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Nonequilibrium non-Markovian steady states in open quantum many-body systems:
Persistent oscillations in Heisenberg quantum spin chains
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We investigate the effect of a non-Markovian, structured reservoir on an open Heisenberg spin chain. We
establish a coherent self-feedback mechanism as the reservoir couples frequency dependently to the spin chain.
Thus, loss and driving take place due to the interaction of the spin chain with its own past. This new paradigm of
non-Markovian imposed boundary driving allows discussion of a new kind of nonequilibrium steady state. We
show that for certain parameters, even in the long-time limit, persistent oscillations occur within the chain.
Moreover, we demonstrate that the conditions for these oscillations and excitation trapping depend on the
characteristics of the chain, thus making it possible to characterize a chain by detection of its emitted signal
under influence of self-feedback.
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I. INTRODUCTION

Quantum spin chains are a paradigm to study quantum
many-body physics out of equilibrium [1–6], and they ex-
hibit a rich variety of dynamical properties such as phase
transitions [7–12], quantum transport properties [13–21], and
entanglement structure [22,23]. Among quantum spin chains,
the Heisenberg spin-1/2 chain [24] is particularly important
as it is analytically solvable [25,26] and forms the backbone
to explain experiments in the domain of strongly correlated
many-body physics [27–31]. The tremendous experimental
progress in recent years has made platforms such as cold
atoms or trapped ions promising instances for quantum sim-
ulators [32,33]. Here, driving the system into a desired state
by a controlled interaction with its environment [2,34–40] is a
task of fundamental importance for quantum storage [41–45]
and quantum information processing [46–48]. With our work,
we aim at stimulating further insights into the non-Markovian
dynamics of these many-body systems as well as at providing
a theoretical model for their study.

Part of this research in open quantum systems focuses
on a spin chain which is coupled to magnetic reservoirs at
both ends [49–55]. Based on a full Markovian approximation
with respect to the system-reservoir interaction, the chain is
incoherently driven into a nonequilibrium steady state, and the
influence of the driving strength, via the external reservoir,
of an externally induced disorder parameter [7,8,21] or the
strength of the anisotropy [56–58] is discussed.

Complementing this Markovian, Lindblad-based approach
to describe a boundary-driven quantum spin chain, we in-
vestigate in the present study the effect of a non-Markovian,
structured reservoir on an open Heisenberg chain [59–61].
The structured reservoir couples frequency dependently to
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the spin chain and therefore introduces a memory. Here, we
choose a δ-like memory kernel to establish a coherent self-
feedback mechanism [62,63], i.e., the spin chain interacts
partially with its own past and the boundary-driven setup is
changed from a spatial- to a temporal-driving scheme: Loss
and driving take place at the same site but include two dif-
ferent points in time separated by the round-trip time τ =
2L/c; see Fig. 1. This paradigm of non-Markovian imposed
boundary driving allows us to discuss an alternative kind of
nonequilibrium steady state: The dissipative coupling to the
structured reservoir leads for certain parameters to stabilized
and nondecaying, i.e., persistent, oscillations within the chain.
Since for these parameters the excitation in the chain remains
constant and the amplitudes exhibit a regular oscillation pat-
tern, this feature is related to Rabi oscillations which are
intrinsically coherent and time reversible.

The enabling factor in our scheme is the non-Markovian
system-reservoir coupling based on coherent feedback known
from and predominantly studied in atom-molecular optics
and cavity QED [64–72]. Its coherent and non-Markovian
nature introduces quantum interferences into the dynam-
ics of these systems and allows for interesting two-photon
processes [70,73], enhanced entanglement and nonclassical
photon statistics [74], dimerization [75,76], and a stabi-
lization of quantum coherence due to interference effects
between incoming and outgoing probability waves [77]. To-
gether with the formation of dark states and subsequently
emerging population trapping [78,79], Rabi oscillations in
the single-excitation regime have been predicted [77]. These
cavity-induced Rabi oscillations emerge if the round-trip time
τ is a multiple of the inverse of the cavity-emitter coupling
g/(2π ). To date, they are limited to the single-excitation and
single-emitter regime.

Here, we show that these limitations can be lifted and
the phenomenon of feedback-induced stabilization of Rabi
oscillations is of general character and applies also to

2469-9950/2020/102(17)/174309(10) 174309-1 ©2020 American Physical Society

https://orcid.org/0000-0002-0899-4957
https://orcid.org/0000-0002-8206-7537
https://orcid.org/0000-0001-8108-2973
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.102.174309&domain=pdf&date_stamp=2020-11-16
https://doi.org/10.1103/PhysRevB.102.174309


FINSTERHÖLZL, KATZER, AND CARMELE PHYSICAL REVIEW B 102, 174309 (2020)

FIG. 1. Sketch of a Heisenberg spin chain modeled as coupled
two-level systems with the coupling strength J . The last site couples
with the rate � to a reservoir consisting of a semi-infinite waveguide
of length L at the closed end, which feeds back part of the excitation
after a delay time τ = 2L/c. At the open end of the waveguide, a
detector records the emitted signal for a period of duration T .

