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Transient temperature induced plasmonic crystal
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We suggest an easily configurable dynamical method of creating a periodic quasi-2D plasmonic lattice in a
metal film by temperature induced variation of the dielectric permittivity. The temperature variations in turn
are controlled by two pairs of perpendicular pump beams irradiating the metal surface. By varying the incident
angles of the beams one can control the effective spatial periods of the lattice while the erasure time is given by
the pulse duration raging from pico- to nanoseconds. We show that the modulation effect is most prominent in
the imaginary part of the metal dielectric function and thus the obtained plasmonic crystal is fully dissipative.
We also demonstrate that such crystal displays reduced absorption at the Brillouin zone boundary and calculate
the transmission as a function of the transient contrast of the lattice.
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I. INTRODUCTION

Photonic crystals have opened new possibilities in the
optics of nanosurfaces finding multiple application in light
harvesting, manipulation, and material coating [1]. On the
other hand they have their counterparts in 2D surface
plasmonic crystals (SPC) for surface plasmon polaritons
(SPPs) [2,3], a propagating surface electromagnetic waves on
a metal-dielectric interface. A common definition of SPC is
a periodically structured metal surface with the lattice period
on the order of SPP wavelength [3–5]. Periodically corrugated
surface of metal-dielectric interface [3,4,6,7] opens band gaps
in SPP dispersion law [5,8]. By controlling the periodicity of
the lattice the dispersion of SPP modes can be freely designed
while different SPP modes can be effectively coupled and/or
excited. It is also possible to consider quasi-one-dimensional
modulation of the metal surface resulting in SPP Bragg grat-
ing [9]. Most of the structures considered in SPC literature
are characterized by the following properties: (i) the periodic
modulation is performed on the real part of the dielectric func-
tion (permittivity) and (ii) the resulting corrugated structures
are permanent and cannot be reconfigured.

On the other hand there exists a vast area of applica-
tions related to matter manipulations by ultrafast laser pulses
ranging from ablation to spectroscopy [10–13]. The high
intensity pulse interacts with the charge carriers inside the
medium (both metallic and dielectric) which leads to a va-
riety of secondary effects related to energy dissipation and
diffusion [14] and material processing through laser-induced
damage [15]. Different structures can be inscribed in dielectric
materials both periodic and nonperiodic [16–19]. The main
difference between metal and dielectric media in this respect
is the abundance of free carriers residing within the crystal
lattice of metal that can be excited by the laser-induced heat
source [14,20–22] thus providing the mechanism of modula-
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tion of the dielectric function and the response of metal to the
probe electromagnetic field [23]. Because of the diffusive tem-
perature relaxation of both the electron and lattice subsystems
the resulting structures have a transient nature. The particular
interest is presented by transient periodic structures or tran-
sient Bragg gratings [24–27]. Such structures have potential
applications as ultrafast switching components [28,29] with
the potential to reach subpicosecond response times.

In our work we show that by using two pairs of crossed
beams illuminating the surface of a metal film one can create
a transverse transient spatially-periodic structure with control-
lable periods of the lattice limited by the wavelengths of the
inscribing pump beams. The depth of this lattice in metal is
shown to be much larger than the penetration depth of an SPP
in resonance with the period of the lattice which makes the
induced plasmonic crystal quasi-2D. We also show that in
the NIR the temperature dependence of the standard Drude
model makes the induced transient SPC purely dissipative
as the temperature induced modulation affects mostly the
imaginary part of the permittivity. In such purely dissipative
periodic structures the Bragg resonances at the boundary of
the Brillouin zone lead not to the band-gap opening but to the
narrow transparency spectral window where the transmittance
is higher due to the resonant modulation of the dielectric
losses. Such enhanced transmission has been observed, e.g.,
in acoustics [30] and here we predict it as a transient effect in
the temperature-induced dissipative lattice. These structures
can therefore be used as effective gating mechanism for SPPs
acting as probe waves at the Bragg resonance.

The paper is structured as follows. In Sec. II, we study
the properties of the induced temperature modulation by the
two pairs of incident beams using a standard two-temperature
model. In Sec. III we build a linear theory for the induced
temperature changes of the electron and lattice subsystems
assuming that these changes are small. Section IV presents the
results of full numerical simulations of the two-temperature
model in both the 3D and 2D case. In Sec. V, we translate
these changes into the variation of the imaginary part of the
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FIG. 1. Geometry of four-beam irradiation of the surface.

dielectric function within the framework of a standard Drude
model and study the transparency properties of the resulting
structures at the Bragg resonance. The findings are summa-
rized in the Discussion.

II. TEMPERATURE-INDUCED TRANSIENT LATTICE

In order to create a 2D transient lattice we propose irradi-
ating a metal film interface by two pairs of orthogonal pump
beams impinging with incident angles θx and θy—see Fig. 1.
For simplicity, we assume both beams to have transverse
electric (TE) polarization and assuming symmetric irradiation
in each plane the slowly varying envelope of the electric field
at the interface can be presented as

�Ep(x, y, z = 0, t ) = (A cos(k sin θy y + φy) g1(t ),

B cos(k sin θx x + φx ) g2(t ), 0), (1)

where g1(t ) and g2(t ) are the temporal shapes of the two
beams, φx,y are the corresponding phase shifts in each polar-
ization, A and B are the amplitudes of the two beams, and
k = 2π/λ is the incident wave number. The pump beams
are incident from a dielectric material εd > 0 occupying the
z > 0 half-space and the metal dielectric function is com-
plex εm = ε′

m + i ε′′
m occupying the lower half-space z < 0.

