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Exact local correlations in kicked chains
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We show that local correlators in a wide class of kicked chains can be calculated exactly at light-cone edges.
Extending previous works on circuit lattice systems, the correlators between local operators are expressed
through the expectation values of transfer matrices T with small dimensions. For dual-unitary kicked chains,
with spatial-temporal symmetry of the dynamics, this provides a full characterization of local correlators.
Furthermore, we identify a remarkable family of dual-unitary models where an explicit information on the
spectrum of T is available. For this class of models we provide a closed analytical formula for the corresponding
two-point correlators. The results are exemplified on the kicked Ising spin chain model.
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I. INTRODUCTION

Spatially extended Hamiltonian systems with local in-
teractions are paradigm systems in the field of many-body
physics. On the experimental side, various aspects have be-
come ever more amenable to direct measurement [1–4] while
a recent burst of activities [5–10] greatly improved our the-
oretical understanding. In the context addressed here, the
outstanding importance of these systems is rooted in their
spatiotemporal correlation of local observables which de-
scribe, in an often generic manner, experimentally accessible
features of interacting many-body systems such as spec-
tral statistics or transport properties [2,11,12]. The wealth
of available results, unfortunately, covers systems which
are either dynamically too simple, such as free or inte-
grable ones, or too low in dimension, such as cat or baker
maps. It is thus of paramount interest to find representa-
tives of those systems, on the one hand, capturing the full
complexity and, on the other hand, allowing for analytical
treatment.

In this work we consider a class of systems admitting a
number of different dynamical descriptions [13]. The standard
one corresponds to the system evolution with respect to time,
induced by the system Hamiltonian. Alternatively, one can
consider evolution along one of the spatial directions. In this
dual approach the corresponding coordinate takes on the role
of time. The resulting dynamical system is generically a non-
Hamiltonian one [13–15]. However, in some special cases it
might happen that the dual spatial evolution is a Hamiltonian
one, as well. The representatives of such systems, referred to
as dual unitary, can be found among coupled map lattices
[16,17], kicked spin chains [18–21], circuit lattices [22–24],
and continuous field theories [25].

Dual-unitary systems have recently attracted considerable
attention [18–30] due to their intriguing properties. On the
one hand, these models generically exhibit features of maxi-
mally chaotic many-body systems. In particular, their spectral

statistics are well described by the Wigner-Dyson distribution.
They are insusceptible to many-body localization effects even
in the presence of strong disorder [18,20]. The entanglement
has been shown to grow linearly with time and to saturate
the maximum bound. On the other hand, dual-unitary models
turned out to be amenable to exact analytical treatment. The
growth of the entanglement entropy for kicked Ising spin
chains (KICs) for certain types of initial states has been eval-
uated exactly in [19] and their entanglement spectrum was
found to be trivial [23]. Furthermore, correlations of local
operators in dual-unitary quantum circuit latices [22,31] can
be expressed exactly in terms of small dimensional transfer
operators.

So far, no full characterization of dual-unitary systems
has been given. Although concrete examples of such models
have been presented, there is no general prescription for their
construction. In the present contribution we introduce a wide
class of dual-unitary kicked chains (DUKCs) built upon a pair
of L × L complex Hadamard matrices and study correlations
between local operators. Importantly, these models are defined
for arbitrary length of the chain, N , and the on-site Hilbert
space dimension L. This allows, at least in principle, to look at
both the thermodynamic limit, N → ∞, and the semiclassical
limit L → ∞ (or combinations of them), which is important
for quantum chaos studies. As shown in the body of the paper,
the correlators of strictly local traceless operators vanish iden-
tically in DUKCs for sufficiently long chains. On the other
hand, correlations between operators with finite support are,
generically, nontrivial along the light-cone edges. In agree-
ment with [22,31] such correlations can be expressed through
the expectation values of a transfer matrix T whose dimension
is determined by L rather than N .

In what follows, we identify within DUKCs a remarkable
family of models, where explicit information on the spectrum
of T is available. For this family of DUKCs we obtain a
closed analytical formula for correlations between operators
supported on two adjacent lattice sites.
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The paper is structured as follows. In Sec. II we describe
the kicked chain (KC) model and establish conditions for
dual unitarity. In Sec. III we obtain the formula for correla-
tors between local operators in KCs along light-cone edges.
They are expressed through the expectation values of transfer
matrices T with small dimensions. In Sec. IV we introduce a
special family of dual-unitary KCs, where exact information
on the spectrum of T is available and correlators are evaluated
explicitly along light-cone edges. In Sec. V the results are
exemplified on the kicked Ising spin chain model. Finally,
Sec. VI gives a summary of the results and an outlook for
future work.

II. KICKED CHAINS

In this paper we consider cyclic chains of N locally inter-
acting particles, periodically kicked with an on-site external
potential. The system is governed by the Hamiltonian

H (t ) = HI + HK

+∞∑
m=−∞

δ(t − m), (1)

with HI and HK being the interaction and kick parts, re-
spectively. The corresponding Floquet time evolution is the
product of the operators, UI = e−iHI and UK = e−iHK , acting on
the Hilbert space H⊗N of the dimension LN , where H = CL

is the local Hilbert space equipped with the basis {|s〉, s =
1, . . . , L}. We require that HI couples nearest-neighbor sites
of the chain taking on a diagonal form in the product basis,
{|s〉 = |s1〉|s2〉 · · · |sN 〉}. The respective evolution is fixed by a
real function f1,

〈s|UI[ f1]|s′〉 = δ(s, s′)ei
∑N

n=1 f1(sn,sn+1 ), (2)

with δ(s, s′) = ∏N
i=1 δ(si − s′

i ), and cyclic boundary condi-
tion sN+1 ≡ s1. The second, kick part, is given by the tensor
product