strongly-correlated many-body systems such as the Heisen-
berg chain. In the following, we show that, for certain
parameters, it is possible to stabilize highly symmetric states
within the chain depending on the feedback time. We propose
thereby a way to control the state of the chain noninvasively
and show that for the isotropic Heisenberg spin chain with
nearest neighbor interaction the number of possible trapping
conditions is equal to the number of sites in the chain. This
allows for a partial characterization of the spin chain by its
emitted, detector-integrated signal and extends the feedback-
phenomenon of stabilized Rabi oscillations to the realm of
strongly correlated open quantum many-body systems.

This paper is organized as follows: First, in Sec. II, we
present the system of the spin chain and the numerical
implementation of the feedback interaction. We realize the
coherent self-feedback by placing the end of the spin chain
in a semi-infinite waveguide which induces a frequency-
dependent partial interaction of the spin chain with its own
past after the round-trip time τ = 2L/c. In this section, we
also explain the tensor network method we use for our nu-
merical simulations: The quantum stochastical Schrödinger
equation serves as the basis for an efficient description of the
time evolution with matrix product states [70,73,79]. Next,
in Sec. III, we discuss the system behavior without feedback
and find that, in our setup, no population trapping can occur
and dark states cannot be populated. This is in contrast to the
feedback case, investigated in Sec. IV, where we find pro-
nounced population and persistent oscillations. We study the
conditions for population trapping and show that, strikingly,
despite the complex many-body interactions within the chain,
the number of trapping conditions is equal to the number of
sites in the chain. Investigating the Rabi oscillations, we find
that the amplitude is highest for a single excitation in the
chain. We conclude in Sec. V and give a short outlook of
possible applications of our scheme.

II. SYSTEM

Our model consists of a Heisenberg spin chain whose last
site is coupled to a non-Markovian structured reservoir; see
Fig. 1. This reservoir is created via a semi-infinite waveguide
[64,80–82] where the closed end is modeled by a mirror at
distance L from the spin chain. The reservoir is assumed to
be initially in the vacuum state. Part of the excitation emitted
from the chain will then be reflected by the mirror and will
interact with the system a second time after the delay time τ .
Note that, for the sake of simplicity, we assume a perfect de-
tector as well as a perfectly reflecting mirror. While this model
is well investigated for a single few-level emitter [68,70–
72,76–79], we extend the investigation here to a many-body
system.

The corresponding Hamiltonian of the combined system-
reservoir dynamics reads (with h̄ ≡ 1)

H =
N∑

i=1

ω0σ
+
i σ−

i +
∫

dω ωb†(ω)b(ω)

+
N−1∑
i=1

J
(
σ x

i σ x
i+1 + σ

y
i σ

y
i+1 + σ z

i σ z
i+1

)

+
∫

dω(G f b(ω)b†
N (ω)σ−

N + H.c.). (1)

The first term models the free evolution of N single spin
systems, where ω0 governs the free evolution of each sin-
gle site, σ+

i = σ x
i + iσ y

i and σ−
i = σ x

i − iσ y
i create/annihilate

a fermionic excitation in the ith two-level system which is
equivalent to a flip of the spin on site i [79,83–85]. The
second term represents the free evolution of the bosonic
mode continuum to which the last site is coupled. Here,
b(†)

N (ω) creates/annihilates a bosonic excitation of energy ω

in interaction with the N th site of the spin chain. The third
term models the isotropic Heisenberg spin chain with nearest
neighbor interaction, with a chain of N single sites, and with
a three-dimensional nearest neighbor interaction in x, y, and
z directions, where σ k , k ∈ x, y, z represent the Pauli matri-
ces interacting with strength J . The last term represents the
interaction of the N th site of the chain with the bosonic reser-
voir and offers a unitary description of decay and feedback
effects by interaction with the reservoir. The system-reservoir
coupling G f b(ω) is sinusoidal frequency dependent in order
to model a semi-infinite waveguide [65,67,69,86–88]:

G f b(ω) = g0 sin
(ωL

c0

)
= i

√
�

2π
(e−iωτ/2 − eiωτ/2), (2)

where L is the length of the closed side of the waveguide,
c0 the phase velocity in the waveguide, τ = 2L/c0 the delay
time and g0 = √

�/2π the coupling constant with the cou-
pling rate �. Due to this frequency-dependent coupling to
the reservoir, the dynamics is simulated in the time-discrete
quantum stochastic Schrödinger equation (QSSE) approach
[70]. In order to achieve this, tensor network methods are
employed by describing the state of the system and of the
reservoir numerically as a matrix product state (MPS). Instead
of tracing out the reservoir’s degrees of freedom, we remain
in the Schrödinger picture and use a time discrete basis which
includes the interaction with the reservoir at one time step
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with a stochastical, time-stroboscopic description. The time-
ordered evolution operator