In what follows we shall assume identical time-synchronised
Gaussian pulses so that g1(t ) = g2(t ) = g(t ) = exp(−t2/2τ 2

p )
although various time-delayed schemes are also possible.
Time synchronization can be organized, e.g., by using a beam
splitter and equal optical lengths in both arms of the resulting
interferometer.

We assume that the film is thick enough to neglect the
effects of the substrate and the thickness is much larger than
the skin-depth l ∼ 20 nm in noble metals in NIR. Our results
therefore apply equally to the bulk geometry.

Since propagation in metal (z < 0) is lossy the incident
pump field causes energy dissipation with the rate propor-
tional to the imaginary part of the dielectric permittivity [31]:

pabs(x, y, z, t ) = ε0ε
′′
mω (1 − R) | �Ep(x, y, t )|2/2

= p0

(
α cos2

[
π

x

�x
+ φx

]

+β cos2

[
π

y

�y
+ φy

])
e2z/l g2(t ) (2)

where R is the reflectivity. The reflectivity of noble met-
als in the NIR region considered here is quite high so that

the amount of power entering a metal film thicker than the
skin depth is quite small. However the existing antireflective
coating technologies allow one to reduce this reflectivity sig-
nificantly [32].

The effective lattice periods are given by �x,y =
λ/(2 sin θx,y) and the power split ratios are α = |B|2/(|A|2 +
|B|2), β = |A|2/(|A|2 + |B|2). The electromagnetic field dissi-
pation then acts as a source for ultrafast heat diffusion in both
electronic and lattice subsystems in the film. To model these
effects we adopt here the two temperature model (TTM) [14]:

Ce(Te)
∂Te

∂t
= ∇ · [Ke(Te, Tl )∇Te] − G(Te − Tl ) + pabs,

Cl
∂Tl

∂t
= ∇ · [Kl (Tl )∇Tl ] + G(Te − Tl ). (3)

Here, Ce,l and Ke,l are the heat capacities and thermal con-
ductivities of the electrons and the lattice and G is the
electron-phonon coupling factor related to the rate of energy
exchange between the electrons and the lattice [33]. The ther-
mal conductivities of the electron and lattice subsystem are
given as [34]

Ke = Cev
2
F

3γ
(4a)

Kl = Clc2
s

3γe-ph
, (4b)

where vF represents the Fermi velocity, cs is the speed of
sound, and γ and γe-ph are temperature-dependent scattering
rates defined below in Eq. (14). Note that in general one has
Kl � Ke.

The model (3) adds only the lattice temperature diffusion
terms to the original local theory of Ref. [14]. Over the years
many enhanced and generalized versions of the TTM have
emerged [13,15,27,35]. Most modification relates to the non-
local connection between the dissipated energy density pabs

in (2) and the source term in (3). For example in Ref. [27]
the dissipated electromagnetic energy served not as a direct
source in the TTM but was driving the nonthermal (NT) elec-
tronic energy for which a purely phenomenological diffusion
terms were introduced. It was the latter nonthermal energy
that was used as a source driving both temperatures. Here
however we prefer to follow a traditional and more established
model. In the following section we shall provide an analytical
treatment of the TTM when the incident pulses intensity is
small so that the induced temperature changes can be found
perturbatively.

III. LINEAR THEORY

The system (3) is nonlinear and is generally solved numer-
ically. In order to get some insight of the typical scales and
effects an analytical solution can be sought using a perturba-
tion theory. We shall assume that initially both film and the
dielectric substrate are at the same equilibrium temperature
T eq and the deviation of both subsystems from thermal equi-
librium resulting from the irradiation is small. Then we can
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TABLE I. Parameters used in the solution of the original (3) and
linearized (7) TTM.

Parameter Value Units Reference

Ceq
e 2.1×104 Jm−3 K−1 [34]

Cl 2.5×106 Jm−3 K−1 [34]

G 2.5×1016 Jm−3 K−1 s−1 [36]

De 0.015 m2 s−1

Dl 2.5×10−6 m2 s−1

�Tl 1×1010 s−1 [37]

�Te 1.2×1012 s−1 [37]

λpump 1500 nm

Keq
e 315 W m−1 K−1 [34]

Keq
l 2.5 W m−1 K−1 [38]

| �Ep| 10 MV/m

l 20 nm [2]

linearize Eqs. (3), namely,

Te(�r, t ) = T eq + δTe(�r, t ), δTe � T eq (5a)

Tl (�r, t ) = T eq + δTl (�r, t ), δTl � T eq. (5b)

Moreover, Eq. (5) allows us to neglect the spatiotemporal
dependence of the heat capacity and thermal conductivity so
that

Cl � Ceq
e � �Ce, δKl,e � Keq

l,e. (6)

Substitution of Eqs. (5) and (6) in Eq. (3) leads to the follow-
ing system of equations

∂δTe

∂t
= De ∇2δTe − �Te (δTe − δTl ) + f (�r, t ), (7a)

∂δTl

∂t
= Dl ∇2δTl + �Tl (δTe − δTl ), (7b)

f (�r, t ) ≡ pabs(�r, t )

Ceq
e

, (7c)

where �Te,l and De,l represent the decay rates and diffusion
coefficients of the electronic and lattice temperatures, respec-
tively,

�Te ≡ G

Ceq
e

, De ≡ Keq
e

Ceq
e

(8a)

�Tl ≡ G

Cl
, Dl ≡ Keq

l

Cl
. (8b)

Typical values of parameters used in the analytical solution
of the linearized TTM (7) are given in Table I.

