
PHYSICAL REVIEW B 102, 174311 (2020)

Temperature-dependent phonon lifetimes and thermal conductivity of silicon by inelastic neutron
scattering and ab initio calculations
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Inelastic neutron scattering on a single crystal of silicon was performed at temperatures from 100 to 1500 K.
These experimental data were reduced to obtain phonon spectral intensity at all wave vectors �Q and frequencies ω

in the first Brillouin zone. Thermal broadenings of the phonon peaks were obtained by fitting and by calculating
with an iterative ab initio method that uses thermal atom displacements on an ensemble of superlattices.
Agreement between the calculated and experimental broadenings was good, with possible discrepancies at the
highest temperatures. Distributions of phonon widths versus phonon energy had similar shapes for computation
and experiment. These distributions grew with temperature but maintained similar shapes. Parameters from
the ab initio calculations were used to obtain the thermal conductivity from the Boltzmann transport equation,
which was in good agreement with experimental data. Despite the high group velocities of longitudinal acoustic
phonons, their shorter lifetimes reduced their contribution to the thermal conductivity, which was dominated by
transverse acoustic modes.
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I. INTRODUCTION

Phonons underly the thermophysical properties of mate-
rials. The spectrum of energies of phonons, i.e., the phonon
density of states (DOS), can provide the phonon partition
function, free energy, entropy, and heat capacity. If the phonon
DOS is adapted to the temperature and pressure of interest,
there is often the expectation that harmonic phonons can be
used to explain these thermodynamic quantities. Harmonic
phonons are noninteracting eigenstates of atom displacements
in a periodic crystal. Without phonon-phonon interactions,
individual phonons are persistent. This remains true in “quasi-
harmonic theory,” where harmonic phonon frequencies shift
with changes in volume. Phonon-phonon interactions origi-
nate with “pure anharmonicity,” caused by terms in the crystal
Hamiltonian with cubic and quartic dependences on atom
displacements. These interactions cause phonons to have fi-
nite lifetimes and hence a broadening of their energy spectra.
Phonon-phonon interactions are essential to phonon transport
properties, which are of technological importance as thermal
conductivity.

The thermal conductivity of silicon has been studied ex-
tensively, motivated in part by the wide range of silicon-based
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technologies, including thermoelectrics, semiconductors,
electronics, nanomechanics, and photovoltaics [1–10]. His-
torically, the measured thermal conductivity of silicon was
used as a standard owing to the high purity and availability
of silicon crystals. The thermal conductivity of silicon was
measured directly with a radial heat flow apparatus [11,12].
More modern experimental techniques include the time and
frequency-domain transient thermoreflectance methods and
mean free path spectroscopy for both bulk and thin-film sam-
ples [13,14].

The theory of thermal conductivity based on phonon an-
harmonicity traces back to the microscopic model developed
by Peierls in 1929 [15], in which phonon-phonon interactions
shorten the phonon mean free path for thermal transport.
With advances in computational methods, detailed calcula-
tions of thermal conductivity have become practical in recent
years. The lattice thermal conductivity is calculated by solv-
ing iteratively the Boltzmann transport equation or using the
Green-Kubo method with either classical potentials or po-
tentials derived from ab initio methods [16–21]. From prior
work on silicon, both classical forces and ab initio poten-
tials with many-body perturbation theory have predicted the
correct temperature dependence of the thermal conductivity
[17,19,22,23].

Thermal conductivity is a quantity averaged over nu-
merous (of the order of Avogadro’s number) individual
phonon-phonon interactions, and the averaging masks many
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details. Experimental measurements on individual phonons
offer more physical insight. For example, previous studies
on silicon show that thermal shifts of phonon frequencies
are not accurately described by the quasiharmonic model,
even though it provides conventional explanations of thermal
expansion [24,25]. To assess thermal conductivity, the ther-
mal phonon lifetimes are essential. These connect to theory
through the anharmonic corrections to the phonon self-energy,
� = � + i�, which give the thermal shifts as � and lifetimes
of the phonons through 1/2�.

The inelastic scattering of thermal neutrons has been the
workhorse method for measuring phonon dispersion curves in
crystals. Historically, it has been a challenge to measure more
than a few phonon spectral line shapes with triple-axis neutron
spectrometers at reactor sources. The basic problem is low
neutron flux combined with the need to make individual en-
ergy scans at single points in �Q space. Other difficulties arise
from instrument resolution and, sometimes, the accessibility
of some combinations of �Q and E . Nevertheless, triple-axis
methods are valuable, and challenging measurements of mul-
tiple phonons have been performed [26–32].