UK [ f2] =
N⊗

i=1

u2, 〈s|UK[ f2]|s′〉 =
N∏

i=1

〈si|u2|s′
i〉, (3)

where u2 is an L × L unitary matrix with the elements
ei f2 (n,m)/

√
L determined by a complex function f2. Combining

the two parts together we obtain the quantum evolution

U = UI[ f1]UK[ f2], (4)

acting on the Hilbert space of dimension LN .
In the same way, one constructs the dual evolution acting

on the Hilbert space of dimension LT by exchanging N ↔ T
and f1 ↔ f2:

Ũ = UI[ f2]UK[ f1]. (5)

The following remarkable duality relation [14,15] holds be-
tween their traces for any integers T and N :

Tr U T = Tr Ũ N . (6)

In contrast to the original evolution, Ũ is a nonunitary opera-
tor, in general. However, if

〈n|u1|m〉 = ei f1(n,m)

√
L

, 〈n|u2|m〉 = ei f2(n,m)

√
L

, (7)

are L × L complex Hadamard matrices (i.e., unitary matrices
for which matrix elements have the same absolute value), the
dual operator, Ũ , is unitary as well. We refer to such models
as dual unitary. Note that in the dual-unitary case both f1 and
f2 are real.

It is a natural question to ask how wide the class of DUKC
models is. Each dual model is essentially built upon a pair of
complex Hadamard matrices, u1 and u2 (up to the 1/

√
L fac-

tor). A generic family of complex Hadamard matrices can be
constructed for each L by taking the unitary discrete Fourier
transform (DFT) and multiplying it on both sides by diagonal
unitary and permutation matrices. This exhausts all possible
cases for L = 2, 3, 5. For a general L the classification of
complex Hadamard matrices is an open problem [32]. It is
worth noting that for each DUKC there exists an associated
dual-unitary circuit lattice. The opposite, however, is not nec-
essarily true. The precise connection between the two classes
of models is discussed in Appendix A.

III. CORRELATIONS BETWEEN LOCAL OPERATORS

In what follows we consider correlations between local
operators supported on pairs of adjacent sites of KCs. Specif-
ically, let (q1, q2) and (q3, q4) be two pairs of matrices acting
on the on-site Hilbert space H. We define the corresponding
many-body operators

�n1 = 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸
n1−1

⊗ q1 ⊗ q2 ⊗ 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸
N−n1−1

, (8)

�n2 = 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸
n2−1

⊗ q3 ⊗ q4 ⊗ 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸
N−n2−1

, (9)

supported at the sites n1, n1 + 1 and n2, n2 + 1 of the chain,
respectively. The associated two-point correlator is given by

C(n, t ) = L−N Tr Ut�n1U
−t�n2 , (10)

where we assume n = n2 − n1 > 0, t > 0. By translation
symmetry of the model, we can set n1 = 1 and n2 = n + 1
without loss of generality. Note that correlations between
operators supported on single chain sites (referred to by us
as strictly local operators) can be obtained from Eq. (10) by
fixing q1 = q4 = 1.

A. Partition function representation

By inserting identities for the different times k,

C(n, t ) = 1

LN
〈s2t |�n1 |s1〉〈st |�n2 |st+1〉

×
t∏

k=1

〈sk|U †|sk+1〉
2t∏

k=t+1

〈sk|U |sk+1〉, (11)

|sk〉 = |s1,k〉 · · · |sN,k〉, |s1〉 ≡ |s2t+1〉, the correlator (10) can
be written in the form of the two-dimensional (2D) partition
function,

C(n, t ) = 1

LNt

∑
{smk |(m,k)∈L1}

e−iF ({smk})

×
[ ∏

(m,k)∈L2

δ(smk, sm,2t−k+1)

]
D

(
sn11, . . . , sn2t

)
,

(12)
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FIG. 1. The initial expression (12), where the sum runs over
N × 2t variables sm,k . Circles in red show (m, k) sites, where vari-
ables are paired by the condition sm,k = sm,2t−k+1. The green circles
correspond to the location of the operators �i, U −t�n+iU t .

where the last factor,

D = 〈
sn1,2t

∣∣qc
1

∣∣sn1,1
〉〈

sn1,2t

∣∣qc
2

∣∣sn1,1
〉

× 〈
sn2,t

∣∣q3

∣∣sn2,t+1
〉〈

sn2,t

∣∣q4

∣∣sn2,t+1
〉
, (13)

qc
1 = u2q1u†

2, qc
2 = u2q2u†

2, depends on the eight lattice
sites, L0 = {(n1, k), (n1 + 1, k)|k = 1, 2t} ∪ {(n2, k), (n2 +
1, k)|k = t, t + 1} corresponding to the location of the
observables and the function F ({sm,k}) is given by

F =
t∑

k=1

N∑
m=1

f1(sm,k, sm+1,k ) − f1(sm,k+t , sm+1,k+t )

+ f2(sm+1,k, sm,k ) − f2(sm,k+t , sm+1,k+t ). (14)

The sum in Eq. (12) runs over 2t × N sites of the lattice
L1 = {(m, k)|k = 1, . . . , 2t, m = 1, . . . , N} while the prod-
uct in Eq. (12) is, furthermore, restricted to the subset L2 =
{(m, k)|k = 1, t, t + 1, 2t, m = 1, . . . , N} \ L0.

