗ + ω2

ph(γ1 + γ1∗)/4γ
]

+ω2
1ω

2
1∗ + ω2

ph

(
γ1ω

2
1∗ + γ1∗ω2

1

)
/4γ

}
. (20)
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FIG. 4. Spectra of phonon energy transmission T (dashed line),
reflection R (dotted-dashed line), and absorption �A (solid line)
versus reduced frequency ω/ωph at a checkerboard-type defect layer
with parameters m2 = m and γ2 = γ , impurity masses m1 = m1∗ =
2m, elastic force constants γ1 = 0.14γ and γ1∗ = 0.4γ (intrin-
sic frequencies ω1 ≈ 0.187ωph and ω1∗ ≈ 0.316ωph) for the cases:
(a) without dissipation, (b), (c), and (d) are the cases with phonon
energy absorption, dissipative parameters in (b) γ ′

1 = 0.012γ , γ ′
1∗ =

0.1γ , in (c) γ ′
1 = 0.006γ , γ ′

1∗ = 0.09γ , and in (d) γ ′
1 = γ ′

1∗ = 0.02γ .

Here, the symbol ωph denotes the maximum phonon fre-
quency for normal incidence in view of Eq. (9) and the
intrinsic frequencies ω1 and ω1∗ are defined by Eqs. (13).
Below the symbol ω1 refers to the minor intrinsic frequency.

According to Eq. (14), the total reflection frequency ωR

(transmission antiresonance) is determined by the expression:

ωR = ω1ω1∗

√
γ1 + γ1∗

γ1ω
2
1 + γ1∗ω2

1∗
. (21)

If �ω = ω1∗ − ω1 	 ω1, from Eq. (21) we get an estimate
for the resonance frequency

ωR ≈ ω1 + ω1∗
2

+ �ω(γ1 − γ1∗)

2(γ1 + γ1∗)
. (22)

From Eq. (21) it follows that once one type of impurities
with mass m1 is weakly bound, i.e., γ1 	 γ1∗ and γ1ω

2
1 	

γ1∗ω2
1∗, then ωR � ω1 and zero-transmission dip is observed

close to the minor intrinsic frequency ω1. As it also follows
from Eq. (21), in the nondissipative case at arbitrary de-
fect parameters the restriction ω1 < ω1∗ < ωph is sufficient to
fulfill the inequality ω1 < ωR < ω1∗ < ωph. To study double-
resonance dissipative interference this case seems to be the
most interesting and will be examined hereafter. Dependen-
cies of the scattering coefficients R = |aR|2 and T = |aT |2
versus reduced frequency ω/ωph are shown in Figs. 2–7.

From formulas (15) and (17) it is evident that two trans-
mission maxima in Figs. 4(a), 6(a), 6(c), and 7(a) correspond
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FIG. 5. Phonon energy absorption �A (solid line) versus reduced
frequency ω/ωph at a checkerboard-type defect layer with the same
parameters as in Fig. 4(a) and dissipative parameters γ ′

1 = 0.02γ

and γ ′
1∗ = 0.04γ : (a) an exact calculation by the formula (29),

coefficients of phonon energy transmission T (dashed line), and
reflection R (dotted-dashed line); (b) approximate calculations �A ≈
�A2 + �A1 + �A1∗ by the formulas (30)–(32), �A1 (dashed line) is
absorption due to viscous motion of the defect mass m1, and �A1∗
(dotted-dashed line) is absorption in the parallel channel with the
defect mass m1∗; �A2 is depicted in Fig. 5 in Ref. [79].

to two roots (ωT 1 and ωT 2) of the equation:

2(2γ − γ1 − γ1∗)ω4
T − ω2

T

[
2(2γ − γ1 − γ1∗)

(
ω2

1 + ω2
1∗

)
+ γ1ω

2
1 + γ1∗ω2

1∗ − ω2
ph(γ1 + γ1∗)2/4γ

]
+ω2

1ω
2
1∗(4γ − γ1 − γ1∗)

−ω2
ph(γ1 + γ1∗)

(
γ1ω

2
1∗ + γ1∗ω2

1

)
/4γ = 0. (23)

One of the simplest CB models is a perfect crystal of argon
(Ar) with a defect plane filled with host atoms and their
heavy isotopes in checker order. This system is investigated
in Ref. [38] to describe the so-called “isotopic defect” in the
nondissipative limit without considering bond defects, i.e.,
with only one defect parameter m1. In such a case, depicted
in Fig. 2(a) at m2 = m and γ2 = γ , both the total transmis-
sion frequency ωT and total reflection frequency ωR manifest
themselves, both intrinsic frequencies are less than ωph and the
relation ω1 < ωR < ω1∗ < ωph is realized. The major intrinsic
frequency ω1∗ is equal to the single total transmission fre-
quency ωT = ω1∗ = ωph/

√
2 and corresponds to the double

minimum bulk phonon length.
In the CB model with the defect plane occupied by the

weakly bound (γ1 	 γ ) and not-too-heavy (m1 ∼ m) im-
purities alternating with the host atoms (m1∗ = m, γ1∗ =
γ ) one can obtain from Eq. (23) approximate analytical
expressions—for total transmission low frequency ωT 1

ωT 1 � ω1(1 − m1/5m)1/2 (24)

and for total transmission high frequency ωT 2

ωT 2 � ωph(5/8)1/2(1 − γ1/50γ ), (25)

the major frequency ωT 2 being almost independent of the pa-
rameters γ1 and m1. Such independence is similar to the case
of heavy impurities with only one defect parameter [Fig. 2(a)],
but now the frequency ωT 2 does not coincide with major
intrinsic frequency ω1∗ = ωph/

√
2 which is less than ωT 2, i.e.,

ω1∗ < ωT 2 (we recall that the atoms at the planes p3 = ±1 in
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FIG. 6. Spectra of phonon energy transmission T (dashed line),
reflection R (dotted-dashed line), and absorption �A (solid line)
versus reduced frequency ω/ωph at a checkerboard-type defect layer
with parameters m2 = m and γ2 = γ for the cases: in (a) and (b) γ1 =
0.02γ , γ1∗ = 0.14γ and impurity masses m1 = 3m, m1∗ = m (intrin-
sic frequencies ω1 ≈ 0.0577ωph and ω1∗ ≈ 0.265ωph), (a) without
dissipation and (b) with dissipative parameters γ ′

1 = 0.001γ , γ ′
1∗ =

0.014γ ; in (c) and (d) γ1 = γ /15, γ1∗ = γ , impurity masses m1 =
m1∗ = m (intrinsic frequencies ω1 ≈ 0.183ωph and ω1∗ ≈ 0.71ωph),
(c) without dissipation and (d) with dissipative parameters γ ′

1 =
γ /150 and γ ′

1∗ = 0.001γ .

the CB model are the host atoms with m2 = m and γ2 = γ ,
see Fig. 1 and the beginning of Sec. III A).

As for the minor total transmission frequency ωT 1

(24), it fits the inequality ωT 1 � ω1 � ωR at ωR − ωT 1 �
(γ1/γ )ω1 	 ω1. The resonance frequency (24) depends on
the force constant γ1 and the defect mass m1 through the
intrinsic frequency ω1 [due to definition (13)]. From formulas
(24) and (25) it follows that synchronization between the
motion of the atoms in the defect plane and the motion of
their neighboring host atoms occurs in such a way that at the
low total transmission frequency the energy flux goes mainly
through the channel with weakly bound and not-too-heavy
impurities whereas at the high total transmission frequency
the flux is transmitted mainly through the host atoms in the
defect plane.

It turns out and will be shown below that the model of such
type [its scattering spectra are displayed in Fig. 6(c)] differs
radically from that with the heavy impurities [Fig. 2(a)] in the
degree of tolerance for the inclusion of weak dissipation. By
Eqs. (5) and (6) it follows that the displacement amplitudes u0

and u0∗ of the impurities m1 and m1∗, respectively, obey the
relations (cf. Ref. [40]):(

ω2 − ω2
1

)
u0 = 0.5ω2

1(u(+)
1 + u(−)

1 ),(
ω2 − ω2

1∗
)
u0∗ = 0.5ω2

1∗(u(+)
1 + u(−)

1 ), (26)

where u(+)
1 and u(−)

1 are the amplitudes of the displacements
of the atoms in planes p3 = 1 and p3 = −1, respectively. If
ω = ω1, then from Eqs. (26) it follows that u(+)

1 + u(−)
1 = 0,

and hence, u0∗ = 0. It means that due to interference a phonon
path through the impurities with masses m1∗ is blocked. Sim-
ilarly, at the frequency ω = ω1∗ the energy flux via the atoms
with m1 goes to zero.