Here we report work on phonon line shapes of silicon that
benefited from the high neutron flux from a pulsed spallation
neutron source and a technique using a position-sensitive de-
tector array that covered approximately π steradians around
the sample. After correcting the measured data at temperature
for the multiphonon background in the different Brillouin
zones and “folding” the data from higher zones into the first,
we obtained accurate spectral intensities of phonon disper-
sions at elevated temperatures. Fitting these dispersions can
give both phonon frequencies and linewidths. A previous
study reported how the average frequencies changed with
temperature and assessed the physics of thermal expansion
[24]. The present study is a report on the temperature de-
pendence of phonon linewidths, which are used to interpret
the thermal conductivity of silicon. Although some challenges
with instrument resolution still remain, the thermal trends of
phonon linewidths were obtained successfully. These thermal
trends compared well with ab initio calculations of phonon
spectra on supercells of silicon. These supercell methods gave
parameters that were used with the Boltzmann transport equa-
tion to calculate the thermal conductivity of silicon at elevated
temperature.

II. METHODS

A. Neutron scattering

Inelastic neutron scattering spectra on a single crystal of
silicon were measured with the ARCS time-of-flight spec-
trometer at Oak Ridge National Lab as described previously
[24]. The time-of-flight neutron data included multiple data
sets from 200 rotations in increments of 0.5◦ about the vertical
[110] axis, reduced to create the four-dimensional S( �Q, ε)
using modern software tools [33,35]. Background corrections
included subtraction of the multiphonon scattering, calculated
in the incoherent approximation for the appropriate �Q and T .
A secondary data reduction process consisted of “folding”
the entire S( �Q, ε) data set into an irreducible wedge in the
first Brillouin zone. Phonon intensities were then fitted as

FIG. 1. Phonon intensities simulated for the operating conditions
of the ARCS spectrometer. (a) S(Q, ε) along the �-L direction.
(b) Phonon spectrum at the L point from a MCVINE simulation (black
line) and experiment (orange circles).

described previously, and changes in phonon linewidths at
temperatures above 100 K were determined by tracking the
difference in FWHM of the phonon peak measured at 100 K
with the same �q and branch.

B. Monte Carlo simulations of experimental spectra

To calculate the resolution of the ARCS instrument in �Q
and ε, we performed Monte Carlo Virtual Neutron Experi-
ment (MCVINE) simulations [36] with the parameters of our
experiment. This Monte Carlo neutron ray-tracing software
incorporates the times when neutrons of different energies and
angles are emitted from the decoupled ambient-temperature
water moderator and accounts for the effects of the guide
and choppers on the incident and scattered neutron profile in
angle, position, and time. A set of sharp phonon dispersions of
silicon gave the probabilities to deflect the incident neutrons
based on temperature and momentum transfer. Figure 1(a)
shows an example of a simulated slice of S( �Q, ε). Figure 1(b)
shows the peak asymmetry caused by the neutron modera-
tor. While this spectrum is similar to experimental spectra
shown later, the peaks are narrower, and the deconvolution of
the calculated instrument resolution proved impractical. We
therefore report changes in linewidth with temperature. With
better computer algorithms, the direct measure of phonon
lifetimes may be possible in the future.

C. Computation

Ab initio calculations were performed with VASP [37–40].
The projector augmented-wave formalism with the exchange-
correlation energy calculated with the Armiento and Mattson
functional published in 2005 was used [41–43]. All calcula-
tions used 5 × 5 × 5 supercells with a kinetic-energy cutoff
of 500 eV and a 3 × 3 × 3 �Q-point grid. All calculations were
converged to within 1 meV/atom.

Phonon dispersions for anharmonic phonons at finite tem-
peratures were calculated with the stochastically initialized
temperature-dependent effective potential method (s-TDEP)
described previously [44,45]. Finite-temperature phonon dis-
persions of silicon were calculated by fitting first-principles
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forces on atoms in the supercell to a model Hamiltonian,
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The forces on atoms were generated using density functional
theory with various configurations of displaced atoms by a
stochastic sampling of a canonical ensemble, with Cartesian
displacements uα

i normally distributed around the mean ther-
mal displacement as

uα
i =

∑
λ

εiα
λ cλ√

mi

√
−2 ln ξ1 sin(2πξ2). (2)

The factor cλ is based on thermal amplitudes of the normal
mode λ, with eigenvector ελ and frequency ωλ [46–48],

cλ =
√

h̄(2nλ + 1)

2ωλ

, (3)

and ξ1 and ξ2 are random numbers between 0 and 1. The
phonon occupancy was set by the Planck distribution, nλ =
(eβ h̄ωλ − 1)−1. In addition, the nuclear quantum effect (zero
point amplitude) can be turned off by removing the 1 in
Eq. (3).