B. Correlator evaluation

We consider now the correlator (10) at the light-cone bor-
der n = t . The initial expression (12) is illustrated in graphic
form in Fig. 1. Here, the green and red circles mark the
positions of points on a 2D lattice from the L0 and L2 sets,
respectively. As we show in Appendix B, the summation
variables sm,k can be excluded one by one by applying the con-
traction rules, depicted in Fig. 5. For N > 2t the elimination of
sm,k variables can be continued up to reaching the stage illus-
trated by Fig. 2, where the empty circles represent eliminated
variables. The remaining summation variables (shown in red
and black) are located along the one-dimensional strip only,
which reduces the whole problem to calculation of a quasi-
one-dimensional partition function. The resulting expression
can be represented in the form of the expectation value

Ct ≡ C(t, t ) = 〈�̄q1q2 |Tt−2|�q3q4〉, (15)

FIG. 2. Elimination of the summation variables in the partition
function (12) representing the four-point correlator (10). The elim-
inated sites are shown by empty black circles. The remaining sum
along the light-cone edge can be represented in the form of the
expectation value (15) of the L2 × L2 transfer operator T.

of the transfer operator T,

〈νη|T|η′ν ′〉 = 1

L3

∣∣∣∣∣
L∑

s=1

ei( f1(η,s)+ f1(s,ν ′ )+ f2(ν,s)+ f2(s,η′ ))

∣∣∣∣∣
2

, (16)

acting on the small space H ⊗ H. The left �̄q1q2 and the right
�q3q4 vectors are defined as

〈νη|�q3q4〉 = 1

L3

L∑
a,ā,b=1

�b
aā〈a|q3|ā〉〈b|q4|b〉, (17)

〈�̄q1q2 |ην〉 = 1

L3

L∑
a,ā,b=1

�̄b
aā〈a|qc

2|ā〉〈b|qc
1|b〉, (18)

where

�b
aā = ei( f1(η,ā)− f1(η,a)+ f2(ā,ν)− f ∗

2 (a,ν)− f1(a,b)+ f1(ā,b)),

�̄b
aā = ei( f1(a,ν)− f1(ā,ν)+ f2(η,a)− f ∗

2 (η,ā)+ f1(b,a)− f1(b,ā)).

It is easy to check that T is doubly stochastic; i.e., it
satisfies

L∑
ν=1

L∑
η=1

〈νη|T|η′ν ′〉 =
L∑

ν ′=1

L∑
η′=1

〈νη|T|η′ν ′〉 = 1.

This implies that the spectrum of T is contained within
the unit disk with the largest eigenvalue, μ1 = 1. The left
(right) eigenvector corresponding to μ1 is given by the choice
q3 = q4 = 1 (q1 = q2 = 1). For typical system parameters
the correlators between traceless observables decay exponen-
tially with the rates determined by the second eigenvalue μ2,
|μ2| � |μ1|, of T having the largest absolute value after μ1.
Equation (15) can be also used to evaluate correlations be-
tween strictly local observables in KCs by setting q1 = 1

and q4 = 1. In a DUKC �̄1q2 = �q31 = 0 for traceless q2

and q3, implying vanishing correlations between strictly local
operators. However, in a general KC these vectors do not
vanish, generically leading to the nontrivial correlator Ct .
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It is important to emphasize that Eq. (15) holds for any
KC model (1) and does not require dual unitarity. (For similar
observation on unitary circular lattices, see [31].) In essence,
any KC of this type is solvable, insofar as local correlators are
restricted to the light-cone edge. What makes the dual-unitary
case special is that C(n, t ) is zero there for traceless qi’s if
n �= t and N > 2t . As has been pointed out in [22], this can
be understood in a simple intuitive way. Since the speed of
information propagation in KCs (1) equals 1, the correlator of
operators (8) and (9) with traceless qi’s must vanish outside
of the light cone |t | < |n|, n = n2 − n1. By dual unitarity, a
similar result holds for points within the light cone |t | > |n|,
as well. This leaves the light-cone edges |t | = |n| as the only
possible places on the space-time lattice where nontrivial cor-
relations might arise. Accordingly, for dual-unitary models we
have

C(n, t ) = δ(n, t )Ct , (19)

where Ct is given by Eq. (15).

IV. FULLY SOLVABLE MODEL

We recall that a DUKC is fully determined by the pair of
complex Hadamard matrices, u1 and u2. The most straight-
forward way to realize a DUKC is to set u1 = �1F�′

1 and
u2 = �2F�′

2, where F is an L × L unitary DFT and �1, �′
1,

�2, and �′
2 are arbitrary unitary diagonal matrices with the

elements eiλ1(m), eiλ′
1(m), eiλ2(m), and eiλ′

2(m), m = 1, 2, . . . , L.
In such a case we have

f1(m, n) = −2π (m − 1)(n − 1)

L
+ λ1(m) + λ′

1(n),

f2(m, n) = −2π (m − 1)(n − 1)

L
+ λ2(m) + λ′

2(n).

In what follows we refer to such models as Fourier transform
chains (FTCs).

A. Eigenvalues

By Eq. (16) the elements of the transfer operator in the FTC
take the form

〈mn|T|n′m′〉 = 1

L3

∣∣∣∣∣
L−1∑
s=0

e
2π i(m+n+m′+n′−4)s

L −iμ(s+1)

∣∣∣∣∣
2

,

where μ(s) = λ1(s) + λ′
1(s) + λ2(s) + λ′

2(s). Since the ma-
trix elements depend only on the combination m + n + m′ +
n′, T can be diagonalized by using F ⊗ F unitary transforma-
tion. The resulting spectrum of T is composed of L nontrivial
eigenvalues supplemented by L(L − 1) eigenvalues equal to
zero. Explicitly, the nontrivial part of the T spectrum is given
by � L−1

2 � pairs of the eigenvalues tm = −tL−m = |dm|, m =
1, 2, . . . , � L−1

2 �, with

dm = 1

L

L−1∑
s=0

eiμ(1+s)−iμ(1+(s+m) mod L), (20)

and either one additional unpaired eigenvalue, t0 = 1, for odd
L, or the two unpaired eigenvalues equal to t0 = 1, tL/2 =
dL/2, for even L.