According to Eqs. (26), the displacement amplitudes u0

and u0∗ are of the same sign at the low frequencies ω < ω1 and
at the high frequencies ω > ω1∗ if an inequality ω1 < ω1∗ <

ωph takes place. In the intermediate phonon frequency domain
ω1 < ω < ω1∗ the amplitudes u0 and u0∗ are of different signs;
heterogeneous atoms in the defect plane fulfill antiphase os-
cillations. Just at the same frequency domain the total phonon
reflection occurs as soon as the frequency ωR from Eq. (21) is
reached.

Stability of the solution (15)–(20) mathematically may
be disturbed at the condition ωT = ωR. But substitution of
ω = ωR from Eq. (21) into Eq. (23) leads to a conclusion
that at γ > γ̄ = (γ1 + γ1∗)/2 total reflection frequency ωR

may be equal to total transmission frequency ωT only when
ω1 = ω1∗. At this equality, in view of Eqs. (26), for all incident
wave frequencies ω and for all defect atoms the displacement
amplitudes are of the same value u0 = u0∗, while the energy
fluxes through each of both channels differ from each other.
In this case, the destructive interference (transmission antires-
onance) is absent. The defect plane scatters phonons similar
to a homogeneous monoatomic layer with intrinsic frequency
ω1 and effective defect nearest-neighbor bond γ̄ . Therewith,
the square of total transmission frequency ω2

T is

ω2
T = ω2

1(2γ − γ̄ ) − ω2
phγ̄

2/2γ

2(γ − γ̄ )
. (27)

It is implied that in Eq. (27) the existence condition 0 < ω2
T <

ω2
ph for ωT is satisfied.

Evidently, there is an infinitely large number of
checkerboard-type systems with equal parameters ω1 and γ̄ ,
such as ω1 = ω1∗ < ωph and γ > γ̄ , and with a total trans-
mission frequency, defined by Eq. (27). Any small variation
of any one of four material parameters leads to the rise of
another intrinsic frequency ω1∗ in the vicinity of ω1 (or ω1 in
the vicinity of ω1∗) and, in view of Eq. (22), produces at once
destructive antiresonance ωR as well as a new transmission
resonance ωT close to ωR, i.e., ωR ≈ ωT . The resulting type
of phonon spectrum is independent of such variations, that is,
two total transmission frequencies are separated by the total
reflection frequency. This is a distinctive feature of the CB
model as compared to the three-layer model studied further in
Sec. IV.

At different values of the intrinsic frequencies and force
constants the biquadratic equation (23) for constructive reso-
nances may possess either one or two or no roots. When the
conditions γ > γ̄ and ω1 < ω1∗ < ωph are fulfilled, sets of pa-
rameters γ1, γ1∗, ω1, and ω1∗ exist at which the total reflection
frequency lies in the range between two total transmission
frequencies. For example, below in Sec. III B as an analog
of doubly resonant electromagnetic system we will discuss
a case of the CB model with both defect masses equal (or
almost equal) to the double mass m of the host atom, i.e.,
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m1 = m1∗ = 2m [see Fig. 4(a)]; the defect elastic constants
are chosen to be γ1 = 0.14γ and γ1∗ = 0.4γ (the intrinsic
frequencies ω1 ≈ 0.187ωph and ω1∗ ≈ 0.316ωph). In this case
the plane wave scattering reveals three strongly marked res-
onances: The minor total transmission frequency (resonance)
and the total reflection frequency (antiresonance) are in the
vicinity of the minor intrinsic frequency (ωT 1 � ω1 � ωR).
The second total transmission frequency (resonance) is in the
vicinity of the major intrinsic frequency ωT 2 ≈ ω1∗ (ωR <

ωT 2), so a well-defined narrow antiresonance transmission
dip and two more wide pass bands take place in the phonon
transmission spectrum. From Fig. 4(a) one can draw a con-
clusion that in the CB model a low intrinsic frequency in the
weak-binding approximation for defect atoms is resonant for
increasing forward scattering provided that the correspond-
ing weak-binding transmission channel is the more powerful
of the two, whereas at a minor intrinsic frequency the total
phonon reflection (antiresonance) is observed.

Another option of the same pattern with γ > γ̄ and m1 =
m1∗ = 2m is depicted in Fig. 3(a) with parameters γ1 = 0.14γ

and γ1∗ = 1.8γ . There is a very narrow terahertz-frequency
transmission antiresonance (ωR ≈ 0.1936ωph) against the
background of a very wide frequency pass band. A system
with such destructive interference dip in the phonon spectrum
may be used as metafilter or metamirror there required. It
should be noted that high-frequency scattering properties in
this case are totally unlike those presented in Fig. 4(a) where
a wide high-frequency range of almost total nontransmission
exists.

B. Double-humped phonon absorption by checkerboard-type
defect monolayer

It is well known [78] that attenuation can significantly
change the behavior of a system in the vicinity of reso-
nance frequencies. In the nondissipative limit the incident
wave energy is radiated into the crystal volume by reflected
and transmitted waves. At finite dissipation, the energy lo-
calized near a defect hereafter travels into the bulk through
the relaxation processes in the nonequilibrium heat carrier
system. There exist different energy exchange channels con-
nected with relaxation in the phonon system, for example,
phonon-phonon scattering, phonon interaction with conduc-
tion electrons in metals, phonon scattering by the crystal
boundaries in monocrystals and polycrystals, scattering in
the surface area by the asperities, scattering by impurities,
scattering by crystal defects.

In the general model (Fig. 1), the relatively weak dissipa-
tion in the defect interior is assumed to be predominant over
the rest of energy exchange mechanisms. So, an influence of
inner dissipative processes on the interaction of the incident
wave with defect layer is studied under the assumption that
after the energy accumulation in the defect area the heat trans-
port to the surrounding medium is determined by scattering
processes of a higher approximation than is discussed here.

Following a conventional phenomenological technique
(see, e.g., Ref. [78] for more details), the dissipative function
which gives the rate of energy dissipation in the system is
introduced. Further, all generalized frictional forces in the
volume of a bulk crystal are supposed to be small in contrast

with those in the defect layer. It is well known that the small
friction taken into account in the first approximation of the
perturbation theory gives a small imaginary contribution in the
vibration frequencies, corresponding to oscillation damping
in time. Appearance of such contribution may be provided by
adding a small imaginary component in the force constants
(see, e.g., Ref. [80]).

In this section the effect of attenuation of defect layer
oscillations on the phonon multipath interference reflection
and transmission is analyzed in such a case of the CB model
that can be considered as an analog of the doubly resonant
electromagnetic system. To introduce the energy absorption
losses of these oscillations into the pattern of calculation
one has to replace the real force constants γi (i = 1, 1∗) in
Eqs. (15)–(20) by the complex values γi → γi − iγ ′

i and the
intrinsic frequencies ω1 and ω1∗ in Eq. (13) by the complex
values:

ω2
i → ω2

i (1 − iγ ′
i /γi ), i = 1, 1 ∗ . (28)

Here both imaginary parts are positive, γ ′
i > 0, and for sim-

plicity taken to be frequency independent.
One can calculate the absorption by the checkerboard-type

defect layer as

�A = 1 − |aR|2 − |aT |2. (29)

Assuming that γi � γ ′
i , the value �A in Eq. (29) may be

presented approximately as the sum of three terms:

�A ≈ �A2 + �A1 + �A1∗, (30)

where the values �Ai at i = 1, 1∗ account for the viscous
motions of the impurities with the masses m1 and m1∗, cor-
respondingly,

�Ai =
γ ′

i ω
2
ph

√
ω2

ph − ω2ω3
(
ω2 − ω2

j

)2

2γ |DCB(ω)|2 , (31)

(here j = 1∗ at i = 1 and j = 1 at i = 1∗), and �A2 is the
energy losses due to viscous motion of the boundary planes
p = ±1:

�A2 =
32γω

√
ω2

ph − ω2(γ ′
1 + γ ′

1∗)

ω2
ph|4γ exp(ik) − B(−)

CB |2 . (32)

In Eqs. (31) and (32) the values B(−)
CB and DCB(ω) are

defined by Eqs. (19) and (20) with complex values of the force
constants and intrinsic frequencies. As one would expect,
�Ai = 0 (i = 1, 1∗) at the same frequency ω j ( j = 1∗, 1)
when the phonon transmission channel, marked off by index
i, is blocked in the nondissipative case (see Sec. III A).