At this point, let us assume that the intensity profile is
given according to Eq. (2) which for the chosen irradiation
represents combinations of a constant “DC” term and a sum
of two purely sinusoidal modulations modulated by exponen-
tial decay inside the bulk of the metal film. Since complex
exponentials are eigenfunctions of the transverse part of the
diffusion evolution operators in (7) we can expect that in
the linear limit the periodic xy structure is exactly imprinted

also in the temperature variation albeit it is now time and z
dependent.

It is convenient to define response functions Zm,n and
Mm,n of electron and lattice to the complex doubly-
periodic Gaussian time-modulated excitation fmn(�r, t ) =
exp(i 2π m x/�x ) exp(i 2π n y/�y) exp(2z/l ) exp(−t2/τ 2

p )/
τp so that the corresponding solutions of (7) are given
by τp Zmn(z, t ) exp(i 2π m x/�x ) exp(i 2π n y/�y) and
τp Mmn(z, t ) exp(i 2π m x/�x ) exp(i 2π n y/�y). These
response functions for linearized system (7) can be found
using standard Fourier expansion (see, e.g., Ref. [39]). The
procedure is described in Appendix A and the results read:

Zmn(z, t ) = l lmn

2De τp
ez/lmn e−t2/τ 2

p

Mmn(z, t ) = l �TL ez/l̃mn

2 �Te De |k±|2 τp
Re

[
k− ei k̃0z

×
(

e−(t/τp)2 + i
√

π�Teτp

2
(1 + Erf(t/τp))

)]

lmn = (
k2

mn + �Te/De
)−1/2

,

k2
mn =

(
2πm

�x

)2

+
(

2πn

�y

)2

k±

= −i
√

k2
mn + (�Te/De(1 ± i))

= ±k̃0 − i/l̃mn. (9)

Using these notations the analytical solution of Eq. (5) for
the variation of electronic temperature δTe has the form:

δTe(x, t ) = δTtot Z00(z, t ) + δTx cos

[
2π

x

�x
+ 2φx

]
Z10(z, t )

+ δTy cos

[
2π

y

�y
+ 2φy

]
Z01(z, t ), (10)

where

δTx = p0ατp

2Ceq
e

, δTy = p0βτp

2Ceq
e

(11)

δTtot = δTx + δTy = p0τp

2Ceq
e

. (12)

The expression for the lattice temperature is obtained by re-
placing Zmn functions with Mmn from Eq. (9).

A few remarks are in order. According to (9), (10) the tem-
poral dynamics of the temperature excitation of the electron
subsystem follows that of the pump pulse and is transient
with the same timescale τp. This happens because the typical
electron relaxation time (�Te + Dek2

mn)−1 is much shorter than
the pulse width—not least because of the large spatial band-
width of the source in the z direction. Therefore the electron
subsystem reacts almost instantaneously. The lattice response
however is more complex. According to Eqs. (9) and (10) it
is characterized by a fast transient phase (the first term in the
expression for Mmn) followed by a long period of relaxation.
In fact it follows from Eq. (9) that the lattice temperature
excitation at a given point does not die down but tends to
a constant limit, but a more careful analysis [see Eq. (A7)]
shows that it does decay but at much larger timescales of the
order of �−1

TL
∼ 100 ps.
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As for the spatial dependence one can see from (10) that
each transverse spatial harmonic �kmn from the dissipated en-
ergy density (2) is carried over to the corresponding harmonic
of the temperature variation profile but modulated in time
and depth z by the functions Zmn and Mmn. Each of these
functions decays in metal on the scale lmn (electrons) and
l̃mn (lattice), both of which are k dependent and much larger
than the skin depth l [40]. The “DC term” for example de-
cays slowest with l00 = 112 nm (electrons) and l̃00 = 101
nm (lattice). Assuming λ = 1.5 μm and equal incidence an-
gles θx = θy = π/4 the interference terms in (10) decay at
the scale l10 = l01 = 93 nm (electrons) and l̃10 = l̃01 = 88 nm
lattice. Notice however that both scales are larger than the skin
depth l . In addition the lattice perturbation also experiences z
oscillations on a scale k̃−1

0 comparable to the decay.

IV. SIMULATION RESULTS

In order to demonstrate the feasibility of the field-induced
transient structures and compare them to the results of linear
theory we have performed a series of numerical simulations of
the master TTM model (3). We have picked equally balanced
beams with α = β = 1/2, φx = φy = 0, and θx = θy = π/4.
The pulse duration was τp = 1 ps and the initial conditions
corresponded to the equilibrium temperature T eq = 300 K.

In Fig. 2 we show the dependence of the maximum temper-
ature [over time and the transverse plane (x, y)] as a function
of the penetration depth z. Although the induced temperature
change of the electron subsystem cannot be considered small
one can observe qualitative agreement with the linear theory
of the previous chapter. In particular the temperature perturba-
tion decays at the typical scale l̃ ∼ 100 nm � l . Additionally
the lattice temperature variations, while being small, display
additional nonmonotonic behavior as predicted by the linear
theory.