It is worth noting that for any quasiperiodic μ, such that

μ(s + k) − μ(s) ∈ 2πZ, s = 0, . . . , L − 1,

for some m �= 0, the corresponding eigenvalues tm and tL−m

have absolute values equal to 1. This in turn implies the
existence of local operators with nondecaying two-point cor-
relations. On the other hand, for a nonquasiperiodic μ all
subleading eigenvalues satisfy |tm| < 1, m �= 0. As a result,
any correlator (15) between traceless operators in the corre-
sponding FTC decays exponentially.

B. Eigenvectors

To construct the eigenvectors of T note that �ab and �̄ab
vectors are fixed by the choice of the local operator a, and the
diagonal part of b [see Eqs. (17) and (18)]. Given an integer
m let em be the diagonal matrix with the elements

〈s|em|s′〉 = δ(s, s′)e−i2πsm/L, s′, s ∈ {1, . . . , L}.
It is straightforward to see that for an arbitrary a and b = em

the corresponding vector �aem is an eigenvector of T2 with
the eigenvalue |dm|2. The eigenvectors of T are, therefore,
symmetric and antisymmetric combinations of �aem and �∗

aem

for m = 0, 1, 2, . . . , �L/2�:∣∣�s
a,m

〉 = e−iφm/2
∣∣�aem

〉 + eiφm/2
∣∣�∗

aem

〉
,∣∣�a

a,m

〉 = e−iφm/2
∣∣�aem

〉 − eiφm/2
∣∣�∗

aem

〉
, (21)

eiφm = dm
|dm| . They correspond to the eigenvalues tm and tL−m,

respectively. Note that for m = 0 and m = L/2 (for even L)
only the symmetric eigenvector exists.

C. Correlators

To obtain an explicit form of the correlator (15) we decom-
pose the vectors |�q3q4〉 in the basis of the eigenstates. After
application of Tt−2 operators this yields (see Appendix C for
more details)

Ct =
�L/2�∑
m=0

(tm)t−2
(
2 − δm,0 − δm, L

2

)
Cm, (22)

where the coefficients Cm factorize in the products of four
factors:

Cm = Re
[
e−iφA∗

m(q4)Am
(
qc

1

)
B(1)

m (q3)B(2)
m

(
qc

2

)]
,

Cm = Re
[
Am(q4)Am

(
qc

1

)
B(1)

m (q3)B(2)
m

(
qc

2

)]
, (23)

for odd and even t , respectively. Here Am(q) are defined as
DFTs of the diagonal elements of q:

Am(q) = 1

L

L∑
s=1

ei2πsm/L〈s|q|s〉.

For the remaining factors one has

B( j)
m (q) = 1

L

L∑
s=1

ei(μ j (s)−μ j (s(m) ))〈s|q|s(m)〉,

where s(m) = 1 + (s + m − 1) mod L, μ1(s) = −λ1(s) −
λ′

1(s) − λ2(s), and μ2(s) = λ1(s) + λ′
1(s) + λ′

2(s),
respectively. For any real observable q the relations

174307-4



EXACT LOCAL CORRELATIONS IN KICKED CHAINS PHYSICAL REVIEW B 102, 174307 (2020)

Am(q) = A∗
L−m(q) and B( j)

m (q) = (B( j)
m (q))∗, j = 1, 2, hold

for all m. Furthermore, for traceless q all factors vanish at
m = 0.

The above results can be straightforwardly extended to
systems with spatial-temporal disorder, where the local func-
tions f1 and f2 depend on the lattice sites. In such a case
the transfer operator Tt−2 in Eq. (15) is substituted with the
product of local “gate” operators T1T2 · · · Tt−2, where each
Ti is determined by the functions f1 and f2 at the point (i, i)
of the spatial-temporal lattice. For FTCs all matrices Ti are
diagonalized by one and the same unitary transformation. As
a result, the decay exponents of the correlators (10) in the
disordered case are just given by the averages of the local
exponents.

V. KIC MODEL

Below we illustrate our results on the example of the KIC
model providing a minimal, L = 2, realization of the KC (1)
and FTC model in the dual-unitary regime. The KIC evolution
is governed by the Hamiltonians

HI =
N∑

n=1

Jσ̂ z
n σ̂ z

n+1 + hσ̂ z
n , HK = b

N∑
n=1

σ̂ x
n , (24)

σ̂ α
n = 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸

n−1

⊗ σα ⊗ 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸
N−n

,

where σ̂ α
1 = σ̂ α

N+1 and σα , α = x, y, z, are Pauli matrices.

A. Local operator correlators

Here we consider the correlator (10) with

�n1 = σ̂ α
n1

σ̂
β

n1+1, �n2 = σ̂ γ
n2

σ̂ δ
n2+1.

For the sake of simplicity of exposition the parameters are
set: b = π/4 and h and J are arbitrary. For this choice of
parameters, Eq. (15) gives (see Appendix D) at n = t and
N > 2t

Ct = Cγ δ

αβ (sin2 2J cos 2h)t , (25)

where the prefactors Cγ δ

αβ depend on the operators q1 = σα ,
q2 = σβ , q3 = σγ , and q4 = σ δ . Specifically, Cyz

yz = 1, Cxz
yx =

tan2 2h, Cyz
yx = Cxz

yz = − tan 2h, and Cγ δ

αβ are zero for all other
spin combinations.

B. Strictly local operator correlators

As has been explained above, in the dual-unitary case all
two-point correlators

Cαβ (n, t ) = 1

2N
Tr

(
U −t σ̂ α

n+1U
t σ̂

β

1

)
, (26)

α, β ∈ {x, y, z} between local spin operators vanish identically
for t > 0, N > 2t . For a general KIC, away from the self-dual
regime, the correlators (26) are nonzero, in general, and can be
evaluated at n = t − 1, N > 2t , by using Eq. (15). To this end
we set q1 = 1, q4 = 1 and q2 = σα , q3 = σβ , which yields
for t > 1

Cαβ (t − 1, t ) = 〈
�̄1q2

∣∣Tt−2
∣∣�q31

〉
. (27)

0 2 4 6 8 10

0.005

0.010

0.050

0.100

0.500

FIG. 3. Time dependence of 1
2N Tr (U −tσ x

t U t σ x
1 ) for N = 14

spins with generic values of J and h and b = π/4. Straight lines
are determined by Eq. (28) with h = 3.0 and �J = π/4 − J = 0.1,
0.2, and 0.4. The dots are obtained by direct numerical calculation of
correlators for the same system parameters. Note perfect agreement
with the analytic predictions for 2t � N . For 2t > N Eq. (28) is no
longer valid which can be clearly observed at the plot.