Using thermal displacements from Eqs. (2) and (3), the
temperature-dependent effective potential method (TDEP)
[44,45] was used to fit the parameters of model Hamil-
tonian, Eq. (1), in what we call the stochastically initial-
ized temperature-dependent effective potential method. This
method requires fewer computational resources than ab initio
molecular-dynamics (AIMD), replacing AIMD with a Monte
Carlo sampling of atomic positions and momentum near equi-
librium positions [44,46].

For all calculations, temperature-dependent equilibrium
constants were used at each finite temperature and obtained
through the minimization of the free energy,

F(T,V ) = E (T,V ) +
∑
q,k

(
h̄ωk (q,V, T )

2

+ kBT ln(1 − e−h̄ωk (q,T,V )/kBT )

)
. (4)

In quasiharmonic theory, the temperature effects are ap-
proximated by the volume expansion. In contrast, the s-TDEP
calculations minimize the free energy for temperature and vol-
ume simultaneously, therefore including pure anharmonicities
and quasiharmonic effects [24]. Independently, calculations
with a quasiharmonic model were performed as described
previously [25]. Phonon dispersions from the quasiharmonic
model were also used to provide the atom displacements of
Eqs. (2) and (3) in the first iteration of s-TDEP.

D. Phonon self-energies

The phonon self-energy correction from many-body inter-
actions �λ has real and imaginary parts,

�λ = �λ + i�λ. (5)

The phonon lifetimes {τλ} are related to the imaginary part
of the self-energy as �λ = (2τλ)−1. The imaginary part of the
self-energy is [49]

�λ(�) = h̄π

16

∑
λ′λ′′

|
λλ′λ′′ |2

× {(nλ′ + nλ′′ + 1)δ(� − ωλ′ − ωλ′′ ) + (nλ′ − nλ′′ )

× [δ(� − ωλ′ + ωλ′′ ) − δ(� + ωλ′ − ωλ′′ )]}. (6)

� is the probing energy (h̄� = E ), and the δ functions con-
serve energy and momentum. The sum is over all possible
three-phonon interactions between phonon modes. 
λλ′λ′′ is
a three-phonon matrix element and is the Fourier transform of
the third-order component of the interatomic potential,
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(7)

where �ri is the lattice vector of atom i. The real part of the self-
energy is calculated with a Kramers-Kronig transformation of
the imaginary part,

�(�) = 1

π

∫
dω

�(ω)

ω − �
. (8)

Ab initio calculations of phonon-self energies from s-
TDEP provided second- and third-order force constants, but
effects of fourth-order perturbations were accounted for with
the temperature dependences of the second-order constants
and U0.

E. Thermal conductivity

The Boltzmann transport equation for nonequilibrium
phonon occupancies ñλ,

∂ ñλ

∂T
�v ·

−→
∇T = ∂ ñλ

∂t

∣∣∣∣
c

, (9)

has a collision term on the right that can be obtained from
the probabilities for down scattering and up scattering of a
phonon λ,

P↓
λλ′λ′′ = h̄2π

16N
nλ(nλ′ + 1)(nλ′′ + 1)|
λλ′λ′′ |2

× δ(ωλ − ωλ′ − ωλ′′ ), (10)

P↑
λλ′λ′′ = h̄2π

16N
nλnλ′ (nλ′′ + 1)|
λλ′λ′′ |2

× δ(ωλ + ωλ′ − ωλ′′ ). (11)

The difference in thermal factors causes P↓
λλ′λ′′ to dominate at

low temperatures.
Force constants from both experimental data and ab ini-

tio calculations were used obtain 
λλ′λ′′ in Eqs. (6), (10),
and (11) and were used as parameters for iterative solutions
of the full Boltzmann transport equation [19]. The only in-
puts were the second- and third-order force constants and
T . Momentum conservation is exactly fulfilled, and energy
conservation was employed with the tetrahedron method [50].
A 90 × 90 × 90 �q-point grid was used, and thermal conduc-
tivity was converged with respect to q-point grid density to
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within 0.01%. Pure anharmonicity from phonon-phonon in-
teractions and scattering from the natural isotope distribution
were included in calculating the thermal conductivity [51]. To
identify the contributions of the individual phonon frequen-
cies to the thermal conductivity, we calculated the spectral
thermal conductance tensor κλ,αβ (ω) for each phonon branch
λ, relating a β-direction applied temperature gradient to the
thermal current in the α direction [52,53].