The full numerical simulations of 3 + 1 system (3) (three
coordinates plus time) are quite time consuming. There-
fore the following results represent simulation of z-averaged
model which is effectively 2 + 1 dimensional and the re-
sulting temperature distributions Te,l (x, y, t ) are obtained by
averaging over z interval of length l̃ = l00 ≈ 100 nm. This
corresponds to considering only transverse coordinates in (3)
and z averaging the exponentially decaying source term (2)
which in turn corresponds to the renormalization of the
peak power density p0 → p̃0 = p0(l/2l̃ ) [1 − exp(−2l̃/l )] =
0.1 p0. This procedure is mathematically justified when the
temperature deviations are small as in the previous section and
the heat capacities/conductivities can be treated as constants.
In the case of large deviation we still argue that the z averaging
represents a qualitatively correct “mean-field” representation
of the temperature distribution in the film.

In Fig. 3, we concentrate on the spatial periodicity of the
structures. We have picked a time corresponding to maxi-
mum visibility for electron and lattice temperature lattices,
respectively. For the electrons this corresponds to the temporal
maximum of the irradiating pulse, i.e., t = 0 and for the lattice
there is a delay in the dynamics and we have chosen the time
corresponding to ≈τp.

One can see that the doubly-periodic pattern of the irra-
diating cross beams is duly reproduced in the temperature
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FIG. 2. Maximum temperature variation as a function of thick-
ness of the metallic film when the absorbed power density is p0 ≈
2.4 J cm−3 ps−1. (a) Electronic temperature Te,max and (b) lattice tem-
perature Tl,max. The insets show the boundary layer demonstrating
vanishing flux.

distribution of both electron and lattice subsystems. The in-
duced lattice temperature change is as expected much smaller
and the theory overestimates the contrast somewhat. For the
electrons the coincidence is almost perfect.

Next in order to demonstrate the transient nature of the
structures we consider temporal dynamics of the temperature
slices along the y axis (x = 0). The results are presented in
Fig. 4 for the same parameters as in Fig. 3. One can clearly
see the separation of the fast and slow relaxation rates of the
temperature and lattice subsystems, respectively. In the fol-
lowing section we shall use the results for the depth-averaged
temperature profile to demonstrate that they lead to the in-
scription of a transient 2D dissipative plasmonic crystal for
the probe plasmon wave propagating at the metal-dielectric
interface.

V. SPECTRAL PROPERTIES OF THE TRANSIENT
DISSIPATIVE PLASMONIC CRYSTAL

The idea of using transient change of temperature induced
by a pump wave to control dielectric constant for a probe
wave propagating along the film or bulk material is not new
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FIG. 3. The spatial profile of the induced temperature distri-
bution. The magnitude of the z-averaged absorbed power density
is p̃0 = 2.4 J cm−3 ps−1. (Top) The “electron temperature crystal.”
(Bottom) The “lattice temperature crystal.” (a), (c) full numerics;
(b), (d) linear theory.

[22,24–27]. However to the best of our knowledge these stud-
ies concentrated on 1D Bragg gratings and no attempts were
made to study the transmittance spectra of these structures in
a systematic way. In this section we show that in the NIR the
main temperature effect is in the transient modulation of the
imaginary part of the dielectric function and we calculate the
resonant transparency of the structure near the Bragg reso-
nance.

FIG. 4. The spatiotemporal evolution of the induced lattices
along the y-axis direction. The field magnitude is the same as in
Fig. 3. (Top) Electron temperature dynamics. (Bottom) Lattice tem-
perature dynamic. (a), (c) full numerics; (b), (d) linear theory.

In order to translate the temperature change of both lattice
and the electrons into the corresponding change of the com-
plex dielectric constant of the metal film εm we assume here a
simple Drude model model [2]:

εm = 1 − ω2
p

ω(ω + iγ )
(13a)

ωp = nee2

meε0
, (13b)

where the effect of the temperatures Te and Tl is chiefly on
the Umklapp electron-electron and electron-phonon scattering
rates determining the imaginary part of the permittivity:

γ = γ Um
e-e (Te) + γe-ph(Tl ) (14a)

γe-e = A�UmT 2
e (14b)

γe-ph = BTl . (14c)

For Au, A = 1.7 × 107 K−2 s−1, B = 1.45 × 1011 K−1 s−1,
and �Um = 0.77 [27]. Note that ω now refers to the frequency
of a probe wave (SPP) propagating in the metal film with
the modulated permittivity εm. Here we neglect the induced
variation of the permittivity in the dielectric and assume εd =
const.

Let us denote the scattering rate at equilibrium tempera-
ture T eq as γ0. According to Eq. (14) one has for gold γ0 =
4.46 × 1013 s−1. We are interested in the regime of low losses
when γ0 � ω < ωp = 9 eV ≈ 1.37 × 1016 s−1. One can then
expand the Drude formula (13) to yield:

εm ≈ 1 − ω2
p

ω2
+ i

ω2
p

ω2

γ

ω
.

The above result means that the spatiotemporal modula-
tion of the lattice and electron temperatures translates into
spatiotemporal modulation of the permittivity as attested by
Fig. 5, where we plot the numerically obtained changes of
the real and imaginary part of the metal permittivity. These
were calculated at the frequency ω = ωSPP = 8.6 × 1014 rad/s
which, as we shall see below, corresponds to the typical Bragg
resonance frequency of the dynamical plasmonic structure.
For both subsystems we have chosen a time moment cor-
responding to the maximum perturbation of the dielectric
function and also picked a strong pulse in order to maximize
the contrast—see below. According to the results of Sec. III
and the simulations of Fig. 4 the excitations of the electron and
lattice subsystems are well separated in time: By the time ∼τp

that the lattice temperature begins to build up the electron tem-
perature change has died out. This means that at each given
moment only one scattering mechanism in (14) contributes to
the Drude permittivity. Thus the maximum induced relative
change of the real part of the refractive index |�ε′/ε′

m| is
≈0.032 for the electrons and 6 × 10−4 for the lattice, while
the corresponding ratios for the imaginary part |�ε′′/ε′′

m| are
≈1.5 for the electrons and 0.0346 for the lattice, respectively.
From this we conclude that the main temperature effect on
the electromagnetic properties of the film are in the periodic
modulation of the losses and not in the band-gap opening
characteristic of most SPC structures [3–5].