For b = π/4 and general J a straightforward evaluation of
Eq. (27) leads to

Cαβ (t − 1, t ) = Cαβ (cos 2h sin2 2J )t cot2 2J (28)

with the coefficients given by

Cxx = 1, Cxy = Czx = tan 2h, Czy = tan2 2h,

and by zeros for other α, β pairs. Note that for all n � t
the correlator Cαβ (n, t ) vanishes. For n = t this result can
be obtained by the substitution q2 = 1, q4 = 1 and q1 = σα ,
q3 = σβ into Eq. (15). Since �̄q11 = 0, one gets immediately
Cαβ (t, t ) = 0. For a larger n > t , the same answer follows
straightforwardly from the fact that the speed of information
propagation in KIC is 1.

The correlators (25) and (28) decay exponentially with
the rates cos 2h sin2 2J (see Fig. 3). Exceptions are the cases
where 2J

π
− 1

2 ∈ Z and 2h
π

∈ Z, which correspond to well-
known cases of the integrable classical 2D Ising spin model
with complex parameters [33–35].

C. Dual-unitary KIC

The dual-unitary KIC is obtained when J = b = π/4. By
Eqs. (19) and (25) we immediately have

C(n, t ) = δ(n, t )Cγ δ

αβ (cos 2h)t , (29)

n = n2 − n1 < N/2. As we show in Appendix D, this result
has a simple extension to the case of disordered chains,

C(n, t ) = δ(n, t ) Cδγ

αβ

n2∏
i=n1+1

cos 2hi, (30)

where hi is the value of the local magnetic field at the ith site of
the chain. The prefactors Cδγ

αβ depend on the operators �n1 and
�n2 . Specifically, Cyz

yz = 1, Cxz
yx = tan 2hn1+1 tan 2hn2 , C

yz
yx =

− tan 2hn1+1, Cxz
yz = − tan 2hn2 and Cγ δ

αβ are zero for all other
spin combinations.
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FIG. 4. The value of r for the spectrum of the dual-unitary KIC
at N = 15 as a function of h averaged over all values in the separate
(translation) symmetry sectors of k = 1, . . . , 7. Note that the graph is
symmetric under reflection h → π − h. For most values of h the data
for 〈r〉 fit the Gaussian orthogonal ensemble (GOE) prediction. The
four dips at h = 0, π/4, π/3, and π correspond to spectral statistics
characteristic of integrable systems.

The correlator (29) decays exponentially for any value of h
except for the set of integrable points h = 1

4πk, k ∈ Z, where
the subleading eigenvalue of T has absolute value 1. It is in-
teresting to compare this behavior of correlators with the KIC
spectral statistics. By the translation symmetry, the spectrum
of the KIC evolution operator can be split into N uncorrelated
subspectra {eiθ (k)

n }, k = 1, 2, . . . , N [13]. In Fig. 4 we show the
averaged ratio between three successive eigenphases from the
same sector,

r = min
{
θ (k)

n − θ
(k)
n−1, θ

(k)
n+1 − θ (k)

n

}
max

{
θ

(k)
n − θ

(k)
n−1, θ

(k)
n+1 − θ

(k)
n

} ,

which is a well-established diagnostic for quantum chaos (see
Refs. [36,37]). As can be seen in Fig. 4, for a generic value
of h the disymmetrized spectrum of the dual-unitary KIC
corresponds to a fully chaotic system. This is in agreement
with the exponential decay of the correlator (25) on the light-
cone border. There are, however, four special points on the h
axis, h = 0, h = π , h = π/4, and h = π/3, where the KIC
spectrum turns out to be “nonchaotic.” The first three cases
correspond to known integrable cases of KICs. The most in-
triguing is the last “integrable” case of h = π/3, which to the
best of our knowledge has not been investigated so far. Here,
despite Poissonian spectral statistics, the correlators decay
exponentially, e.g., Czy

zy = (−2)−t , on the light-cone border
(for t < N − 2). This is reminiscent of the spectral problem
for arithmetic surfaces of constant negative curvature, where
correlations do decay exponentially, but the system spectrum
exhibits Poissonian spectral statistics due to the existence of
an infinite number of Hecke operators commuting with the
system Hamiltonian. In the same spirit we expect that for the
dual-unitary KIC model at h = π/3 there exists an additional
number of symmetries splitting the system’s spectrum into
uncorrelated subspectra. Clarification of their exact nature is
important, but beyond the scope of the present contribution.

VI. CONCLUSIONS

We derived an analytic formula, relating correlators C(n, t )
between operators with two-point support for n = t (light-
cone edge) to the expectation values of a transfer operator
T with small dimensions. The result holds for a sufficiently
long generic KC and does not require fine-tuned system
parameters. For dual-unitary KCs this allows for a full char-
acterization of the correlator behavior in terms of the T
spectrum, as C(n, t ) = 0 for n �= t in this case. For the FTC
we go much further and obtain an explicit analytical expres-
sion for correlations between operators supported on pairs of
adjacent sites. The results are illustrated on the example of the
KIC.