For a checkerboard-type defect layer the coefficients of
phonon energy transmission T (ω) and reflection R(ω) as
well as interface phonon energy absorption �A(ω) versus
reduced frequency ω are shown in Figs. 4 and 5 with the
following parameters: impurity masses m1 = m1∗ = 2m and
elastic force constants γ1 = 0.14γ , γ1∗ = 0.4γ . The results of
exact calculations from the formula (29) with Eqs. (15)–(20)
are presented in Fig. 4 for the cases: (a) in the absence of
dissipation γ ′

1 = γ ′
1∗ = 0, �A = 0; (b) γ ′

1 = 0.012γ , γ ′
1∗ =

0.1γ ; (c) γ ′
1 = 0.006γ , γ ′

1∗ = 0.09γ ; (d) γ ′
1 = 0.02γ , γ ′

1∗ =
0.02γ . Analogous exact calculations with γ ′

1 = 0.02γ and
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γ ′
1∗ = 0.04γ are depicted in Fig. 5(a) and interface absorption

computed with the approximate formulas (30), (31), and (32)
is presented in Fig. 5(b) for the same system as in Fig. 5(a).
The close agreement of the exact [Fig. 5(a)] and the approxi-
mate [Fig. 5(b)] results allows us to accept the latter as correct.

One can see that the double-humped surface energy ab-
sorption curves in Figs. 4(b), 4(c), 4(d), and 5(a) with different
values of weak dissipative parameters are similar to the trans-
mission cross section spectra of a double-slit structure in a
perfect electric conductor film with different angles of wave
incidence [32]. Moreover, the approximate locations of ωmax1

and ωmax2, where absorption reaches its peaks, for the cases in
Figs. 4 and 5 are independent of the local viscous dissipation
like in Ref. [32], where the position of the narrow resonance
relative to the broad resonance remains approximately un-
changed as the angle of incidence is varied.

The approximate values of ω2
max1 and ω2

max2 for the cases
illustrated in Figs. 4 and 5 are equal to:

ω2
max1 � ω2

1 + γ1ω
2
ph

4γ
(
ω2

ph − ω2
1

)[
ω2

1 + ω2
ph

γ1
(
ω2

ph − 2ω2
1

)
16γ

(
ω2

ph − ω2
1

)
+ω2

ph
γ1∗ω2

1

4γ
(
ω2

1∗ − ω2
1

)]
(33)

and

ω2
max2 � ω2

1∗ + γ1∗ω2
ph

4γ
(
ω2

ph − ω2
1∗

)[
ω2

1∗ + ω2
ph

γ1∗
(
ω2

ph − 2ω2
1∗

)
16γ

(
ω2

ph − ω2
1∗

)
+ω2

ph
γ1ω

2
1∗

4γ
(
ω2

1 − ω2
1∗

)]
. (34)

For specific cases in Figs. 4 and 5, the squares of intrinsic
frequencies ω2

1 = 0.035ω2
ph and ω2

1∗ = 0.1ω2
ph may be used for

obtaining from Eqs. (33) and (34) the approximate numerical
values ωmax1 ≈ 0.196ωph and ωmax2 ≈ 0.328ωph.

The minimum absorption frequency ωmin between ωmax1

and ωmax2 in Fig. 5 is located almost in the intersection of
lines �A1(ω) and �A1∗(ω). For this case ω1 < ωmin < ω1∗,
and we arrive at the approximate analytical formula

ω2
min � ω2

1∗
√

γ ′
1 + ω2

1

√
γ ′

1∗√
γ ′

1 + √
γ ′

1∗
(35)

and further, from Eq. (35) at the corresponding numerical
value ωmin � 0.249ωph.

The broad peak height �A(ωmax2) may be found approxi-
mately as

�A(ωmax2) � �A1∗(ω1∗) + �A2(ω1∗), (36)

where the first term is

�A1∗(ω1∗) �
8γ γ ′

1∗ω1∗
√

ω2
ph − ω2

1∗

8γ γ ′
1∗ω1∗

√
ω2

ph − ω2
1∗ + ω2

phγ
2
1∗

(37)

and the second term is

�A2(ω1∗) � 8γ (γ ′
1 + γ ′

1∗)ω1∗
√

ω2
ph − ω2

1∗
[
8γ (γ ′

1

+ γ ′
1∗)ω1∗

√
ω2

ph − ω2
1∗ + ω2

ph(γ1 + γ1∗)2

+ 8ω2
1∗γ (2γ − γ1 − γ1∗)

]−1
. (38)

These formulas yield a good agreement between the approx-
imate numerical value �A(ωmax2) � 0.4648 in Fig. 4(b) and
the exact value in Fig. 5(a).

The height of the narrow peak �A(ωmax1) may be esti-
mated as

�A(ωmax1) � �A1(ωmax1) + �A2(ωmax1). (39)
The second term �A2(ωmax1) in Eq. (39), accounting for the
absorption contribution of the boundary layers, may be calcu-
lated as �A2(ωmax1) � �A2(ω1) and is obtained from Eq. (38)
after replacing ω1∗ by ω1:

�A2(ω1) � 8γ (γ ′
1 + γ ′

1∗)ω1

√
ω2

ph − ω2
1

[
8γ (γ ′

1

+ γ ′
1∗)ω1

√
ω2

ph − ω2
1 + ω2

ph(γ1 + γ1∗)2

+ 8ω2
1γ (2γ − γ1 − γ1∗)

]−1
. (40)

To get a good agreement of the term �A1(ωmax1) in
Eq. (39) with the exact value it is necessary to use Eq. (33)
for calculation of ωmax1, and then the obtained result has to
be substituted into Eq. (31) at i = 1. As a consequence of
the above calculations, the approximate narrow peak height
is found to be �A1(ωmax1) � 0.59. This value is very close to
the true one in Fig. 5(a) and the approximate one in Fig. 5(b).

In the vicinity of the frequency ωmax2 the term �A1∗(ω) in
formula (30) is expressed by a Lorentzian

�A1∗(ω ∼ ωmax2) � �A1∗(ωmax2)

1 + τ 2
2 (ω − ωmax2)2

(41)

with τ 2
2 from

τ 2
2 = 32γ

γ 2
1∗ω

2
ph + 8γ ′

1∗γω1∗
√

ω2
ph − ω2

1∗

{
2γ − 3γ1∗ − γ1 + ω2

1(2γ1∗ + γ1)

ω2
1 − ω2

1∗
+ ω2

ph

2ω4
1∗(γ1∗ + γ1)2 − (

γ1∗ω2
1 + γ1ω

2
1∗

)2

8γω2
1∗

(
ω2

1 − ω2
1∗

)2

+ γ 2
1∗

8γ

[
ω2

ph

(
3ω2

ph − 4ω2
1∗

)
(
ω2

ph − ω2
1∗

)(
ω2

1 − ω2
1∗

) − ω2
phω

2
1∗(

ω2
1 − ω2

1∗
)2 + ω4

ph

(
5ω2

ph − 4ω2
1∗

)
8ω2

1∗
(
ω2

ph − ω2
1∗

)2

]
+

γ ′
1ω

3
1∗

√
ω2

ph − ω2
1∗(

ω2
1 − ω2

1∗
)2

⎫⎬
⎭. (42)

In the vicinity of the frequency ωmax1 the term �A1(ω) in formula (30) is expressed by another Lorentzian

�A1(ω ∼ ωmax1) � �A1(ωmax1)

1 + τ 2
1 (ω − ωmax1)2

(43)
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with τ 2
1 from

τ 2
1 = 32γ

γ 2
1 ω2

ph + 8γ ′
1γω1

√
ω2

ph − ω2
1

{
2γ − 3γ1 − γ1∗ + ω2

1∗(2γ1 + γ1∗)

ω2
1∗ − ω2

1

+ ω2
ph

2ω4
1(γ1 + γ1∗)2 − (

γ1ω
2
1∗ + γ1∗ω2

1

)2

8γω2
1

(
ω2

1∗ − ω2
1

)2

+ γ 2
1

8γ

[
ω2

ph

(
3ω2

ph − 4ω2
1

)
(
ω2

ph − ω2
1

)(
ω2

1∗ − ω2
1

) − ω2
phω

2
1(

ω2
1∗ − ω2

1

)2 + ω4
ph

(
5ω2

ph − 4ω2
1

)
8ω2

1

(
ω2

ph − ω2
1

)2

]
+

γ ′
1∗ω

3
1

√
ω2

ph − ω2
1(

ω2
1∗ − ω2

1

)2

⎫⎬
⎭. (44)

In Fig. 5 the narrow peak width τ−1
1 in view of Eq. (44)

depends on γ ′
1 and is almost independent of γ ′

1∗. As γ ′
1∗ in-

creases, then the γ ′
1∗ dependence of τ1 becomes noticeable.