U (t ) = T̂ exp

(
−i

∫ t

t0

H ′′(t ′)dt ′
)

(3)

is expressed in a time-discrete basis with commutating op-
erators for different time steps; see Appendix B for details.
The operators act on the reservoir at the time tk = k�t with
equidistant time steps �t = tk+1 − tk . The wave vector reads:

|ψ (tk )〉 =
∑
n1 ...nN=0,1

cn1...nN |n1, . . . , nN 〉

⊗
∑

k1...kNT

ck1...kNT
|k1, . . . , kNT 〉 (4)

with the expanded coefficients written with tensors A; see
Appendix C for details. This leads, together with unitary trans-
formations (see Appendix A) to the following discretized time
evolution operator:

U (tk+1, tk )

= exp

[
i

N−1∑
i=1

J
(
σ x

i σ x
i+1 + σ

y
i σ

y
i+1 + σ z

i σ z
i+1

)
�t

+
√

�(�BN (tk ) − �BN (tk−l )e
iφ )σ+

N

√
�t

−
√

�(�B†
N (tk ) − �B†

N (tk−l )e
−iφ )σ−

N

√
�t

]
(5)

for k ∈ [0, NT − 1] as integer values of the time steps. Here, tk
denotes the kth time step, while tk−l = (k − l )�t denotes the
state of the reservoir at the time tk − τ and φ = ω0τ denotes
the feedback phase. For details, please refer to Appendices
A–C.

Due to our choice of a time-discrete basis [see Eq. (B4)],
the corresponding Hilbert space scales with the integration
time and thus becomes very large. In order to compute the
time evolution we make use of the tensor network method
based on matrix product states (MPSs) called tMPS [89–96].
This method allows for an efficient truncation of the Hilbert
space and has already successfully been applied on the time
evolution of open spin systems [49–55,97] as well as of
self-feedback problems for few-level systems, for instance for
the simulation of quantum dots or cavity-embedded two-level
systems [73,78,79].

Central to this method is the expansion of the state vector
coefficient into a matrix product state; see Appendix C. While
for low-dimensional few-level systems the state of the system
and the reservoir may be written into one single MPS, we
model the many-body system using a two-dimensional MPS.
In addition to the non-Markovian reservoir, our model also
involves the spin chain as a quantum many-body system with
spacial interaction; see Appendix D. This algorithm enables
us to efficiently simulate a quantum many-body system under
the influence of coherent self-feedback, i.e., a non-Markovian
system-reservoir coupling.

FIG. 2. Time-dependent occupation densities in a Heisenberg
chain of N = 4 sites without feedback. Clearly, the initial state
quickly dissipates into the environment and no excitations remain
within the chain. Note that each curve is plotted twice, demonstrating
our benchmark. The orange line depicts the time-dependent detector
signal which reaches its normalized maximum value after the con-
vergence time Tc, thus I (t = Tc ) = 1. Parameters for this plot are
� = 0.24 and J = 0.1.

III. THE DISSIPATIVE HEISENBERG CHAIN
WITHOUT FEEDBACK

First, we describe the Heisenberg chain dynamics without
feedback. In this case, only the boundary spin of the chain is
subject to dissipation, i.e., it is coupled to a vacuum reservoir
with vacuum input for every time step. This is completely
equivalent to a Markovian description with the Lindblad
formalism. To benchmark the implementation, we have cal-
culated the dynamics of the dissipative Heisenberg chain for
the case of a vanishing frequency dependence G f b(ω) = 2g0.
Therefore, the QSSE evolution models the Lindblad master
equation of the form (h̄ = 1):

d

dt
ρ(t ) = −i[Hchain, ρ(t )] + �D[σ−

N ]ρ(t ) (6)

with

Hchain =
N∑

i=1

ω0σ
+
i σ−

i +
N−1∑
i=1

J
(
σ x

i σ x
i+1 + σ

y
i σ

y
i+1 + σ z

i σ z
i+1

)
(7)

and the Lindblad superoperator D[J]ρ = JρJ† − J†Jρ −
ρJ†J . Note that, with no feedback applied, our time-bin set-
ting exactly reproduces the dynamics of a Lindblad decay; see
Fig. 2.

In this setting, excitation trapping is not possible for any
initial state or parameter set, which means the excitation
stored within the chain is inevitably lost to the reservoir
modes. In our setup, we place a detector at the open end
of the waveguide and record the time-dependent excitations
which leave the feedback loop between the emitter at the end
of the quantum chain and the mirror until we reach a finite
time T . We time integrated this excitation to form our detector
signal I (t ) = ∑NT

tk=0〈�B†(tk )�B(tk )〉/∑N
i=0〈σ 11

i 〉0. Thus, we
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sum over the excitation density within the waveguide at the
kth time step, 〈�B†(tk )�B(tk )〉, until the total integration time
�tNT . Additionally, we normalize it to the total initial excita-
tion within the system, which is described by

∑N
i=0〈σ 11

i 〉0 as
the reservoir is in a vacuum state initially. This time-integrated
signal serves as our figure of merit. In the case without feed-
back, it will always reach unity if integrated long enough.