Linearizing the scattering rate γ (Te, Tl ) around the equi-
librium value we can assume that the temperature induced
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FIG. 5. The spatial profile of the variation of the dielectric func-
tion �ε when the magnitude of the absorbed power density is
p̃0 = 22 J cm−3 ps−1. (Top) Electronic subsystem. (Bottom) Lattice
subsystem. (a), (c) real part; (b), (d) imaginary part.

change of the imaginary part of permittivity is proportional
to the sum of the changes induced by electron and lattice,
respectively, since their temporal windows do not overlap
(see Fig. 4). The electron-induced change is much stronger—
Figs. 5(b) and 5(d)—but it is short lived on the scale of the
pump pulse while the lattice induced change is significantly
weaker but long lived as discussed in the previous section.

Let us assume for simplicity the symmetric irradiation with
θx = θy = θ , φx,y = 0, α = β = 1/2. Then one can describe
the transient dissipative plasmonic crystal with the following
model:

εm(x, y; t ) = ε′
m + i ε′′

m(x, y; t ), ε′
m = 1 − ω2

p

ω2
< 0

ε′′
m(x, y; t ) = �ε′′(t )

[
1 + s(t ) cos

(
2π x

�

)

+ s(t ) cos

(
2π y

�

)]
(15)

with new common period � = �x = �y = λ/(2 sin θ ). At
each time moment we have defined the background �ε′′(t )
and the contrast s(t ). In the weak perturbation limit both
values can be easily calculated via Eq. (10).

From the results observed in Fig. 5 one can see that the
spatial dependence can be fitted by the model (15) where
the background and the contrast can be extracted from the
simulation data via:

�ε′′(t ) = maxx,yε
′′
m(x, y; t ) + minx,yε

′′
m(x, y; t )

2

2s(t ) = maxx,yε
′′
m(x, y; t ) − minx,yε

′′
m(x, y; t )

maxx,yε′′
m(x, y; t ) + minx,yε′′

m(x, y; t )
.

Assuming the constant positive relative permittivity εd in
the dielectric z > 0 and slowly varying complex periodic
εm(x, y; t ) given by Eq. (15) in metal z < 0 we can seek

the solution of Maxwell’s equation for the probe field
in the slowly-varying envelope (SVE) approximation: �E =
�E (x, y, z; t ) e−iω t , �H = �H (x, y, z; t ) e−iω t where the envelope
functions vary on timescales similar to the dielectric permit-
tivity, i.e., τe ∼ τp or τl � τp which are assumed to be much
longer than the period of the mode 2π/ω. For example, for
1 ps pump pulse this allows us to use SVE for probe wave-
lengths up to a millimeter range.

From now on we can drop time dependence assuming
that we are considering the crystal properties at a prescribed
time moment. The analytical study of PCs with sinusoidal
modulation of permittivity was performed by Darmanyan and
Zayats [5] for the static structures in the conservative case
when no scattering losses were taken into account (γ = 0)
and only the real part of εm was modulated. They obtained the
expression for the band-gap opening of the structure. Here we
follow a similar approach but for the dissipative modulation
and demonstrate enhanced transmittance at the Bragg reso-
nance, i.e., the opposite of the forbidden zone. In what follows
we shall concentrate on the fast electron-induced modulation
of losses as the lattice effects are at least an order of magnitude
weaker.

In the absence of dissipative spatial modulation the di-
electric function ε(z) = ε′(z) is real piecewise constant and
Maxwell’s equation admits surface plasmon-polariton (SPP)
solutions which for the x-traveling modes (ky = 0) take the
form [2]:

�H = A (0, 1, 0) ei kx x+i kz (z)z = �H(z) ei kx x

�E = A

ωε0ε(z)
(kz(z), 0,−kx ) ei kx x+i kz (z)z = �E (z) ei kx x

kz(z) = i Sign[z]
√

k2
x − k2

0ε(z), k0 = ω/c

kx = k0

√
εd ε′

m

εd + ε′
m

, kx � k0
√

εd . (16)

Here, we assume that the localization length in metal is much
less than the width of the film and the effects of the substrate
can be neglected. The amplitude A is related to the power
modal density [9,41]:

P = 1

2

∫
dy

∫
dz �E × �H∗ · �ex = kx W |A|2

ωε0

ε′
m

∣∣km
z

∣∣ + εd

∣∣kd
z

∣∣
2εdε′

m

∣∣kd
z

∣∣ ∣∣km
z

∣∣ ,

where W is the width of the sample in the y direction, kd
z =

kz(z > 0), km
z = kz(z < 0).