The above results allow for several generalizations. First,
models with a larger range of interactions can be treated
in a similar manner. For systems with r-point interactions,
HI = ∑N

i=1 f1(s1+i, . . . , sr+i ), the correlations at the light-
cone edge n = rt can be expressed through transfer operators
of the dimension Lr × Lr . Second, in the present work we
restricted our considerations to correlators between operators
with two-point support. An analogous result holds for corre-
lations between operators with a larger support, i.e., �

(l )
k =

1 ⊗ · · · ⊗ 1 ⊗ qk+1 ⊗ · · · ⊗ qk+l ⊗ 1 ⊗ · · · ⊗ 1. In general,
the correlators 〈�(l )

0 �(l )
n 〉 can be expressed through expec-

tation values of transfer operators Tl with the dimensions
Ll × Ll . By using this, the correlators C(n, t ) in Eq. (10) can
be evaluated above the light-cone edge t = n + l , l > 0, as
well. To this end one fixes all qi in �

(l )
0 , �(l )

n to 1, except
ql , qn+l . The price to pay is in the dimension of the transfer
operators: the dimension of Tl increases exponentially with l .
It remains an interesting open question whether the spectrum
of Tl can be calculated exactly for FTC in the case l > 2.

Finally, the semiclassical limit L → ∞ of FTC deserves
a separate study. The classical model emerging in this limit
is nothing more than a (perturbed) coupled cat map lattice
considered in [16,17]. Depending on the functions λi(s) and
λ′

i(s), this model exhibits different dynamical behaviors in the
classical limit, ranging from full chaos to full integrability.
However, for a finite dimension L of the local Hilbert space
the transfer operator T, in general, contains no eigenvalues
on the unit circle except the trivial one, associated with the
unit operator. Thus, independently of the underlying classical
dynamics, FTC systems generically show exponential decay
of two-point correlators for a fixed L in the thermodynamic
limit N → ∞. On the other hand, if the semiclassical limit
L → ∞ is taken first (or simultaneously with the thermody-
namic limit), the gap in the transfer operator spectrum might
close, such that no exponential decay is observed for any finite
N . This shows that the emerging theory is very sensitive to the
order of the thermodynamic and semiclassical limits.
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APPENDIX A: RELATION TO CIRCUIT LATTICES

For the sake of comparison it is instructive to observe a
connection between quantum kicked chains considered in this
work and circuit lattices. Such a connection can be established
when both the chain length N and the propagation times t are
even. It is straightforward to see that the quantum evolution
operator U 2t for even times can be cast into the form

U 2t = U e
I Ut

circ

(
U e

I

)†
. (A1)

Here, the operator U e
I corresponds to the even “half of the

interaction”:

〈s|U e
I [ f1]|s′〉 = δ(s, s′)ei

∑N/2
n=1 f1(s2n,s2n+1 ), (A2)

and the evolution Ucirc has the form

Ucirc = TU e
I UKU e

I T
†U e

I UKU e
I , (A3)

where T is the circular shift operator on a lattice of N sites.
Note that Ucirc has a special structure, characteristic of circuit
lattice evolution (see, e.g., [22]). The role of the unitary gate
operator is fulfilled here by

Ugate = ue
1 (u2 ⊗ u2) ue

1, (A4)

where the diagonal matrix

〈s1s2|ue
1|s′

1s′
2〉 = δ(s1, s′

1)δ(s2, s′
2)ei f1(s1,s2 )

is a restriction of U e
I to two adjacent lattice sites.

By Eq. (A3) we find for the two-point correlator

Tr (Ut Q1U
−t Q2) = Tr

(
Ut

circQ̃1U
−t
circQ̃1

)
, (A5)

where Q̃i = (U e
I )†QiU e

I . Since U e
I couples two neighboring

sites, any strictly local operator with one-point support in
the kicked model corresponds to a two-site operator of the
respective circuit model.

APPENDIX B: GRAPHICAL METHOD FOR EVALUATION
OF CORRELATORS

Correlation function between a number of local observ-
ables in the Floquet KC (1) can be written in the form of a
partition function,

Z = 1

LNt

∑
{sm,k |(m,k)∈L1}

e−iF ({sm,k})

×
∏

(m,k)∈L2

δ(sm,k, sm,1−k+2t )D(sz1, . . . , szn ), (B1)

where the last factor, D, depends on a finite number of lattice
sites, L0 = {z1, . . . , zl}, corresponding to the location of the
observables. The above sum, in general, runs over a sub-
set L1 of sites from the 2t × N lattice LN×2t = {(m, k)|k =
1, . . . , 2t, m = 1, . . . , N} while the product in Eq. (B1) is,
furthermore, restricted to a subset L2 ⊆ L1. In what follows
we distinguish between three type of points (m, k) /∈ L0 of the
spatial-temporal lattice LN×2t and introduce the corresponding
symbolic notation for lattice sites:

Type 1. (m, k) /∈ L1; i.e., there is no summation over the
variables sm,k, sm,1−k+2t in the partition function. The sites of
this type are depicted by empty circles {©}.

Type 2. (m, t ) ∈ L2; i.e., there is summation over the vari-
ables sm,k, sm,1−k+2t coupled by the term δ(sm,k, sm,1−k+2t ).
The sites of this type are depicted by full red circles {•}.

Type 3. (m, k) ∈ L1\L2; i.e., there is summation over un-
coupled variables sm,k, sm,1−k+2t . The sites of this type are
depicted by full black circles {•}.

Having this notation at hand, we can uniquely encode a
partition function of the type (B1) by filling nodes (m, k)
of the lattice L1\L0 with symbols drawn from the alphabet
{◦,•,•} (see Figs. 1 and 2).