In Fig. 2, the time evolution of all sites is depicted exem-
plarily for a spin chain of four sites (blue, red, and green lines).
The system has been initialized in the | ↓↓↓↓↑ 〉 ⊗ |vac〉 state.
Additionally, the time-dependent detector signal is plotted
(orange line), which integrates the dissipated signal during
the integration time. Clearly, all sites decay completely into
the ground state, and the signal at the detector I (t ) reaches
its normalized maximum value after the convergence time Tc,
thus I (t = Tc) = 1. In the given setup, no population trapping
or nontrivial steady-states can occur. Also, dark states are
not populated as only a single site couples dissipatively to
the reservoir. This picture would change completely if more
sites were coupled to the reservoir [79]. Figure 2 furthermore
serves as a benchmark using the full solution for |ψ (t )〉 with
the Lindblad master equation (black dotted lines). We note
that we also benchmarked the feedback algorithm for the
uncoupled last site using an analytical solution for a single
two-level system [64,78,98].

IV. THE HEISENBERG CHAIN UNDER FEEDBACK

A. Population trapping

In contrast to the Markovian case described in Sec. III,
we observe population trapping when subjecting the chain to
coherent self-feedback. This means that the initial excitation
within the chain dissipates partially into the reservoir until
this process is stopped by the interaction with the feedback
signal and modifies the dissipative coupling due to quantum
interferences. As a consequence, after a parameter-dependent
time Tc, the system-reservoir interaction reaches a steady state
and dynamically traps the remaining excitation within the
chain. From this time on, the signal at the detector ceases
and longer integration times have no impact on the amount
of detected excitation. The conditions for population trapping
depend on two parameters: The delay time τ and the feedback
phase φ. Importantly, the two parameters are not independent
in this setup, as it holds that φ = ω0τ . However, a microwave
modulation of hyperfine level may disentangle the feedback
phase φ from the feedback time τ [72].

In the following, we assume that the initial state of the
chain is that all spins are in their ground state but the spin
coupled to the reservoir is in an excited state. As the reservoir
is in a vacuum state initially, we are in the single-excitation
regime. However, our study and results are not limited to the
single-excitation regime, but also hold for more excitations, as
we will discuss further below.

In Fig. 3, we plot the dynamics of the occupation den-
sities σ 11

i = σ+
i σ−

i of each single site i in the Heisenberg
chain of N = 4 sites (blue, red, and green lines) and the
detected excitation leaving the waveguide (orange line). We
show the transient regime as well as the long-time limit. After
a transient regime during which the densities within the chain

FIG. 3. Time-dependent occupation densities 〈σ 11
i (t )〉 in a

Heisenberg chain of four sites. Clearly, feedback creates stable Rabi
oscillations within the chain where site 2 and 3 as well as 1 and 4 are
completely coherent and in phase. Consequently, part of the excita-
tion remains trapped in the chain, clearly visible as the detector signal
remains well below I (Tc ) = 1. As explained below, these oscillations
appear at intersection points of trapping lines in the φ-τ plane, where
two trapping conditions are fulfilled at the same time. Parameters for
this plot are � = 0.24, J = 0.1.

oscillate irregularly and the detector signal steadily increases,
the detector signal saturates and the densities within the chain
exhibit a very regular oscillation pattern. These oscillations
are a special case of population trapping. Part of the ini-
tial excitation remains trapped in the chain and is swapped
throughout the chain without any further losses. Conse-
quently, the detector signal cannot reach its maximum value.

This very unusual steady state, in which the excitation
within the feedback loop and within the chain are losslessly
swapped, and no excitation leaves the chain although the
site couples dissipatively to a reservoir, is highly parameter
dependent, as we will explain in the following. Namely, these
oscillations appear at intersection points of trapping lines in
the φ-τ plane, where two trapping conditions are fulfilled at
the same time. Also, we will show that, strikingly, despite the
complex many-body dynamics in the Heisenberg chain, the
number of trapping conditions is equal to the number of sites
in the chain.

B. Trapping conditions in the φ-τ parameter space

For the case of the many-body system under feedback, the
conditions for the trapping to take place differ significantly
from the case of a single two-level system. We briefly re-
peat the distinguishing properties of a single two-level system
which couples directly to the structured reservoir: Such a
system never shows Rabi oscillations independently of the
chosen phase and delay time, and population trapping only
occurs at φ = ω0τ = 2πn with n integer, i.e., in the interval
[0, 2π ) only one phase allows population trapping.