By periodic modulation of the real part of the permittivity
a SPC can be created whereas the continuous dispersion law
of SPP given by the last Eq. (16) folds into a series of Floquet-
Bloch bands inside the first 2D Brillouin zone (BZ) separated
by band gaps [3–5]. A gap in the mth band opens at the border
of the BZ where an SPP propagating in a direction of, say,
x axis with the wave vector kx is in Bragg resonance with
the backscattered SPP so that one has kx ≈ −kx + 2πm/�.
In our case, however, the temperature induced grating mod-
ulates predominantly the imaginary part of permittivity and
the Bragg resonance leads to a different type of phenomena as
discussed below. It is important to note that the boundary of
the BZ given by kG = π/� occurs at relatively low frequen-
cies. Indeed assuming the wavelength λp = 1.55 μm for the
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pump wave and θ = π/4 one has kG = 2.86 × 106 m−1 which
according to dispersion law for SPP (16) (assuming air for
the covering dielectric) corresponds to the SPP frequency of
ω = 0.06 ωp = 8.6 × 1014 rad/s (which is still much greater
than the scattering loss γ0).

The full analysis of the transmittance of the dissipative SPC
requires full simulation using either Green function formalism
or plane wave expansion [4]. But in order to give a qualitative
description of the effect we opt for a much simpler, semian-
alytical approach relying on the coupled mode theory. This
approach is similar to that considered, e.g., in Refs. [5,9]. We
consider coupling of only two SPPs propagating in the op-
posite directions of the x axis with the propagation constants
±kx close to resonance so that −kx ≈ kx − 2π/�. Note that
for purely sinusoidal coupling (15) the Bragg resonance only
occurs in the first band m = 1.

Introducing the forward and backward traveling waves
with slowly varying amplitudes c±(x) exp(±i kx x) the stan-
dard coupled mode theory [9,41] leads to the following system
of equations:

dc+

dx
= K+,+(x) c+(x) + K+,−(x) c−(x) e−2i kx x

dc−

dx
= K−,+(x) c+(x) e2i kx x + K−,−(x) c−(x)

K p.q = pKz(x) + qKx (x), p, q = ±
Kx(x) = i ω ε0

4P

∫
dy

∫
z<0

dz iε′′
m(x, y) |Ex(z)|2

= −1

4

εd

∣∣kd
z

∣∣∣∣km
z

∣∣2
�ε′′

kx ε′
m

(
εd

∣∣kd
z

∣∣ + ε′
m

∣∣km
z

∣∣)
[

1 + s cos

(
2πx

�

)]

= −K

[
1 + s cos

(
2πx

�

)]
Kz(x)

= i ω ε0

4P

∫
dy

∫
z<0

dz i ε′′
m(x, y) |Ez(z)|2

=
(

kx∣∣km
z

∣∣
)2

Kx(x), (17)

where we have neglected the coupling to the nonresonant
modes.

Near the resonance one has ω � ωp and kx ≈ k0
√

εd so
that (kx/|km

z |)2 ≈ εd/|ε′
m| � 1 and one can write approxi-

mately K ≈ k0ε
3/2
d �ε′′/4|ε′

m|2 with the longitudinal coupling
Kx(x) dominating over the transverse one. Introducing the
small detuning from the Bragg resonance δ = kx − π/� and
keeping only the resonant terms in (17) one obtains

dc+

dx
= −K c+ + K s

2
e−2iδx c−

dc−

dx
= −Ks

2
e2iδx c+ + Kc−

to be solved with the boundary conditions c+(0) = 1,
c−(L) = 0 where L is the length of the grating. When
no modulation is present, s = 0, one expects exponential
decay of transmittance according to the Beer law: T0 =
|c+(L)|2 = exp(−2KL). The resonant coupling leads to the

power exchange between the forward (pump) and the back-
ward (Stokes) waves with the latter partially offsetting the loss
in the former.

A straightforward calculation yields the expression for the
transmission and the reflection coefficients as the functions of
modulation depth s at a given frequency:

T (s; δ) = |c+(L)|2 = ∣∣cosh(�L) + (K − iδ) sinh(�L)/�
∣∣−2

R(s; δ) = |c−(0)|2 = s2K
2

4

∣∣K − iδ + � coth(� L)
∣∣−2

� = K
√

(1 − iδ/K )2 − s2/4.

This result was obtained earlier in Ref. [30] in the context
of sound waves in porous media [42]. Both functions are
symmetric and reach maximum value at the resonance δ = 0.
The characteristic decay length at zero contrast is given by
1/(2K̄ ). At large values of KL the transmission at resonance
δ = 0 follows Beer law, namely T ∝ exp(−αL) where the
attenuation coefficient is given by:

α = L′−1 = 2K̄
√

1 − s2/4. (18)

Recall now that all the quantities s and L′ are dynamic vari-
ables changing on the scale of the incident pulse τp. Both
are plotted as function of time in Fig. 6. Note the transient
character of both s(t ) and L′(t ). At the very large power
density of the pump the contrast does not wash out completely
but decays slowly well after the transit of the pump pulse.
This is due to the fact that at such high energies the induced
lattice temperatures become significant and as discussed in the
previous section it is characterized by much slower dynamics.
Technically however at such large energies and temperature
changes the linearization approach of Sec. III and the lin-
earized model (15) are no longer valid so the red curves are
given for reference only.

Note also that unlike the case of real modulation of the
dielectric permittivity that opens a band gap at the Bragg
resonance the purely dissipative modulation increases the
transmission at the resonance compared to the unmodulated
case s = 0. This enhancement is more pronounced for larger
propagation distances when L � L′ and in this regime is given
by:

Tmax(s)

T0
= 4

4 − s2

(2 + √
4 − s2)2

eKL(2−√
4−s2 ).