A decrease of γ ′
1 or an increase of γ ′

1∗ make the value τ1

greater and the width of the narrow peak smaller. The broad
peak width τ−1

2 depends also on γ ′
1 and γ ′

1∗ but in another
way: The broad peak gets narrower as γ ′

1 increases or γ ′
1∗

decreases in view of Eq. (42). The Lorentzian interface ab-
sorption approximations by Eqs. (41) and (43) are also similar
to the behavior of the transmission cross section spectra of
the electromagnetic doubly resonant structure described in
Ref. [32].

The case considered above is one of the more representa-
tive types of the CB model. Its essential feature is that the total
reflection frequency and one of the total transmission frequen-
cies are fairly close together in the nondissipative limit. If the
weak dissipation is allowed for, this peculiarity results in a
spectrum of the interface energy absorption where the narrow
peak, placed against the background of the broad hump, is
shifted to the lower frequencies from the broad hump maxi-
mum. This case may be of essential interest for investigations
of the thermal interface resistance as well as the other options,
shown in Figs. 6 and 7 (see also Ref. [79]).

One can see that a necessary condition for occurrence of
two peaks in the energy absorption at the two-path phonon
interference is the existence of two total transmission phonon
frequencies within corresponding phonon spectrum in the
nondissipative limit [see Figs. 6(a) and 7(a)]. An absorption
peak may be very sharp if the total transmission and total
reflection frequencies (without losses) are located very close
to each other (see Figs. 6 and 7) or if in the vicinity of the
total transmission frequency the scattering coefficient T (ω)
changes abruptly with frequency, showing the narrow peak
[Fig. 6(a)]. But double-peaked absorption resonance is not
necessarily the case for the systems with two nondissipa-
tive total transmission phonon frequencies. For example, in
Fig. 6(c) there are two total transmission frequencies, how-
ever there is only one domain with narrow limits wherein
the corresponding absorption phonon spectrum peaks sharply
[Fig. 6(d)]. Outside this domain the energy absorption is neg-
ligibly small.

For different sets of the defect parameters the resonance
absorption peaks are different in height, width, and location.
As defect parameters change, the narrow peak may die away
when the broad peak becomes higher and its width becomes
bigger or smaller. As a rule, in the CB model the narrow peak
is to the left of the broad peak if either is located away from
the Brillouin zone edge. In the vicinity of this boundary the
broad peak may be narrow as in Fig. 7(b). If the major intrinsic
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0
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(b) (d)
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FIG. 7. Spectra of phonon energy transmission T (dashed line),
reflection R (dotted-dashed line), and absorption �A (solid line)
versus reduced frequency ω/ωph at a checkerboard-type defect layer
with parameters m2 = m and γ2 = γ for the cases: in (a) and
(b) γ1 = 0.2γ , γ1∗ = γ and impurity masses m1 = 0.18m, m1∗ =
0.7m (intrinsic frequencies ω1 ≈ 0.745ωph and ω1∗ ≈ 0.845ωph),
(a) without dissipation and (b) with dissipative parameters γ ′

1 =
γ /450, γ ′

1∗ = 0.01γ ; in (c) and (d) γ1 = 0.81γ , γ1∗ = 0.95γ and
impurity masses m1 = 0.5m, m1∗ = m/7 (intrinsic frequencies ω1 =
0.9ωph and ω1∗ ≈ 1.82ωph), (c) without dissipation and (d) with
dissipative parameters γ ′

1 = 0.008γ , γ ′
1∗ = 0.014γ .

frequency is beyond the Brillouin zone edge, i.e., ω1∗ > ωph,
only one absorption peak remains in the frequency domain
0 � ω � ωph as in Fig. 7(d). But an attempt to achieve the
total phonon energy absorption in the CB model fails due
to its simple symmetry using only four defect parameters, in
contrast with the triple-defect-layer model discussed below in
Sec. IV.

The simple symmetry of the checkerboard-type model re-
veals itself also at the equality of the intrinsic frequencies
ω1 = ω1∗. As in the lossless case, discussed previously in
Sec. III A, at weak dissipation taken into account, the de-
fect plane moves as if only one phonon path to propagate
existed. In this case only one noticeable peak in interface
phonon absorption may be observed, much as illustrated be-
low in Fig. 16. While its height does not reach point 1, this
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peculiarity in the interface absorption can effect on the heat
transfer through such a planar defect.

It should be mentioned that in the general case the absorp-
tion peak locations fall on neither the intrinsic frequencies
nor the total transmission frequencies nor the total reflection
frequency in the nondissipative limit because of resulting
complex collective dynamic motion. For the problem of the
thermal interface resistance it is important that the following
peculiarities due to weak dissipation should be taken into
account. If in the lossless limit the frequency dependence
of the scattering coefficients is fairly monotonous, then in
the respective dissipative cases and corresponding frequency
domains the interface absorption is very small (see Figs. 6
and 7). Moreover, if back scattering or forward scattering is
vanishingly small it will be almost so in a dissipative system.
The energy of the other flux is reduced by the phonon interface
energy absorption. In particular, this is true for total transmis-
sion and total reflection frequencies displayed, for example,
in Fig. 2 [see also Figs. 6(c) and 6(d)] for Ar metamaterial
with the planar defect filled by Ar and its heavy isotopes in
checker order, i.e., for a system discussed above in Sec. III A.
Figures 2(b) and 6(d) illustrate that the scattering resonance
frequencies in dissipative systems exist and may be identi-
fied by disappearance of the corresponding fairly monotone
scattering coefficient: A lossless total phonon transmission
transforms into an almost total dissipative nonreflection and,
vice versa, a lossless total phonon reflection becomes an al-
most total dissipative nontransmission.

IV. RESONANCE PHONON ABSORPTION BY
TWO-DIMENSIONAL

TRIPLE DEFECT LAYER (TL MODEL)

The objective of this section is to consider another sim-
ple option of the general model (Fig. 1), in which two-path
phonon interference reveals itself as total phonon transmission
and total phonon reflection in the lossless limit and as double-
humped (double-peaked) resonance in the phonon interface
absorption at weak dissipation taken into account. This is
the TL model which contains a defect layer composed of
three impurity atomic planes. Two outer identical monolayers
(p3 = ±1) with impurity masses m2 interact directly through
the next-to-nearest-neighbor bond γ3. They are adjacent to
the opposite host crystal semispaces and bound, firstly, by
the nearest-neighbor bond γ2 to the host atoms in the planes
p3 = ±2 and, secondly, by the nearest-neighbor bond γ1 with
an inner defect layer p3 = 0, fully occupied by impurities
with masses m1 [see Eqs. (1)–(8) and Fig. 1 at γ1 = γ1∗ and
m1 = m1∗]. In the TL model two paths exist for phonons
to penetrate the defect layer: Through the interatomic bonds
γ1 and masses m1 and through direct interatomic bonds γ3,
bypassing the intermediate impurity atomic plane.