This is significantly different in our system. To illustrate
this, we plot in Fig. 4 the survival probability of the exci-
tation in a chain of N = 4 sites in the φ-τ plane. It depicts
the time-integrated detector signal, meaning that darker re-
gions indicate a higher amount of trapped excitation within
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FIG. 4. Trapping conditions in the φ-τ plane for an isotropic
Heisenberg chain with nearest neighbor interaction and N = 4 sites.
The plot depicts the detector signal after a finite integration time T .
Darker regions indicate a higher survival probability in the spin chain
while white regions show that the excitation has been completely
lost into the environment and detected. Broadening of the lines stems
from finite calculation times, as mentioned in the main text. The pe-
riodic reappearance of the lines is due to the inherent 2π periodicity
of the feedback phase φ: Each trapping condition is fulfilled once
within every interval of φ ∈ [2πn, 2π (n + 1)), n ∈ N+. The green
circle marks the intersection point of the parameter set φtr, τtr in
Fig. 3. Parameters for this plot are � = 0.24, J = 0.1.

the system while white regions show that the excitation has
been completely lost to the environment. Thus, all special
parameter sets φtr, τtr for which trapping conditions exist are
visible as lines in this plane. Note that the lines broaden out
for two reasons: First, for the regions close to the special
parameters, φ → φtr, τ → τtr and τ� � 1, no trapping condi-
tion exists; however, the feedback signal strongly slows down
the dissipation into the environment. One could call these
regions effectively stable, which means the convergence time
Tc polynomially grows. As our numerical basis limits the total
integration time, the trapping lines broaden in Fig. 4 due to
finite calculation times only. Also, note that for a fixed in-
tegration time T the areas around the φtr-τtr lines additionally
broaden out with increasing delay time due to the convergence
time strongly increasing with increasing τ .

Despite these obvious numerical limitations, we find in
the interval [0, 2π ) several conditions for φtr which lead to
population trapping, and the number of possible φtr depends,
in strong contrast to the single two-level emitter case, on τ .
The reason for this is the interaction dynamics within the
chain which imposes new conditions for the feedback phase
φtr. Additionally, in Fig. 4, the dependency of the survival
probability on τ for a fixed coupling strength � becomes
visible. The trapped excited density clearly decreases with an
increasing delay time. This observation agrees with the behav-
ior of the single two-level system subjected to self-feedback
and is due to the fact that the system loses excitation both to
the feedback loop and to the waveguide constantly. If the sig-
nal travels very long through the feedback loop, only a small

FIG. 5. Plot of the maximum number of possible trapping condi-
tions for the feedback phase Nφtr within one interval φ ∈ [0, 2π ) as a
function of the number of sites N in the chain. Strikingly, it holds that
Nφtr = N . Scanning the possible population configurations allows us
to access the participating number of sites within the chain.

amount of excitation is left in the chain and the feedback-
induced quantum interference between feedback-loop gain
and waveguide loss can only trap a small amount of excitation
in the chain. This observation also explains that the higher
the decay rate � is, the smaller the survival probability is for
a fixed τ . The many-body system inherits nevertheless the
φ = 2nπ trapping condition from the single two-level case,
which is visible as a horizontal line in Fig. 4. Thus, here
it holds that φtr(τ ) = const, i.e., φtr does not depend on τ .
Note that we assume a site independent system frequency ω0.
For other phase choices, in the case of a many-body system
under feedback, additional lines appear in the parameter space
where it holds that φtr = φtr(τ ). This dependency of the feed-
back phase on the delay time is an entirely new phenomenon
compared to the well-investigated case of the single two-level
system. Due to the inherent periodicity of the phase, each of
these additional lines appears once within every interval of
φ ∈ [2πn, 2π (n + 1)), n ∈ N+, which means that the lines
reappear periodically in the parameter space. We explain this
τ dependency of the trapping conditions with the fact that
the quantum many-body system allows intrinsically for more
coherent excitation exchange, and as the excitation is swapped
back and forth in between the sites a phase is picked up which
is intrinsically dependent on J but does not change when we
rescale the time.

This mechanism allows us to extract via the integrated
detection signal an estimate of the chain length of the par-
ticipating sites. The number of possible population trapping
conditions, Nφtr , grows linearly with the number of sites. In
fact, outside the points of degeneracy, the number of trapping
condition equals the number of sites in the chain, Nφtr =
N ; see Fig. 5. This is a remarkable result of our study, as
the detection signal reveals indirectly a decisive quantum
spin property unambiguously. We explain this linear depen-
dency as a resonance effect with traveling excitations within
the chain and the waveguide destructively or constructively
interfering, while the resonance conditions depend on the
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eigenfrequencies within the chain. Thus, the conditions for
coherently reinforcing them increase by N for N additional
sites within the chain. Note that the resonance conditions
also depend on the eigenvalue degeneracies and, for systems
with less degenerated eigenvalues than the isotropic case, less
trapping conditions exist.