This effect is illustrated for both transmission and reflection
in Fig. 7 for KL = 10. Its physical explanation is simple
and goes beyond the applicability of the coupled mode the-
ory [30]. When the period of the imaginary part of the
permittivity modulation is equal to the spacial period of
the SPP in (16) the resulting field pattern forms a standing
wave where the nodes are at the position of maximum values
of the imaginary part of the permittivity while the maxima of
the wave coincide in with the minima of the loss. Thus the
SPP can adjust itself to minimize the absorption compared to
the unmodulated structure and thanks to this effect increase
both the transmission and the reflection.

Finally, let us notice a curious possibility of a “phase
transition” occurring in the structure at s = s∗ = 2. Indeed,
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FIG. 6. Temporal dependence of the (a) contrast s and (b) char-
acteristic decay length L′ (18). Black blue and red dash-dotted
curves correspond to the magnitude of absorbed power density
p̃0 = 11, 22, 63 J cm−3 ps−1, respectively.

at the resonance δ = 0 the eigenvalues of the matrix in
the r.h.s. of the coupled mode equations λ± = ±

√
1 − s2/4

become imaginary and the transmittance no longer decays
exponentially but oscillates with the length of the structure.
There is nothing particularly surprising in this behavior as
according to the model (15) already for s � 1/2 the induced
grating ceases to be purely passive (ε′′

m makes excursions into
negative values), and thus attenuation is no longer necessar-
ily a dominating mode of operation. As one can see from
Fig. 6 even for the very intensive pulses at the boundary of
the applicability of the linearized theory the contrast does
not quite reach such levels however the transition can be
potentially observed by shifting the irradiating wavelengths
from infrared to visible light thus increasing the resonance
frequency.

Finally let us discuss applicability of the results of this
section. Firstly the z-averaged model is inapplicable if the
probe plasmon penetration depth in metal becomes larger than
the lattice depth l̃ ∼ l00 ∼ 100 nm. Near the Bragg resonance
the former can be estimated as lz ∼ |kz|−1 ∼ 1/(|ε′

m|1/2k0) ∼
20 nm. Therefore the probe plasmon does indeed see a uni-
form lattice and our approximation is self-consistent. Next,
the large contrast s as discussed above requires large tem-
perature perturbations that lead to the appearance of higher
spatial harmonics in the dielectric function (15). These har-

(a)

(b)

FIG. 7. (a) The maximum value of resonant transmittance of the
transient PC for several values of the contrast parameter s. (b) The
reflectivity of the same structure.

monics should open additional higher order resonances as
well as modulate the real part of ε thus leading to the poten-
tial opening of the transient band-gap structure [3]. However
we leave the analysis of these phenomena for the future
studies.

VI. DISCUSSION

In this paper, we have shown that by exciting electron and
lattice subsystems of a metal film by a system of orthogonal
overlapping pulses of given period one can inscribe a transient
SPC. The electron subsystem responds more strongly but de-
cays on the time scale of the pulse (picoseconds) while the
lattice-induced changes are long lived but produced negligible
contrast. The depth of the inscribed lattice was found to be
much larger than the skin depth of the pump beam provided
that the film is thick enough (>100 nm), and the effects of the
substrate can be ignored.

In the NIR, the induced lattice provides a Bragg resonance
for a probe SPP field in the same spectral area which is far
below the plasma frequency and therefore can only couple
SPPs that are not localized in the dielectric cover. In this
regime, the Drude mechanism imposes periodic modulation
of the imaginary part of the dielectric function and we do
not expect a significant band-gap opening in this situation.
Instead we have studied the effects of resonant transparency
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of the structure within the framework of the coupled mode
theory.

There are multiple avenues open for further study of
these structures. In particular, it is desirable to provide an
efficient coupling mechanism in the visible part of the spec-
trum which requires increasing the boundary of the BZ and
moving the frequencies of the irradiating pulses to the vis-
ible area accordingly. However at the visible range, e.g.,
for gold a simple Drude model (13) for the dielectric func-
tion is no longer adequate and one needs to include the
interband transitions. This will require performing ab initio
calculations of the interband transition which is a challenging
task—see, e.g., Refs. [43,44]. This, however, is an interest-
ing direction as potentially it may allow one not only to
couple truly localized SPPs but also according to the re-
sult of our coupled mode analysis can make the structure
transparent at given time marks provided that the induced
contrast s(t ) is greater than the critical value s∗ = 2. In the
visible regime one can also hope to create a sizable band-
gap opening due to increased magnitude of the real part of
the induced change of the dielectric function thus paving the
way to hybrid active-passive SPC and transient PT-symmetric
structures [45].

APPENDIX: THE SOLUTION
OF THE LINEARIZED TTM

In the Fourier domain system (7) becomes a system of
linearly coupled ODE and its formal solution with vanishing
normal component of the heat flux at the metal-dielectric
interface z = 0 is given by:(

δTe(�r, t )
δTl (�r, t )

)
=

∫
d�k⊥ ei �k⊥ �ρ

∫ 0

−∞
dkz cos(kz z)

×
∫ t

−∞
dt ′ eÂ(t−t ′ ) f̃ (�k, t ′)

(
1
0

)

Â =
(−De k2 − �Te �Te

�Tl −Dl k2 − �Tl

)

f̃ (�k, t ) = 1

(2π )2

2

π

∫ 0

−∞
dz cos(kz z)

×
∫

f (�r, t ) e−i �k⊥ �ρ d �ρ, (A1)

where �ρ = (x, y, 0), �k⊥ = (kx, ky, 0), k2 = k2
⊥ + k2

z .
The evaluation of matrix exponential is straightforward but

the resulting expressions for the matrix elements are rather
cumbersome. The calculation can be significantly simplified
if we note that according to Eq. (2) for the dissipated field the
transverse Fourier transform of the source f contains apart
from a DC term the harmonics at spatial frequencies kmax

⊥ =
2π/�x,y < 4π/λ. On the other hand the sine transform of
the exponentially decaying field intensity ∼exp(−2z/l ) is
proportional to the Lorentzian (1 + (kz l )2/4)−1. The normal
frequency cutoff is therefore kmax

z ∼ l−1 � kmax
⊥ . Then from

Table I we see that De(kmax
z )2 � De(kmax

⊥ )2 ∼ �Te � �Tl �
Dl (kmax

z )2. Therefore we conclude that the lattice diffusion Dl

can always be safely neglected while the lattice decay �Tl can

be treated perturbatively compared to the electron diffusion
and coupling.