Thanks to the unitarity of the operator u2 a simple graphical
method for calculation of partition functions like Eq. (B1) can
be developed. To this end we establish “contraction rules” for
sites of LN×2t\L0. Let (m, k) be a site of type 2 such that
three of its neighbors are of type 2, and the fourth one is
of type 3. It can be easily shown that after summation over
sm,k, sm,1−k+2t variables the fourth site becomes of type 2 as
well, while (m, k) becomes of type 1 (see Fig. 5). Indeed,
whenever (m − 1, k), (m + 1, k), (m, k), (m, k − 1) ∈ L2 we
have for sum over sm,k, sm,1−k+2t variables in Eq. (B1)

1

L

∑
sm,k

∑
sm,1−k+2t

e−i( f2 (sm,k ,sm,k+1 )−f2(sm,1−k+2t ,sm,−k+2t ))δ(sm,k, sm,1−k+2t )

= δ(sm,k+1, sm,−k+2t ). (B2)

In an analogous way one can obtain all other contraction rules
illustrated in Fig. 5. Note that the above contraction rules are
akin to the operator “fusion rules” introduced in [22].

Obviously, each contraction leads to the removal of two
summation variables from the sum (B1) without changing its
form. As a result, by consecutive applications of the contrac-
tion rules the initial partition function can be reduced to the
state where the vast majority of the summation variables are
excluded from the sum (B1). The remaining sum can be then
represented with the help of a transfer operator of a small
dimension, independent of N .

APPENDIX C: CORRELATIONS IN THE FTC MODEL

For the FTC model, Eq. (15) can be utilized to obtain an
explicit formula for correlators. To this end we expand the
right-hand side of Eq. (15) in the basis of eigenstates (21) of
T. This yields

Ct =
�L/2�∑
m=0

(tm)t−2
(
2 − δm,0 − δm, L

2

)
Re

[
Am(q4)

〈
�̄q1q2

∣∣�q3em

〉]
(C1)

for even t and

Ct =
�L/2�∑
m=0

(tm)t−2
(
2 − δm,0 − δm, L

2

)
× Re

[
e−iφA∗

m(q4)
〈
�̄q1q2

∣∣�q3em

〉]
, (C2)

for odd t , where

Am(q) = 1

L

L∑
s=1

ei2πsm/L〈s|q|s〉.
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FIG. 5. The figure illustrates contraction rules for lattice sites (m, t ) belonging to the set L2. The four figures above correspond to the case
where three out of four neighbors of (m, t ) belong to the set L2. The bottom figure illustrates the case where all four neighbors belong to L2.

The scalar products 〈�̄q1q2 |�q3em〉 can be easily evaluated by
using Eqs. (17) and (18):〈

�̄q1q2

∣∣�q3em

〉 = Am(qc
1)B(1)

m

(
q3

)
B(2)

m

(
qc

2

)
,

B( j)
m (q) = 1

L

L∑
s=1

ei(μ j (s)−μ j (s(m) ))〈s|q|s(m)〉, (C3)

with j = 1, 2, s(m) = 1 + (s + m − 1) mod L, and μ1(s) =
−λ1(s) − λ′

1(s) − λ2(s), μ2(s) = λ1(s) + λ′
1(s) + λ′

2(s), re-
spectively. Note that the constants Am(q) and B( j)

m (q) can be
also written in a more compact form as

Am(q) = 1

L
Tr

(
�m

0 q
)
,

B( j)
m (q) = 1

L
Tr

(
� jq�

†
j T

m
)
, (C4)

where T is the circular shift operator, T |s〉 = |s(m)〉, and � j ,
j = 1, 2, 3, are the diagonal matrices:

�0 = diag{ei2πs/L}L
s=1, (C5)

� j = diag{eiμ j (s)}L
s=1, j = 1, 2. (C6)

APPENDIX D: APPLICATION TO THE KIC MODEL

The KIC model provides a minimal realization of model
(1) with L = 2. The KIC evolution is governed by the Hamil-
tonians

HI =
N∑

n=1

Jσ̂ z
n σ̂ z

n+1 + hσ̂ z
n , HK = b

N∑
n=1

σ̂ x
n , (D1)

σ̂ α
n = 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸

n−1

⊗ σα ⊗ 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸
N−n

,

where σα
n , α = x, y, z, are Pauli matrices. For the sake of sim-

plicity of exposition we restrict our considerations to b = π/4
and arbitrary J and h. Note that the dual-unitary case corre-
sponds to J = b = π/4. The resulting evolution operators UK

and UI take the form (4) with the functions

f1 = −Jmn − h

2
(m + n), f2 = π

4
(mn − 1),

m, n = ±1, defining the two unitary matrices u1 and u2:

u1 = 1√
2

(
e−i(J+h) eiJ

eiJ e−i(J−h)

)
,

u2 = 1√
2

(
1 −i
−i 1

)
. (D2)

After inserting f1 and f2 into Eq. (16) we obtain

T = 1

2

⎛
⎜⎜⎝

cos2 h+ sin2 h sin2 h+ cos2 h
sin2 h+ cos2 h cos2 h+ sin2 h
sin2 h cos2 h− cos2 h sin2 h−
cos2 h sin2 h− sin2 h cos2 h−

⎞
⎟⎟⎠, (D3)

where h+ = h + J − π/4, h− = h − J + π/4. The four
eigenvalues of T are

μ1 = 1, μ2 = cos 2h sin2 2J, μ3 = 0, μ4 = 0.

As a result, the nth power of T is given for n > 1 by

Tn = μn
2 �2 ⊗ �̄2 + �1 ⊗ �1 (D4)

with �1 = 1
2 (1, 1, 1, 1)T being the eigenvector of T for the

leading eigenvalue μ1 and

�2 = 1

c + d
(c,−c,−d, d )T ,

�̄2 = 1

c + d
(c,−d,−c, d ), (D5)

c = cos 2h+ + cos 2h, d = cos 2h− + cos 2h, are the left and
right eigenvectors corresponding to μ2.