Also note that these results show features which at first
sight might resemble a dynamical quantum phase transition
in the sense that the conserved excitation within the chain
exhibits nonanalytical kinks in the φ-τ parameter space. It
therefore seems tempting to connect them to this exciting
research field, which has received strong attention recently;
for instance with the focus on transient effects in closed sys-
tems [9,99–104], on the long-time limit [105–111], or on open
quantum systems [1,112–115]. However, in our case, this non-
analyticity is not emerging and relies merely on a parameter
choice this is often the case when controlling systems with
quantum self-feedback [70,73,74,77,98,116,117].

Investigating the trapped steady states further, we find that
if a point of degeneracy is chosen, the highly nontrivial steady
state of stabilized Rabi oscillations occurs within the chain
without any dephasing and dissipation although we simulate
an open quantum system. This is discussed in the next section.

C. Robustness of stabilized Rabi oscillations

Investigating the steady-state behavior for different feed-
back phases and time delays, we observe three possibilities:
(i) in the long-time limit all excitation within the chain is lost,
(ii) all single-site occupation densities in the chain are finite
and constant, and (iii) the total excitation in the chain remains
constant and finite but the densities oscillate. Case (i) is the
rule, not the exception, as most delay times and phases do not
allow a nontrivial steady-state in combination with the quan-
tum spin chain dynamics but will lead to a complete loss of
excitation to the environment. Case (ii) is found where a feed-
back phase and delay time allow for population trapping, and
a finite amount of excitation is found in the nonequilibrium
steady state. If, however, degeneracy points are chosen for
which the system provides two or more population trapping
phases, a highly nontrivial steady state is the result, namely
(iii).

At these intersections of the trapping lines, or degen-
eracy points, stabilized oscillations within the chain occur
and a periodic, time-dependent steady state is created. These
steady states differ, however, in coherence and relative phase
shifts between the trapped occupation densities 〈σ 11

i 〉tr at
different intersection points. An example of a very regular,
time-reversible oscillation pattern is displayed in Fig. 3 and
appears at a certain intersection, which is marked in Fig. 4
with a green circle. A characteristic of this nonequilibrium
steady-state is the conservation of the excitation, thus:

N∑
i=1

〈
σ 11

i (t )
〉
tr

!= const. (8)

The same condition holds obviously for a closed chain. The
main result of our study is the induced, synchronized, and con-
stant excitation within the chain although the system is open.
This holds for different decay strengths � and feedback delay
times τ , as well as feedback phases φ, and is a generic feature

FIG. 6. Regular oscillations for different initial states and initial
numbers of excitations in a chain of N = 4 sites. The amplitude de-
creases with an increasing number of excited states. The oscillations,
however, remain regular and periodic. Parameters for this plot are
� = 0.24, J = 0.1.

of such a system. Here, the enabling factor is destructive
interference at the entry point between the outgoing emission
into the waveguide and the incoming feedback signal. Both
reexcitation and deexcitation take place while applying the
time-evolution operator of Eq. (5). If the trapped occupa-
tion probabilities remain constant, as is the case in two-level
physics, this application will leave the matrix-product state
unchanged. Therefore applying the MPO does not change
the MPS although the spin chain couples dissipatively to a
vacuum bin and a feedback bin. For the many-body system,
this is the case if all occupation densities remain constant
[case (ii)]. In contrast to the two-level physics, in case of
the trapped Rabi-oscillations [case (iii)], we observe periodic
changes when applying the MPO on the MPS. This Floquet
driving is a remarkable property of the many-body system and
leads to the aforementioned regular oscillations without any
decaying behavior. In this section, we discuss additionally the
robustness of this feature.

In Fig. 6, the population trapping-induced oscillation
within the chain is depicted for different initial states and
number of excitations in the chain. We clearly see that the ef-
fect is not limited to the single-excitation regime. In contrast,
the oscillating, time-periodic steady-state exists for different
excitations and is a quite generic feature of the feedback-
driven quantum spin chain. However, the amplitude of the
oscillations is reduced for larger numbers of excitations. This
is displayed in Fig. 6: The amplitude of the Rabi oscillations
reaches its maximum for a single initial excitation (light blue
line) and strongly decreases with an increasing number of
initial excitation (e.g., quadruply excited initial state, green
line). We remark that this behavior is qualitatively indepen-
dent of the location of the initial excitation within the chain.
The explanation for the dependence of the amplitude on the
initial number of excitations lies in the dynamics of the chain
up to the first interaction with its own feedback signal. The
higher the amplitude of the oscillations occurring in this first
time interval t ∈ [0, τ ] is, the higher the amplitude of the
stabilized Rabi oscillations is in the long run. If the chain is
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initialized with a single excitation—no matter at which site
in the chain—the oscillation of the occupation densities dur-
ing this initial time interval has the highest amplitude, since
the inversion of the individual site dynamics is not blocked
by additional excitations. This amplitude decreases with an
increasing number of excited sites, and the oscillations in
the first time interval t ∈ [0, τ ] become increasingly irregular.
Also, Fig. 4 shows that the total amount of trapped excitation
in the chain is maximal at the intersection points, thus at the
points where Rabi oscillations occur. Finally, please note that,
under the absence of external disturbances, these oscillations
would last in the long-time limit for infinite integration times.