Using all above-listed criteria in Eqs. (10)–(12), restricting
present consideration to the case of normal phonon incidence,
for the reflection and transmission amplitudes aR(ω) and
aT (ω) it is easy to obtain such expressions:

aR(ω) = exp(−4ik)

D(ω)

ω

2ω4
2

{
8γ 2

2 γ 2ω4
2

(
ω2 − ω2

1

) + [
2γ2(ω2

1

−ω2) + γ1ω
2
2

][
γ 2

2 ω2
ph − 4γ (γ2 − γ )ω2

]

× [
(2γ1 + γ3)ω2

2 − 4γ2ω
2
] + 2γ γ2(2γ − γ2)ω2

2

× [
2γ1ω

2
1ω

2
2 − (

8γ2ω
2

− 4γ1ω
2
2 − γ3ω

2
2

)(
ω2 − ω2

1

)]}
, (45)

aT (ω) = i
exp(−4ik)

D(ω)
γ γ 2

2 γ3

√
ω2

ph − ω2
(
ω2

R − ω2
)
, (46)

where

D(ω) = 1

ω2
phω

4
2

{
2γ

(
ω + i

√
ω2

ph − ω2
)[

γ2
(
2ω2 − ω2

2

)(
ω2

−ω2
1

) − γ1ω
2
2ω

2
] − γ2ωω2

ph

[
2γ2

(
ω2 − ω2

1

)
− γ1ω

2
2

]}{
γ 2

2 ω2
2ω

2
ph +

[
γω

(
ω + i

√
ω2

ph − ω2
)

− γ2

2
ω2

ph

][
2γ2

(
ω2

2 − 2ω2
) + (2γ1 + γ3)ω2

2

]}
, (47)

and ω2 denotes an intrinsic frequency:

ω2 = 2
√

2γ2/m2. (48)

In Eq. (46) the total reflection frequency ωR, obtained from
Eq. (14), is given by the expression:

ωR = ω1

√
1 + 2γ1

γ3
. (49)

In Eqs. (45)–(49) the values γ1, γ2, and γ3 are real in the
nondissipative limit, which is to say that we neglect attenu-
ation of impurity vibrations.

First of all, it should be pointed out that the phonon scat-
tering spectrum of the nondissipative TL model may include
three total transmission frequencies ωT , which are the roots
of the bicubic equation in the numerator of Eq. (45) for the
reflection amplitude aR(ω). This feature is due to such de-
scription of the system that uses five material parameters and,
consequently, corresponds to the collective dynamic motion
more complicated than in the CB model. In what follows,
the peculiarities of the phonon scattering by the triple defect
layer, arising from its specific parametrization, are described.
If only two frequencies ωT exist, then both of them may lie on
one side of the total reflection frequency ωR. For example, for
different sets of parameters, it can be seen in Fig. 8(a) that two
total transmission frequencies are to the right of the frequency
ωR and in Figs. 8(c) and 9(a) they are to its left (see also
Figs. 8 and 9 in Ref. [79] for more detail). Below it will be
shown that in this model the material parameters at which the
frequency ωT coincides with the frequency ωR exist only if the
dissipation is allowed for. Without considering attenuation,
an attempt to find such parameters that the distance between
frequencies ωR and ωT is ultimately reduced, originates sit-
uations depicted in Figs. 10(a) and 11(a). In Fig. 10(a) two
transmission maxima on either side of the total reflection
frequency in its vicinity are smaller than 1. In Fig. 11(a) a
special case with only one total transmission frequency ωT is
presented.

To study the interface phonon absorption in the TL model,
a coefficient of phonon energy absorption 	i(ω) (i = 1, 3) is
introduced for the channel numbered i. The value of 	−1

i (ω) is
the time it takes for the intensity of oscillations with frequency
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FIG. 8. Spectra of phonon energy transmission T (dashed line),
reflection R (dotted-dashed line), and absorption �A (solid line)
versus reduced frequency ω/ωph at a triple defect layer with pa-
rameter γ2 = 1.1γ , impurity masses m1 = 0.8m and m2 = 5m for
the cases: in (a) and (b) elastic constants γ3 = 3.6γ , γ1 = 0.093γ ,
in (c) and (d) elastic constants γ3 = 3.2γ and γ1 = 0.2γ ; (a) and
(c) without dissipation; (b) and (d) with dissipative parameters γ ′

3 =
0.446γωωph/(ω2 + ω2

ph/16), γ ′
1 = 0.0014γωωph/(ω2 + ω2

ph/16).

ω in i-cannel to decrease by the factor e. By analogy with
macroscopic “dissipative acoustic theory” (see, for example,
Ref. [80]), the elastic force constant γ1 is to be multiplied by
the value (1 − iω	1(ω)/ω2

1 ), which implies replacing γ1 in the
expressions (45)–(49) for the complex transmission and re-
flection amplitudes by the complex value γ1 → γ1 − iγ ′

1 with
the imaginary part γ ′

1 = γ1ω	1(ω)/ω2
1. As for the initial bond-

ing force γ3, it is replaced by a complex value γ3 → γ3 − iγ ′
3
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FIG. 9. Spectra of phonon energy transmission T (dashed line),
reflection R (dotted-dashed line), and absorption �A (solid line)
versus reduced frequency ω/ωph at a triple defect layer with pa-
rameter γ2 = 1.1γ , impurity masses m1 = 0.16m and m2 = 3.2m,
elastic constants γ3 = 3.2γ and γ1 = 0.2γ for the cases: (a) without
dissipation; (b) with dissipative parameters γ ′

3 = 0.446γωωph/(ω2 +
ω2

ph/16), γ ′
1 = 0.00075γωωph/(ω2 + ω2

ph/16).

1.00 0.2 0.4 0.6 0.81.00 0.2 0.4 0.6 0.8

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0

(a)

(b)

(c)

(d)

FIG. 10. Spectra of phonon energy transmission T (dashed line),
reflection R (dotted-dashed line), and absorption �A (solid line)
versus reduced frequency ω/ωph at a triple defect layer with param-
eter γ2 = 1.1γ , impurity mass m1 = 0.8m for the cases: in (a) and
(b) m2 = 5m, γ1 = 0.2γ , γ3 = 4.8γ ; in (c) and (d) m2 = 1.5m,
γ1 = 0.093γ , γ3 = 2.08γ ; (a) and (c) without dissipation; (b) and
(d) with dissipative parameters γ ′

1 = 0.0014γωωph/(ω2 + ω2
ph/16),

γ ′
3 = 0.446γωωph/(ω2 + ω2

ph/16).

with the imaginary part γ ′
3 equal to γ ′

3 = 8γ2ω	3(ω)/ω2
2 −

4γ ′
1.
Notice that in the simplest theory of forced oscillations

under friction [78], the absorption has different nature at low
and high frequencies of the external periodic force. In the first
case, the mean amount of energy absorbed per unit time is
almost independent of the frequency, provided that damping
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(a) (b)

FIG. 11. Spectra of phonon energy transmission T (dashed
line), reflection R (dotted-dashed line), and absorption �A (solid
line) versus reduced frequency ω/ωph at a triple defect layer
with parameters γ1 = 0.093γ , γ2 = 1.1γ , γ3 = 2.08γ and impurity
masses m1 = 0.8m, m2 = 5m for the cases: (a) without dissi-
pation; (b) with dissipative parameters γ ′

1 = 0.0014γωωph/(ω2 +
ω2

ph/16), γ ′
3 = 0.466γωωph/(ω2 + ω2

ph/16), anomalous total absorp-
tion �A(ωR) = 1 is observed.
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is realized through excitation of the exponentially decreas-
ing eigenmodes. At high frequency the energy is continually
absorbed by the system from an external source, dissipated
by friction, and its mean value depends on the frequency.
This steady motion is known as “dispersion-type frequency
dependence of the absorption.” To include in the present con-
sideration the frequency dependence of 	i(ω) with both above
limits, for example, the following approximation may be used:

γ ′
i (ω) = 
i0

γωωc

ω2 + ω2
c

, i = 1, 3, (50)

where ωc is the characteristic frequency above which the co-
efficients of phonon energy absorption 	i(ω) show frequency
dispersion. The phonon damping is supposed to be weak and
hence the dimensionless damping constants 
i0 are supposed
to be small compared to 1, i.e., 
i0 	 1. The elastic forces of
the medium γ and between the medium and triple defect layer
γ2 remain purely real.