III. RESULTS

Four-dimensional scattering functions S( �Q, ε) were ob-
tained by reducing inelastic neutron scattering data at different
temperatures. The methods included corrections for multi-
phonon background and “folding” into the first Brillouin zone.
The reduced phonon spectra of Fig. 2(a) show bright intensity
at the energies and wave vectors of phonon excitations. Fol-
lowing traditional presentations of phonon dispersion curves,
we show intensities only along crystallographic directions
of high symmetry. With temperature, phonon centroid ener-
gies soften (decrease in energy), as shown in Fig. 3(a) and
presented previously in [24]. On average, the softening is
proportional to the phonon energy, so the phonon DOS is self-
similar with increasing temperature, as noted earlier [25]. The
observed thermal trends are in good agreement with previous
results where available [12,54,55]. Examples of fitted phonon
peaks are shown in Figs. 2(b)–2(f). The longitudinal acoustic
(LA) mode at �Q = (0.75, 0.25, 0.25) is shown in Fig. 2(b),
and the fit to an individual peak over the width of the box
in Fig. 2(b) is shown in Fig. 2(c). Typical phonons and fits
are shown in Figs. 2(e) and 2(f) for several temperatures for
�Q points at (0.925, 0.225, 0.125), (0.725, 0.325, 0.225), and
(0.475,0.475,0.275). The peak broadenings are caused by both
instrument resolution (as shown in Fig. 1) and the reduction
of phonon lifetimes from pure anharmonicity. Changes with
temperature of linewidths of typical phonons are shown in
Fig. 3(b). The changes in linewidth are the difference between
the phonon FWHM at T and at 100 K (i.e., 2�T − 2�100 K).
Changes in linewidths at 300, 900, 1200, and 1500 K are ther-
mal broadening of phonons since the instrument resolution is
unchanged with temperature.

We fit over 500 phonon modes throughout the Brillouin
zone. The s-TDEP method, even in its first iteration that used
quasiharmonic phonon dispersions, showed good agreement
with measured changes in phonon linewidths throughout the
Brillouin zone. For the longitudinal acoustic modes and op-
tical phonons, the calculations slightly underestimated the
experimental thermal broadenings.

Figure 4 shows phonon linewidth broadenings through-
out the Brillouin zone for four temperatures. Experimental
linewidth broadenings are shown in Fig. 4(a), and s-TDEP
broadenings are shown in Fig. 4(b). The differences in
broadenings between experiments and s-TDEP calculations
increase with temperature, becoming 15% at 1500 K. Av-
eraging all phonon energy shifts and broadenings over the
Brillouin zone gives the results of Fig. 5.

Using both the second- and third-order interatomic force
constants, the Boltzmann transport equation was solved for
different temperatures as described in Sec. II. We calculated
total and mode-dependent spectral thermal conductivity, as

shown in Figs. 6 and 7. We see that most of the heat is carried
by low-energy phonons. Optical modes carry 5% of heat at
300 K and 8% at 1500 K (Fig. 6). The total thermal conduc-
tivity and its trend with temperature are in good agreement
with experimental values (Fig. 7).

IV. DISCUSSION

Thermophysical properties such as free energy, thermal
expansion, and thermal conductivity are cumulative effects
from numerous processes of phonon occupancy and phonon-
phonon interactions. Thermophysical calculations that start
with averaged quantities as inputs can give successful re-
sults, but some of their physical interpretations may be risky.
Replacing a distribution of individual processes with its av-
erage loses the rich variation of phonon-phonon interactions.
Individual processes need not follow the average behavior
with temperature or volume. For example, it is possible to
calculate the thermal expansion of silicon with quasiharmonic
or anharmonic theory, and both give adequate results for this
macroscopic quantity [24]. The two approaches differ signifi-
cantly in their predictions of the thermal shifts of the centroids
of phonon modes and usually disagree on the sign of the
thermal shift.