V. CONCLUSION

In contrast to the dominant Markovian approach for open
spin chains, we investigate a Heisenberg spin chain with
nearest-neighbor interaction embedded into a non-Markovian
structured reservoir. This consists of a semi-infinite waveg-
uide which feeds the emitted signal back into the chain. Thus,
we extend the application of quantum feedback control, which
is well investigated for few-level systems, to a many-body
system. We show that, due to the many-body interactions,
new trapping conditions arise with the feedback phase φtr

depending on the chosen delay time τtr. Due to the periodicity
of the phase, the set of trapping parameters are periodic in
[0, 2π ). Despite the complex interactions in the chain, the
number Nφtr of special parameter sets φtr, τtr for which trap-
ping occurs within one interval is for most choices of τ equal
to the number of sites N in the chain. Also, we show that
each specific parameter set φtr, τtr relates to a specific state
of the chain. We characterize these states with the numerical
results for the occupation densities and show that, at points in
the φ-τ plane where two trapping conditions hold, stable Rabi
oscillations occur. Their amplitude is maximal for one single
initial excitation in the chain. The total amount of trapped
excitation Ntr in the Rabi oscillations is maximal compared
to all other trapped states. Our findings show that coherent
feedback is a promising way to study spin chains and other
many-body quantum systems.
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APPENDIX A: ROTATING FRAME TRANSFORMATION

We start with the the Hamiltonian in Eq. (1), which reads
(with h̄ ≡ 1)

H =
N∑

i=1

ω0σ
+
i σ−

i +
∫

dω ωb†(ω)b(ω)

+
N−1∑
i=1

J
(
σ x

i σ x
i+1 + σ

y
i σ

y
i+1 + σ z

i σ z
i+1

)

+
∫

dω(G f b(ω)b†
N (ω)σ−

N + H.c.). (A1)

In order to achieve a facilitating description for the numerical
simulation, we transform this Hamiltonian into the rotating
frame defined by its freely evolving part. For this, we use the
unitary transformation with

H ′ = U1HU †
1 − iU1∂tU

†
1 , (A2)

where the unitary operator U1 is defined as

U1 = exp

[
it

(
N∑

i=0

ω0σ
+
i σ−

i +
∫

dω ωb†(ω)b(ω)

)]
. (A3)

This yields the transformed Hamiltonian H ′(t ):

H ′(t ) =
N−1∑
i=1

J
(
σ x

i σ x
i+1 + σ

y
i σ

y
i+1 + σ z

i σ z
i+1

)

+
∫

dω(G f b(ω)σ+
N bN (ω)e−i(ω−ω0 )t + H.c.). (A4)

Next, we again apply a unitary transformation, in order to shift
the dependency of the delay time τ into the operators. This
unitary operator U2 is defined as

U2 = exp

[
−i

τ

2

∫
dω ωb†(ω)b(ω)

]
. (A5)

This yields

H ′(t ) =
N−1∑
i=1

J
(
σ x

i σ x
i+1 + σ

y
i σ

y
i+1 + σ z

i σ z
i+1

)

+ ig0

∫
dω(σ+

N (bN (ω)e−i(ω−ω0 )t

− bN (ω)e−i(ω−ω0 )t eiωτ ) + H.c.). (A6)

We define time-dependent reservoir operators b(†)(t ) with

b(t ) = 1√
2π

∫
dω b(ω)e−i(ω−ω0 )t , (A7)

for which the following commutation relations hold:

[b(t ), b†(t ′)] = δ(t − t ′). (A8)

With this, we arrive at the transformed Hamiltonian H ′′:

H ′′(t ) =
N−1∑
i=1

J
(
σ x

i σ x
i+1 + σ

y
i σ

y
i+1 + σ z

i σ z
i+1

)
+ i

√
�(bN (t ) − bN (t − τ )eiφ )σ+

N

− i
√

�(b†
N (t ) − b†

N (t − τ )e−iφ )σ−
N (A9)

with the feedback phase φ = ω0τ .

APPENDIX B: QUANTUM STOCHASTIC
SCHRÖDINGER EQUATION (QSSE)

We use the picture of the quantum stochastic Schrödinger
equation as basis for our numerical systems. Thus, we intro-
duce time discrete quantum noise operators which include
the interaction with the reservoir at one time step with a
stochastic, continuous description [70,78]

�B(†)(tk ) =
∫ tk+1

tk

dt ′b(†)(t ′) (B1)
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with the following commutation relations:

[B(tk ), B†(t j )] =
∫ tk+1

tk

dt
∫ t j+1

t j

dt ′δ(t − t ′)

= �tδk j . (B2)

Note that B(†)(tk ) and B(†)(tk−l ) only commute for �t =
tk+1 − tk < τ .