We can introduce the characteristic diffusion damping ac-
cording to the definition �diff(k) = De k2 = De(k2

z + k2
⊥). In

the absence of coupling and electron decay �−1
diff(k) has the

physical meaning of typical diffusion-induced decay for a
sinusoidal source with the wave vector �k.

Then to the first order of the perturbation theory the eigen-
values and eigenvectors of matrix Â are given by

λe(k) = −�Te − �diff(k),

|e〉 =
(

1
0

)
− �Tl

(�diff(k) + �Te )2 + �2
Te

(
�Te

�diff(k) + �Te

)

λl (k) = −�Tl

�diff(k) (�diff(k) + �Te )

(�diff(k) + �Te )2 + �2
Te

,

|l〉 = 1√
(�diff(k) + �Te )2 + �2

Te

(
�Te

�diff(k) + �Te

)
.

The matrix exponential can be evaluated in the main order in
�Tl leading to the following solution:

δTe(�r, t ) =
∫ 0

−∞
dkz cos(kz z)

∫
d�k⊥ ei �k⊥ �ρ

×
∫ t

−∞
dt ′ eλe(k)(t−t ′ ) f̃ (�k, t ′)

δTl (�r, t ) = −
∫ 0

−∞
dkz cos(kz z)

∫
d�k⊥ ei �k⊥ �ρ λl (k)

�diff(k)

×
∫ t

−∞
dt ′ [eλl (k)(t−t ′ ) − eλe(k)(t−t ′ )] f̃ (�k, t ′).

(A2)

The response functions Zmn and Mmn correspond to the source
term in the form:

f̃ (�k, t ) = τ−1
p exp(−t2/τ 2

p ) δ(�k⊥ − �kmn) f̃||(kz ),

�kmn = (2π m/�x, 2π n/�y, 0)

f̃||(kz ) = l

π

1

1 + (kz l )2/4
.

Then performing (trivial) integration over �k⊥ and over time
from (A2) we obtain:

Zmn(z, t ) = τ−1
p

∫ 0

−∞
dkz cos(kz z) G(τ, λe(k) τp) f̃||(kz )

Mmn(z, t ) = −τ−1
p

∫ 0

−∞
dkz cos(kz z)

λl (k)

�diff(k)

× [G(τ, λe(k) τp) − G(τ, λl (k) τp)] f̃||(kz ),

(A3)

where τ = t/τp, k = √
k2

z + k2
mn and the time-response kernel

is defined as

G(τ, ξ ) = τp
√

π

2
eξ τ eξ 2/4 [1 + Erf(τ + ξ/2)]. (A4)
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For the electron response function for pulse duration of 1
ps and longer it follows that |ξ | = |λe|τp � �Teτp = 1.2. In
practice due to the contribution of the normal component of
the wave vector kz one has |ξ | � 1 and we can obtain a
much-simpler asymptote

G(t, λe(k)τp) ≈ − 1

λe(k)
e−(t/τp)2

, t � |ξ | τp, (A5)

which means that time response is almost instantaneous. With
this simplification the integral over normal wave vector kz can
be calculated analytically yielding:

Zmn(z, t ) = exp(−t2/τ 2
p )

τp(�mn − 4�||)

[
e2z/l − 2

√
�||
�mn

e
√

�mn/�|| z/l

]
,

�|| = De/l2

�mn = �Te + De k2
mn. (A6)

One can see that the electron response has two components:
the fast decaying one that does not penetrate more than one
skin depth and a much longer one decaying on a scale lm,n =

(k2
mn + �Te/De)−1/2. Moreover, from Table I and for low

spatial harmonics m, n ∼ 1 it follows that the ratio �||/�mn �
1 so that the long-scale contribution to Zmn(z) is dominating
leading to the first equation in (9).

Let us now turn to the lattice response. The first term in the
integral in (A3) can be again approximated as (A5). As for the
second term, the argument |ξ | = |λl | τp ∼ �Tl τp ∼ 10−2 � 1.
Therefore the time kernel can be approximated as:

G(t, λL(k) τp) = τp
√

π

2
eλL (k) t [1 + Erf(t/τp)]. (A7)

Up to typical times of the order �−1
Tl

∼ 100ps � τp the expo-
nential can be put to unity. Then performing the integration
over the transverse wave vector in (A3) we can close the
contour in the lower complex plane and observe that the pole
at kz = −2i/l leads to fast decaying terms with z similar
to the electron subsystem. The magnitude of the prefactor
of this term is of the order of �Tl /(τp �mn�||) and can be
neglected. The other two contributing poles are located at kz =
k± = −i

√
k2

mn + (�Te/De)(1 ± i) = ±k̃0 − i/l̃mn—the points
where λl has poles. The contribution of these poles leads to
the result (9) of the main text.
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