In the 60 years since Brockhouse developed the triple-
axis spectrometer [56] inelastic neutron scattering has been
used to measure phonon dispersions in single crystals. These
measurements give simple data structures showing neutron
intensity at individual energy transfers h̄ω at a single mo-
mentum transfer h̄ �Q. Today, there is rapid development of
single-crystal techniques with direct-geometry chopper spec-
trometers at spallation neutron sources. These measurements
give arrival times of neutrons in detector pixels and can be
reduced to measurements at many simultaneous �Q and ω.
Improvements in geometrical efficiency may be of the order of
104, and the high neutron flux allows for much more complete
data sets in shorter times. This is arguably less advantageous
for the average energies of phonons because lattice dynamics
models, such as the Born–von Kármán model, can be used
to assess the energies of phonons that are not measured. The
linewidths of phonons cannot be modeled simply, however,
so linewidth measurements for all phonons have a higher
priority for understanding thermal transport. The line shapes
of individual phonons are obtained with high precision, as
shown in some detail in Fig. 2.

Monte Carlo simulations of instrument resolution
[Fig. 1(b)] were not sufficiently accurate to warrant
deconvoluting the measured phonon peaks. Nevertheless,
the trends of the experimental linewidths with temperature
(and phonon scattering lifetimes) are in good agreement
with thermal trends from the ab initio calculations. For
phonon peaks on sloping dispersion curves, there are
risks of broadening if the energy spectra are obtained
from large volumes in reciprocal space, but experimental
integrations were narrow [Fig. 2(a)], and phonons from
sloping dispersions showed no systematic problems. Each
integration was taken over a 0.0025 Å−3 volume in �Q
space, and we find the phonon thermal broadenings do
not change significantly even for phonon modes with large
group velocities (see the Supplemental Material [34]). For
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FIG. 2. Phonon dispersions and individual peaks from INS data from silicon at 300 K. (a) Example of experimental phonon dispersions
along directions of high symmetry. (b) Phonon scattering spectra at �Q = (0.75, 0.25, 0.25) r.l.u., which is along the vertical cut shown in
panel a. (c) Line shape of longitudinal acoustic phonon peak at �Q = (0.75, 0.25, 0.25) r.l.u. Experimental data are triangle markers, and
dashed red lines are best fits in both (b) and (c) for 300 K. The black curve in (c) is the best fit for the longitudinal acoustic phonon peak at
�Q = (0.75, 0.25, 0.25) r.l.u. at 100 K. Phonon peaks at 300, 900, 1200, and 1500 K at �Q points (d) (0.775,0.275,0.075), (e) (0.475,0.375,0.075),
and (f) (0.575,0.475,0.275). Experimental data are triangle markers, and dashed red lines are the best fit, with individual peak fits shown as
blue lines.
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FIG. 3. (a) Phonon energy shifts and (b) energy broadenings at
�Q = (0.75, 0.25, 0.25) versus temperature. Experimental results are
markers that correspond to the peaks shown in Fig. 2(b). Solid lines
are from ab initio calculations with anharmonicity. Dashed lines are
from the quasiharmonic approximation used in the first iteration of
s-TDEP.

hundreds of phonon modes throughout the Brillouin zone, the
largest discrepancies were found around 47 meV. These dis-
crepancies could be due to the intricate set of dispersion
curves near high-symmetry points. Previous Raman
measurements of thermal trends for the optical mode at
the � point agree well with our results and show thermal rates
of change that differ by 8% [27,57,58].

Both the experimental and computational work showed
large thermal broadening of the LA modes (Fig. 4), indicating
short phonon lifetimes. This helps explain why the transverse
acoustic modes are more important for thermal conductivity
than the LA, in spite of the higher group velocity for LA
modes (Fig. 6). Only a little heat is carried by optical phonons
because their group velocities are low, and their lifetimes are
relatively short.

The cubic anharmonicity is the first term in the Hamilto-
nian with an imaginary component that gives phonon lifetime
broadening, but it may not suffice at high temperatures. We

FIG. 4. Increase in phonon linewidth from linewidth at 100 K
versus phonon energy at 300, 900, 1200, and 1500 K as labeled.
(a) Experimental linewidths and (b) s-TDEP calculated linewidths.
Data are from phonons throughout the Brillouin zone.

found some differences between experimental and calculated
linewidths of individual phonons at 1500 K [Fig. 3(b)] but
less discrepancy in the shift and broadening averaged over the
Brillouin zone (Fig. 5). There are perhaps similar deviations
in the calculated thermal conductivity (Fig. 7). It appears
that the effects of anharmonicity were slightly underestimated
by s-TDEP. Perhaps more surprising, though, is the overall
success of this computational scheme over such a wide range
of temperatures. Even the first iteration of s-TDEP, which uses
quasiharmonic phonons for the displacements {uα

i } of Eq. (1),
gives phonon shifts and broadenings that are in reasonable
agreement with the converged s-TDEP calculations, except at
the highest temperatures.