1. Local operator correlators

To evaluate correlators note that the operators u2q1u†
2, q4

contribute only diagonal elements into Eqs. (17) and (18).
In the case of the KIC model this means that only the spin
combinations �n1 = σ̂ α

n1
σ̂

β

n1+1 and �n2 = σ̂
γ
n2 σ̂

δ
n2+1 for α = y,

δ = z might have Ct �= 0. By using the representation (D4) we
have for the correlator (15)

Ct ≡ C(t, t ) = μt−2
2 〈�̄σ yσβ |�2〉〈�̄2|�σγ σ z〉

+ 〈�̄σ yσβ |�1〉〈�1|�σγ σ z〉, (D6)
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where the vectors �̄σ yσβ and �σγ σ z are calculated by Eqs. (17)
and (18). Explicitly, they are given by

�σ yσ z = �̄σ yσ z = sin 2J

2

⎛
⎜⎝

− sin(2h − 2J )
sin(2h − 2J )

− sin(2h + 2J )
sin(2h + 2J )

⎞
⎟⎠,

�σ xσ z = �̄σ yσ x = sin 2J

2

⎛
⎜⎝

− cos(2h − 2J )
− cos(2h + 2J )

cos(2h − 2J )
cos(2h + 2J )

⎞
⎟⎠. (D7)

After inserting Eqs. (D5) and (D7) into Eq. (D6) we obtain

Ct = Cγ δ

αβ (cos 2h sin2 2J )t , (D8)

where prefactors Cγ δ

αβ are given by

Cyz
yz = 1, Cxz

yx = tan2 2h, Cxz
yz = Cyz

yx = − tan 2h, (D9)

while Cγ δ

αβ are zero for all other spin combinations.

2. Strictly local operator correlators

By using the representation (D4) we have for the correlator
(27)

Cαβ (t − 1, t ) = μt−2
2 〈�̄1σα |�2〉〈�̄2|�σβ1〉

+ 〈�̄1σα |�1〉〈�1|�σβ1〉, (D10)

where the vectors �̄1σα and �σβ1 can be calculated by
Eqs. (17) and (18). Explicitly, they are given by

�σ y1 = cos 2J

2

⎛
⎜⎝

cos(2h − 2J )
− cos(2h − 2J )

cos(2h + 2J )
− cos(2h + 2J )

⎞
⎟⎠, �σ z1 = 0,

�σ x1 = cos 2J

2

⎛
⎜⎝

− sin(2h − 2J )
− sin(2h + 2J )

sin(2h − 2J )
sin(2h + 2J )

⎞
⎟⎠, (D11)

and �σ y1 = �̄1σ z , �σ z1 = �̄1σ y , and �σ x1 = �̄1σ x . After
substitution of Eqs. (D11) into Eq. (D10) one has

Cαβ (t − 1, t ) = Cαβ (cos 2h sin2 2J )t cot2 2J (D12)

with the coefficients given by

Cxx = 1, Cxy = Czx = tan 2h, Czy = tan2 2h,

and zeros for all other α, β combinations.

3. Dual-unitary case

The dual-unitary KIC is governed by the Hamiltonians
(D1) with J = b = π/4. The strength h of the magnetic field
in the z direction is arbitrary and might, in general, depend on
the chain site. The resulting two unitary matrices u1 and u2 are

given by

u1 = 1√
2

(
e−i( π

4 +h) ei π
4

ei π
4 e−i( π

4 −h)

)
,

u2 = 1√
2

(
1 −i
−i 1

)
, (D13)

at the ith site of the chain. Note that u1 and u2 can be expressed
through the DFT matrix F as

u1 =
(

e− ih
2 0

0 e
i(π+h)

2

)
F

(
e− i(π+2h)

4 0
0 e

i(π+2h)
4

)
,

u2 =
(

1 0
0 e− iπ

2

)
F

(
1 0
0 e− iπ

2

)
, F = 1√

2

(
1 1
1 −1

)
.

This implies that KIC is just a particular case of the FTC
model for L = 2 with the parameters

�1 = diag{e−ih/2, ei(π+h)/2},
�′

1 = diag{e−i(π+2h)/4, ei(π+2h)/4},
�2 = �′

2 = diag{1, e−iπ/2}.
Inserting into Eq. (16) the corresponding functions f1 and f2

yields

Ti = 1

2

⎛
⎜⎝

ai bi bi ai

bi ai ai bi

bi ai ai bi

ai bi bi ai

⎞
⎟⎠, (D14)

where ai = cos2 hi, bi = sin2 hi, and hi is the value of the
local magnetic field at the ith site of the chain. The four
eigenvalues of this matrix are {1, cos 2hi, 0, 0} in agreement
with the results of [22].

For the operators �n1 = σ̂
y
n1 σ̂

β

n1+1 and �n2 = σ̂
γ
n2 σ̂

z
n2+1, the

corresponding vectors (17) and (18) are given by

�̄σyσz = �0 cos 2hn1+1, �̄σyσx = −�0 sin 2hn1+1,

�σyσz = �0 cos 2hn2 , �σxσz = −�0 sin 2hn2 , (D15)

with �0 = 1
2 (1,−1,−1, 1)T being the eigenvector of Ti for

the eigenvalue cos 2hi. All other combinations of x, y, z give
rise to zero vectors. Importantly, the vector �0 is independent
of hi. As a result, after inserting Eqs. (D15) into Eq. (15) with
Tn−2 ≡ ∏n2−1

i=n1+1 Ti we obtain

C(n, t ) = δ(n, t ) Cδγ

αβ

n2∏
i=n1+1

cos 2hi, (D16)

n = n2 − n1 < N/2, where the prefactors Cδγ

αβ depend on the

operators �n1 = σ̂ α
n1

σ̂
β

n1+1 and �n2 = σ̂
γ
n2 σ̂

δ
n2+1. Specifically,

Cyz
yz = 1, Cxz

yx = tan 2hn1+1 tan 2hn2 , C
yz
yx = − tan 2hn1+1, Cxz

yz =
− tan 2hn2 , and Cγ δ

αβ are zero for all other spin combinations.
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