The time evolution operator is defined as

U (t ) = T̂ exp

(
−i

∫ t

t0

H ′′(t ′)dt ′
)

. (B3)

We introduce the basis states [70]

|ip〉k = [�B†(tk )]ip√
ip!�t ip

|vac〉, (B4)

where ip, p integer, denotes the number of excitations present
in the Fock state of the kth time interval |ip〉k .

Writing Eq. (A9) in the basis of the noise operators enables
us to define a discretized time evolution operator U (�t ) where
we may drop the time evolution operator T̂ for equidistant
time steps �t = tk+1 − tk:

U (tk+1, tk )

= exp

[
i

N−1∑
i=1

J
(
σ x

i σ x
i+1 + σ

y
i σ

y
i+1 + σ z

i σ z
i+1

)
�t

+
√

�(�BN (tk ) − �BN (tk−l )e
iφ )σ+

N

√
�t

−
√

�(�B†
N (tk ) − �B†

N (tk−l )e
−iφ )σ−

N

√
�t

]
(B5)

for k ∈ [0, NT − 1] as integer values of the time steps. Here,
tk denotes the kth time step, while tk−l = (k − l )�t denotes
the time delayed by τ , i.e., tk − τ , and φ = ω0τ denotes
the feedback phase. With this, we are able to use the QSSE
operators defined in Eq. (B4) as the basis for the numerical
non-Markovian time evolution.

APPENDIX C: MATRIX PRODUCT STATES

In order to compute the time evolution, we make use of
tensor network methods by describing the state of the system
and of the reservoir numerically as a matrix product state
(MPS). Using the QSSE operators defined in Eq. (B4) as the
numerical basis means that the corresponding Hilbert space
scales with the integration time and thus becomes very large.
Here, a time evolution based on the well established tensor
network method MPS called tMPS [89–96] allows for an
efficient truncation of the Hilbert space.

Central to this method is the expansion of the state vector
coefficient into a matrix product state. For low-dimensional
few-level systems, the state of the system and the reservoir
may be written into one single MPS; however, in case of a
many-body system, this algorithm gets too demanding. Here,
our method is the usage of a two-dimensional MPS: In addi-
tion to the non-Markovian reservoir, our model also involves
the spin chain as a quantum many-body system with spacial
interaction. Using the singular value decomposition, we ex-
pand the state vector coefficients both of system and reservoir

into separated matrix product states [90,91,96]. The total wave
vector reads

|ψ (t0)〉 =
∑
n1 ...nN=0,1

cn1...nN |n1, . . . , nN 〉 ⊗
∑

k1...kNT

ck1...kNT
|k1, . . . , kNT 〉

(C1)

with the expanded coefficients written with tensors A:

cn1...nN = An1 · An2 · · · AnN , (C2)

ck1...kNT
= Ak1 · Ak2 · · · AkNT

, (C3)

where the index ni is the physical index of the ith site in the
chain and k j the index of the state of the reservoir at the jth
time step. Thus, Eq. (C2) describes the wave vector of the
many-body system as a MPS, while Eq. (C3) describes the
one of the reservoir.

These two MPSs contain the physical information of the
system as well as of the state of the reservoir at every time
step. They consist of NT (respectively N) connected tensors
called bins, where Nk = T

�t is the total number of time steps
and N the number of sites in the chain. Thus, in the reservoir
MPS, every bin represents the state of the reservoir at one time
step, while in the spin chain MPS each bin represents one site.
The two MPS are stuck together at the N th chain bin and the
kth time bin, where the interaction between the many-body
system and the reservoir occurs.

Using this form allows not only for the preservation of
the state of the reservoir at every time step, but more im-
portantly for the efficient truncation of the Hilbert space:
The singular values of the decomposed wave vector matrices
represent the entanglement within the many-body system, be-
tween reservoir and spin-chain, as well as between the state
of the reservoir at different time steps. Truncating their entries
during the decomposition process, thus setting them to zero
below a given cutoff threshold, reduces the computed part of
the Hilbert space efficiently while loosing only the paths with
negligible probabilities.

APPENDIX D: EMPLOYING tMPS FOR
COHERENT SELF-FEEDBACK

In order to compute the kth time step, we contract the N th
chain bin, the kth time bin initialized in a vacuum state, and
the tk−l th bin containing the feedback signal. The time evo-
lution operator U (tk+1, tk ) is expanded into a matrix product
operator (MPO), and the time evolution of one time step is
computed as |ψ (tk+1)〉 = U (tk+1, tk )|ψ (tk )〉, which means the
MPO is multiplied into the MPS of the spin chain where the
last site contains all relevant information for the interaction
with the reservoir at the present time step.

After applying the MPO, we decompose the tensor again,
shift the bins back to their original position in the chain,
move and contract the bins of the (k + 1)th time step, and so
forth. Care has to be taken to keep the orthogonality center
at the right position in order to preserve the entanglement
information correctly.

This algorithm enables us to efficiently simulate a quantum
many-body system under the influence of coherent self-
feedback.
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