Some of this success of s-TDEP may arise from a pe-
culiarity of phonons in silicon. We reported earlier that the
phonon DOS of silicon is nearly self-similar with increasing
temperature, with the full spectrum contracting approximately
uniformly with increasing temperature [25]. This average

174311-6



TEMPERATURE-DEPENDENT PHONON LIFETIMES AND … PHYSICAL REVIEW B 102, 174311 (2020)

FIG. 5. Temperature-dependent averages over the Brillouin zone
of phonon (a) energies and (b) linewidths. Purple circles are exper-
imental data, the solid teal line is from ab initio calculations with
s-TDEP, and the red dashed line is the first iteration of s-TDEP using
quasiharmonic phonons.

self-similarity of the acoustic and optic modes allows the
different three-phonon processes to maintain similar weights
over a wide range of temperature. If the effect of temperature
is primarily to rescale the energies of the phonon disper-
sions, the three-phonon processes allowed by the kinematics
of energy and momentum conservation will be the same. At
high temperatures where Eqs. (10) and (11) are compara-
ble, we expect similar shapes for the phonon linewidth plots
of Fig. 4, and this is approximately true at temperatures of
900 K and higher. This also explains why there are only
small differences between the results from s-TDEP in its first
iteration with quasiharmonic phonons and after iterating to
obtain more accurate phonon energies and thermal broadening
from anharmonicity. These two calculations also gave very
similar group velocities and similar phonon lifetimes, with
some discrepancies for higher-energy modes (>30 meV). We
found that thermal expansion does not significantly alter the
results from constant-volume calculations. The contribution
from the higher-energy modes is decreased as the overall
softening heightens the low transverse mode contribution to
overall thermal conductivity.

For silicon from 100 to 1500 K the energy broadenings
of phonon peaks were generally smaller than for other mate-
rials at temperatures of equivalent fractions of their melting

FIG. 6. Calculated spectral thermal conductivity κ (ε)/κtot at
(a) 300 K and (b) 1500 K. Total spectral thermal conductivity is
shown by the black dashed line. Contributions from TA, LA, LO,
and TO modes are labeled in (a).

temperature [32,59–61]. It could be argued that silicon is
“less anharmonic” [61]. Nevertheless, from the present study
of phonon line shapes and our previous study of phonon
energy shifts [24], for silicon the deviations from harmonic
behavior, although not large, are dominated by anharmonicity,
not quasiharmonicity.

FIG. 7. Temperature-dependent thermal conductivity of silicon.
Phonon anharmonic ab initio calculations (s-TDEP) are shown as a
solid teal line, the s-TDEP in its first iteration with the quasiharmonic
model is shown by the red dashed line, and experimental points are
shown as markers [12,54,55].
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V. CONCLUSIONS

Phonon spectral weight in the four-dimensional space of
{ �Q, ω} was measured and calculated for diamond cubic silicon
at temperatures from 100 to 1500 K. The energy linewidths
of phonon peaks were obtained for hundreds of phonons
in the first Brillouin zone. The changes in phonon broad-
ening with temperature were in good agreement between
computation and experiment, although the distributions of
phonon linewidths in the experimental data were broader in
experiment than in s-TDEP calculations. Discrepancies also
appear at temperatures above 1000 K. This suggests that
the anharmonic effects are moderately larger than predicted
with the present computations. Nevertheless, distributions of
phonon widths versus phonon energy had similar shapes for
computation and experiment. These distributions grew with
temperature but maintained similar shapes, likely because of
the uniform thermal softenings of the dispersion curves with
temperature.

Calculations of thermal conductivity with the Boltzmann
transport equation were in excellent agreement with experi-
mental data. The spectral thermal conductivity showed that
the transverse acoustic modes dominated the thermal con-

ductivity. Contributions from other modes are non-negligible,
and these contributions increase with temperature. The lon-
gitudinal acoustic modes had high group velocities but short
lifetimes. The optical modes had low group velocities and
short lifetimes. The spectral thermal conductivity changes
moderately with temperature. The optical modes carry more
heat at high temperatures, but no more than 10% of the total.
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