In Figs. 8(b), 8(d), 9(b), 10(b), and 11(b) the frequency
dependencies of the transmission coefficient T (ω) = |aT |2,
the reflection coefficient R(ω) = |aR|2, as well as the inter-
face absorption �A(ω) calculated by the formula (29) with
regard to weak dissipation in the triple defect layer, are shown
in the systems answering the respective nondissipative cases
presented in Figs. 8(a), 8(c), 9(a), 10(a), and 11(a). In the
dissipative systems the imaginary contributions appear only
in the parameters γ3 and γ1. For calculations the frequency ωc

is taken to be ωc = ωph/4.
Figures 8(b), 8(d), 9(b) illustrate the cases of double-

humped (double-peaked) phonon interface absorption in the
TL model. If both of the total transmission frequencies ωT

are located on one side of the total reflection frequency ωR,
as in Figs. 8(a) and 8(c), then the narrow absorption peaks
in Figs. 8(b) and 8(d), correspondingly, fall on the small
frequency regions where one of the total transmission frequen-
cies almost coincides with the total reflection frequency. In the
dissipative systems at these frequencies reflected and trans-
mitted energies drop both to their minima simultaneously. The
narrow absorption peak may be located in the high frequency
domain, as in Fig. 9(b), with a local minimum of the reflection
coefficient only. Another absorption maximum of the broad
peak is shifted to the frequency domain between the second
transmission frequency and the frequency of the most abrupt
jump of the nondissipative transmission and reflection coeffi-
cients where the most intensive energy redistribution between
transmitted and reflected waves occurs [see Figs. 8(b), 8(d),
and 9(b)].

A situation is possible where instead of two total trans-
mission maxima there will be two local transmission maxima
which will be located on the different sides of the total reflec-
tion frequency [Fig. 10(a)]. An attempt to take into account
the weak dissipation in this system results in only one very
sharp peak of the resonance interface absorption depicted in
Fig. 10(b).

An interesting case is illustrated in Fig. 10(c) with only
one local phonon transmission maximum (provided that dissi-
pation is absent). This system contains an intermediate layer
with weakly bound light impurities (m1 = 0.8m and γ1 =
0.093γ ) between tightly bound adjacent layers with not-too-
heavy defect atoms (m2 = 1.5m and γ3 = 2.08γ ). Allowing

for weak dissipation, the absorption spectrum in such a system
[Fig. 10(d)] is of the seemingly two-humped-resonance type.
But in fact, only one phonon transmission channel passing
through light impurities is resonant. The energy absorption in
the second channel is pronounced in all the frequency domain
and acts as a background for the more noticeable resonance in
the first channel.

Finally, if within a nondissipative phonon spectrum only
one total transmission frequency ωT exists in the close prox-
imity to the total reflection frequency ωR [see Fig. 11(a)],
then, allowing for weak energy dissipation, the phonon re-
flection and transmission coefficients may become equal to
zero simultaneously, causing a double-humped resonance to
be transformed into an anomalous total interface absorption
[see Fig. 11(b)]. The numerical calculations for the case, pre-
sented in Fig. 11, were carried out using such parameters that
correspond to a triple defect layer composed of two strongly
coupled dense outer layers and a weakly coupled inner layer
with very close intrinsic frequencies. In this case, the distance
between the resonance frequencies ωR and ωT turns out small
and may be compared in value with the characteristic phonon
attenuation coefficient, which cannot be neglected. Note that
the characteristic frequency ωc = ωph/4 is almost equal to ωR

and ωT ; nevertheless the anomalous total interface absorption
is scarcely affected by time dispersion.

The analytical calculations for total phonon interface ab-
sorption by a two-dimensional dissipative triple defect layer
result in the following conditions to be satisfied:

[
γ 2

2 + 4γ (γ − γ2)ω2
Rω−2

ph

]
[4m2(γ1 − iγ ′

1) − m1(γ3 − iγ ′
3)]

= 2mγ2(γ1 − iγ ′
1)

(
2γ − γ2 + iγ2

√
ω2

phω
−2
R − 1

)
, (51)

Im(ωR) = 0. (52)

The above relations (51) and (52) mean that at the frequency
ω = ωR the transmission and the reflection coefficients tend to
zero together and, in view of Eq. (29), the interface absorption
approaches unity, i.e., �A(ωR) = 1. In Eqs. (51) and (52)
the total interface absorption frequency ωR is expressed in
terms of the complex force constants by the formula (49)
provided that renormalization of the nondissipative total re-
flection frequency due to dissipation is taken into account. To
arrive at Eq. (51) renormalization of the nondissipative total
transmission frequency ωT is also allowed for.

From Eqs. (51) and (52) it follows that it is impossible to
satisfy the conditions of anomalous phonon interface absorp-
tion by two-dimensional triple defect layer in the TL model on
the subset of real parameters γ1 and γ3, i.e., if γ ′

1 = γ ′
3 = 0. At

γ2 �= γ from Eqs. (51) and (52) the expressions for complex
values of γ1 − iγ ′

1 and γ3 − iγ ′
3 may be derived in an explicit

form as functions of the other material parameters and total
absorption frequency ωR:

γ1 − iγ ′
1 = m1ω

2
R

8

2m2 − mF (γ , γ2, ωR)

2m2 + m1 − mF (γ , γ2, ωR)
, (53)

γ3 − iγ ′
3 = ω2

R

4

[2m2 − mF (γ , γ2, ωR)]2

2m2 + m1 − mF (γ , γ2, ωR)
, (54)
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where

F (γ , γ2, ωR) =
γ2(2γ − γ2) + iγ 2

2

√
ω2

phω
−2
R − 1

γ 2
2 + 4γω2

Rω−2
ph (γ − γ2)

. (55)

In the particular case γ2 = γ Eq. (55) may be rewritten as:

F (γ , γ2, ωR) = 1 + i
√

ω2
phω

−2
R − 1,

and then for the values γ1, γ3 and γ ′
1, γ

′
3 the following exact

expressions are obtained:

γ1 = m1ω
2
R

8

[
1 − m1

M
(2m2 + m1 − m)

]
, (56)

γ3 = ω2
R

4

[
2m2 − m1 − m + m2

1

M
(2m2 + m1 − m)

]
, (57)

γ ′
1 = 2γ

m2
1

M

ωR

ωph

√
1 − ω2

Rω−2
ph , (58)

γ ′
3 = 4γ

(
1 − m2

1

M

)
ωR

ωph

√
1 − ω2

Rω−2
ph . (59)

In Eqs. (56)–(59) the following designation is used:

M = (2m2 + m1)(2m2 + m1 − 2m) + m2ω2
phω

−2
R . (60)

From Eqs. (56)–(60) the positive values of the defect force
constants and dissipative coefficients may be obtained once
the total absorption frequency ωR is found experimentally.
The case, presented in Figs. 11(a) and 11(b), corresponds to
the situation where the relations 2m2 � mωphω

−1
R > m > m1

and γ2 � γ take place between the parameters appearing in
Eqs. (56)–(60). The use of the above conditions in the for-
mulas (56), (57), and (60) gives the rough estimate 4γ1/γ3 ∼
m1/m2 for defect material constants (to a first approximation).
It means just that in this particular case the frequencies of
the intrinsic elastic modes are almost equal and both of them
are located near the total absorption frequency ωR. It should
be noted that such a situation is an exception to the general
rule which follows from the foregoing and according to which
the absorption resonances coincide neither with the intrinsic
frequencies nor with the nondissipative total transmission and
total reflection frequencies.

To sum up, a comparison of Figs. 11(a) and 11(b) shows
that including the small inner frictional forces into consid-
eration substantially modifies the phonon transmission and
the phonon reflection spectra in the vicinity of resonance
and gives rise to the total interface energy absorption. This
phenomenon is absent from the CB model. Besides, two other
peculiarities also take place only in the TL model. One of
them is a possibility to interchange the position of the nar-
row and the broad peaks by using defect atoms with little
different material constants [Figs. 8(b) and 8(d)]. Another
distinctive feature is the phenomenon of triple-peaked ab-
sorption resonance which may occur in the thrice resonant
vibration system with three nondissipative total transmission
frequencies [Figs. 12(a)]. A situation like this may be re-
alized when the triple defect layer consists of fairly heavy
atoms and has weak coupling with adjacent host layers. In
the case depicted in Fig. 12(a) the minimum total transmis-
sion frequency ωT min ≈ ω1 is associated with one of two

1.00 0.2 0.4 0.6 0.8 1.00 0.2 0.4 0.6 0.8
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FIG. 12. Spectra of phonon energy transmission T (dashed
line), reflection R (dotted-dashed line), and absorption �A (solid
line) versus reduced frequency ω/ωph at a triple defect layer
with elastic parameters γ1 = 0.05γ , γ2 = 0.1γ , γ3 = γ and im-
purity masses m1 = 3m, m2 = 1.1m for the cases: (a) without
dissipation and (b) with dissipative parameters γ ′

1 = γ ′
2 = γ ′

3 =
0.00625γωωph/(ω2 + ω2

ph/16).

phonon paths crossing the central defect layer. The inter-
mediate transmission resonance ωT mid ≈ ω2 depends on the
parameters m2 and γ2 characterizing the regions with one path
for phonons to propagate. The maximum total transmission
frequency ωT max is a function of all five parameters determin-
ing the triple defect layer. Such a nondissipative transmission
spectrum [Fig. 12(a)] represents a dual interference picture
in which two-path phonon interference and phonon analog
of the Fabry-Pérot-type interference superpose. In a similar
system, taking into account weak dissipation results in triple-
peaked absorption frequency dependence [Fig. 12(b)] (see
also Fig. 12 in Ref. [79] for more detail).

A. Resonance phonon interaction with homogeneous impurity
monolayer between two crystals under two-channel interference

conditions (FF model)

A specific case of the TL model is the FF model with an
absorbed or segregated monolayer full-filled by homogeneous
impurities, a second phonon path connecting straightforward
two opposite edges of the host crystalline media by the
next-to-nearest-neighbor force constant γ3 (see Fig. 1 with
parameters m2 = m, γ2 = γ , m1 = m1∗, and γ1 = γ1∗). In
the corresponding dissipative case a double-humped interface
absorption resonance is impossible, and only a single pro-
nounced peak may exist in the phonon absorption spectrum.
However this case is important for the thermal interface resis-
tance problem. Several options of the FF model are presented
in Figs. 13–15 to describe their different scattering and ab-
sorption peculiarities.

In the nondissipative crystal with a weakly bound impurity
monolayer (γ1 	 γ ) a two-path destructive interference man-
ifests itself as an antiresonance dip in the close vicinity of the
low intrinsic frequency ω1 provided that the interaction γ3 be-
tween boundary host planes is fairly strong. Figure 13(a) illus-
trates this case with the following parameters: γ3 = γ , γ1 =
0.05γ , and m1 = m, a relation ωT < ω1 � ωR being satisfied.
By contrast, the weak coupling of the opposite boundary
host atoms (γ3 	 γ1) results in a total phonon transmission
(resonance) through light impurity monolayer (ωph < ωR)
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FIG. 13. Spectra of phonon energy transmission T (dashed line),
reflection R (dotted-dashed line), and absorption �A (solid line) ver-
sus reduced frequency ω/ωph at a defect monolayer with parameters
γ2 = γ and m2 = m for the cases: in (a) and (b) γ1 = 0.05γ , γ3 = γ

and impurity mass m1 = m; in (c) and (d) γ1 = 0.09γ , γ3 = 0.004γ

and impurity mass m1 = 0.2m; (a) and (c) without dissipation;
(b) and (d) with dissipative parameters γ ′

1 = 0.004375γωωph/(ω2 +
ω2

ph/16), γ ′
3 = 0.0005γωωph/(ω2 + ω2

ph/16).

observed in the neighborhood of the intrinsic frequency ω1.
Such a case is depicted in Fig. 13(c), with the parameters:
γ1 = 0.09γ , γ3 = 0.004γ , and m1 = 0.2m. For this option
the inequality ω1 � ωT is true. A crystal involving a similar
defect layer with a narrow transmission peak in the terahertz
frequency range, ωT ≈ 0.48ωph, operates as metafilter. In
both extreme cases above a notable peak of interface phonon
absorption may be observed in the vicinity of the intrinsic
frequency at weak dissipation taken into account. Outside the
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FIG. 14. Spectra of phonon energy transmission T (dashed line),
reflection R (dotted-dashed line), and absorption �A (solid line) ver-
sus reduced frequency ω/ωph at a defect monolayer with parameters
γ2 = γ , m2 = m, γ1 = 0.08γ , γ3 = 0.8γ , impurity mass m1 = 0.3m
for the cases: (a) without dissipation; (b) with dissipative parameters
γ ′

1 = 0.005γωωph/(ω2 + ω2
ph/4), γ ′

3 = 0.2γωωph/(ω2 + ω2
ph/4).

1.0

0.8

0.6

0.4

0.2

0
1.00 0.2 0.4 0.6 0.8 1.00 0.2 0.4 0.6 0.8

(a) (b)

FIG. 15. Spectra of phonon energy transmission T (dashed line),
reflection R (dotted-dashed line), and absorption �A (solid line)
versus reduced frequency ω/ωph at a defect monolayer with param-
eters γ2 = γ , m2 = m, impurity mass m1 = 1.36m, elastic constants
γ1 = 1.16γ and γ3 = 0.88γ for the cases: (a) without dissipation,
(b) with dissipative parameters γ ′

1 = γ ′
3 = 0.2γωωph/(ω2 + ω2

ph/4).

resonance frequency domain the dissipative phonon scattering
characteristics differ little from ones in the lossless limit.

In the intermediate nondissipative case of weakly bound
(γ1 = 0.08γ ) light impurities with m1 = 0.3m, shown in
Fig. 14(a) for fairly strong direct boundary interaction γ3 =
0.8γ , one can see the closely spaced antiresonance ωR and
the constructive resonance ωT for which the relation ωT <

ω1 < ωR is true and similar to that in the case presented in
Fig. 13(a). A difference between corresponding dissipative
cases can be seen in Figs. 13(b) and 14(b): Figure 14(b)
illustrates the transformation of both the total reflection fre-
quency into almost total nontransmission frequency and the
total transmission frequency into almost total nonreflection
frequency. Unlike such spectral behavior, in Fig. 13(b) only
one almost total nonreflection resonance exists. These pe-
culiarities are connected with different types of the time
dispersion and show sensitivity to the characteristic dispersion
frequency ωc. In contrast, the absorption resonances, despite
their locations, are almost independent of ωc provided that the
admissible dissipation is weak in the FF model and also in the
more complicated TL model.

If the defect parameters are close to those of the host
crystal, then in the high frequency domain, adjacent to the
Brillouin zone edge, the lossless phonon scattering character-
istics change drastically. Such a case is depicted in Fig. 15(a)
with parameters: m1 = 1.36m, γ1 = 1.16γ , γ3 = 0.88γ , the
condition ωR > ωph being satisfied. In the respective dissi-
pative system, Fig. 15(b), the absorption energy increases
significantly with frequency at the cost of a strongly marked
high-frequency drop in reflected and transmitted phonon en-
ergy. It signifies that purely dynamical approach holds only for
extremely small attenuation, for example, at low temperatures.
A similar 1D case without taking into account weak dissipa-
tion was discussed in Ref. [81] as applied to the problem of
the thermal interface conductance at high temperatures. It is
easy to make sure that the scattering characteristics in the
3D FF model are obtained from the 1D case provided the
next-to-nearest-neighbor force constant γ3 is multiplied by a
factor of four. In the reasonable cases γ3 may not exceed the
host force constant γ as shown in Fig. 13(a). So, only values
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FIG. 16. Spectra of phonon energy transmission T (dashed line),
reflection R (dotted-dashed line), and absorption �A (solid line) ver-
sus reduced frequency ω/ωph at a defect monolayer with parameters
γ2 = γ , γ3 = 0, m2 = m, impurity mass m1 = 0.2m, elastic constant
γ1 = 0.09γ , and dissipative parameter γ ′

1 = 0.00556γωωph/(ω2 +
ω2

ph/36).

γ3 � 0.25γ in the 1D case are to be considered as analog for
the 3D model. In Ref. [81] this is not the case and γ3 may far
exceed γ . Moreover, from the above it follows that the results
in 1D models should be carefully verified so as to find out if
they are reliable when weak dissipation is allowed for.

If γ3 = 0, then no direct bonds between perfect semi-
infinite elastic media are allowed for and only a single path
exists for phonons to penetrate the defect layer, namely, via
impurities. In a particular lossless case with defect parameters
as in Fig. 13(c) but at γ3 = 0 the scattering curves appear
to show the same behavior, i.e., a destructive interference
antiresonance is absent and the total transmission frequency
ωT is close to almost the same intrinsic frequency ω1 � ωT .
In the dissipative system, corresponding to Fig. 13(d) at γ3 =
γ ′

3 = 0, the phonon absorption spectrum is almost the same
as in this figure. In another dissipative single-channel system,
corresponding to Fig. 13(c) at γ3 = γ ′

3 = 0 and presented in
Fig. 16, the interface absorption curve in the vicinity of the
resonance frequency is nearly the same as in the first option
and in the initial model with two-path phonon interference.
However, it differs from the two cases above by time dis-
persion. In specific cases, time dispersion may result in a
peculiarity, illustrated in Fig. 16, where the interface absorp-
tion curve has a small bulge in the low frequency domain
apart from much more pronounced resonance in the vicinity of
ω1. Therefore, one could make a fallacy that double-humped
resonance may be found also in this case. However the small
low-frequency peak arises from dissipative motion of the two
opposite boundaries of the host semi-infinite crystals. The
contribution of this kind forms a small background in all the
options of the CB model discussed in this paper. But it may not
always be separated analytically out of integrated collective
motion or perceptible in numerical calculations, as it was in
the case analyzed in Sec. III B, where a small background is
noticeable in Fig. 5(b) and given by Eq. (32). In the case of the

FF model the dissipative motion of the host crystal boundaries
is responsible for absorption in one of the two parallel phonon
channels by definition.

V. DISCUSSION AND CONCLUSIONS

The main conclusion of the present investigation is that
no straightforward analogies exist between doubly resonant
dissipative vibration systems and doubly resonant electro-
magnetic structure exhibiting both induced transparency and
superscattering [32]. This conclusion is due to different
paradigms for description of these phenomena. To obtain
in the phonon dynamics the most convenient counterpart of
double-humped spectral behavior of a cross section in a dou-
bly resonant two-slits system [32], a model is presented in
which an internal crystal plane is filled with impurities of
two sorts alternating in staggered order. In such a system, the
double-humped (double-peaked) resonance, at which the nar-
row peak is placed against the background of the broad hump,
may occur in the interface phonon absorption due to two-path
phonon interference at weak dissipation taken into account.
The phononic and electromagnetic systems under comparison
are described by the same number of parameters, namely
six (four material and two dissipative), and have similar fea-
tures in the corresponding spectral frequency dependencies:
height/location of the narrow and broad peaks and Lorentzian
approximation of the curves in the vicinity of their maxima. In
this way we use an approximate representation of the interface
phonon absorption as a sum of three terms: the losses in both
channels passing through different defect bonds and the losses
resulting from viscous motion of the boundary planes. But the
resonance frequencies of total and zero absorptions as analogs
of electromagnetic induced transparency and superscattering
are not found in this proposed phononic model.

Another dissipative model, in which two-path phonon in-
terference reveals itself as double-humped (double-peaked)
resonance in the interface phonon absorption, includes a triple
defect layer containing a homogeneous inner monolayer in-
between two identical outer layers. This model differs from
the checkerboard-type model in the following remarkable
features. In the triple-defect-layer model the total interface
absorption occurs provided that the energies of the transmitted
and reflected phonons tend to zero at the common frequency,
for example, when the intrinsic frequency of two strongly
coupled dense outer layers is close to that of a weakly bound
intermediate layer. In the general case the total absorption
conditions give real and imaginary parts of the force constants
with allowance made for resonance frequency renormalization
due to weak dissipation. Also, in two cases differing a little
in the defect material parameters, the absorption may peak
narrowly on the opposite sides of the broad hump, whereas in
the checkerboard-type model discussed in Sec. III, the narrow
peak, as a rule, is to the left of the broad peak. The foregoing
peculiarities of the triple-defect-layer model arise from its
description by two dissipative and five material parameters.
On the whole, the suggested triple-defect-layer model is thrice
resonant vibration system in which the phenomenon of triple-
peaked absorption resonance may be realized provided that
the relevant nondissipative limit admits the three total trans-
mission frequencies. These properties are exhibited, for ex-
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ample, when a defect layer is composed of fairly heavy atoms
weakly bound to adjacent host layers. In such a system, reso-
nance spectral behavior of the scattering and absorption char-
acteristics is due to superposition of two-path phonon interfer-
ence and phonon analog of the Fabry-Pérot-type interference.

A necessary condition for two interface absorption maxima
to be caused by the two-path phonon interference is a presence
of two, or more, resonance transmission frequencies (it may
be total or sharp pronounce resonance) and no less than one
antiresonance dip within the lossless phonon spectrum. But
the above condition is not sufficient. As a rule, a narrow
absorption peak is located in the frequency range where the
constructive and destructive resonances are closely spaced in
the nondissipative limit, whereas the broad peak is located
near second constructive resonance provided that the scatter-
ing coefficient curves change steeply within this interval. By
contrast, if the frequency dependencies of the nondissipative
scattering coefficients are fairly monotonous, then the inter-
face phonon absorption is insignificant in the corresponding
frequency domains. In particular, this is true for the sim-
plest checkerboard-type “isotopic defect” model discussed in
Sec. III. On the other hand, once one nondissipative scattering
coefficient is vanishingly small, then it remains almost so in
the system with low losses and the other scattering coefficient
is reduced by the value of the interface phonon absorption.
Thus, the scattering resonances due to two-path phonon in-
terference may exist at extremely weak dissipation. In this
case the total lossless transmission turns into an almost total
dissipative nonreflection and, similarly, the total reflection
becomes an almost total nontransmission. This energy balance
is disturbed by further (even insignificant) rise of vibration
attenuation, resulting in a noticeable increase of the minor
dissipative scattering flux. In some cases, this effect leads to
restriction of resonance interface absorption.

Clearly, the phenomenon of double-humped interface
energy absorption by a few-layer planar defect may be used
to create fine nanoscale meta-absorbers. To make progress in
the solution of this problem it is necessary to keep in mind
that in a particular option of the checkerboard-type model or
the triple-defect-layer model the narrow and broad absorption
peaks may be separated, shifted towards low frequencies or
towards the Brillouin zone edge. The broad peak may become
narrow or almost fully disappear. A single sharp interface
absorption resonance may be found in any place of the
phonon spectrum for infinitely large number of systems with
few-layer planar defects which are responsible for two-path
phonon interference.

Furthermore, if the task is to control the heat flux through
a few-layer planar defect at high temperatures, it is important

to allow for both interface absorption peculiarities and special
scattering features in the nondissipative limit (without losses),
when two-path phonon interference manifests itself as total
phonon transmission and total phonon reflection. It might be
worth it to point out that to design high-temperature phonon
metafilter or metamirror for nanoscale heat control both
lossless checkerboard-type and simple triple-defect-layer
models are suitable. To obtain a narrow pass band in the
terahertz frequency range a more appropriate system is
of the type in which two perfect crystal lattices weakly
bound to a homogeneous monolayer of light impurities
embedded in between are also coupled directly by weak
next-to-nearest-neighbor bond. Similar spectrum may be
observed in the checkerboard-type model, in which either
type of defect interatomic bonds is weak, and both impurity
masses are of the same order as the host atoms. Otherwise
such a checkerboard-type model, where only one type of
defect bonds is weak and the other is tight, shows a very
narrow terahertz-frequency zero-transmission dip against the
background of a very wide frequency pass band.

The type of the frequency dispersion of the small dissipa-
tive parameters exerts no effect on all studied absorption res-
onances arising from interaction of an incident phonon with
a few-layer planar defect in a crystal. In the general case of
the checkerboard-type model as well as the triple-defect-layer
model the incident phonon in the interior of the planar defect
transforms into such an interface two-path interference hybrid
for which the resonance absorption frequencies coincide nei-
ther with the intrinsic frequencies nor with the nondissipative
total transmission frequencies nor with the nondissipative to-
tal reflection frequency. For this reason, it is incorrect to look
for any simple analogy of the obtained results with the famous
Fano resonance [82], especially since it is a single resonance.

In conclusion, it should be noted that the case of transverse
phonons in which one-component atom displacements are
directed in parallel with the planar defect in Fig. 1 is identical
to the case of longitudinal phonons studied in the present
work. Namely, the spectral characteristics (transmission, re-
flection, and absorption) are topologically equivalent in the
corresponding scales that take into account the difference
between force constants. In particular, this is obvious from
the results retrieved from MD simulations and presented in
Fig. 5(a) in Ref. [38] for the simplest case of the CB model.
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