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The electrical and thermal transport properties of metals become complicated in the intermediate and low
temperature range (0.1�D−�D, with �D being the Debye temperature) due to electron-phonon inelastic
scattering. For the Wiedemann-Franz law, a notable feature is that the Lorenz ratio significantly deviates
from the Sommerfeld value. Although qualitatively theoretical understanding has been developed for decades,
a mode-level first-principles analysis is still lacking in this temperature range and a better understanding of
inelastic scattering and thermal transport mechanisms is desirable. In this work, we take aluminum and copper
as examples. We find that two factors are essential to correctly predict the thermal conductivity and Lorenz
ratio in the intermediate temperature range. First, the momentum relaxation time should be used for electrical
conductivity calculations, while the energy relaxation time should be used for electronic thermal conductivity
calculations. Second, proper choice of broadening parameter and fine sampling in the Brillouin zone is vital.
Using the mode-level description of inelastic electron-phonon scattering at intermediate temperatures, the correct
Lorenz ratio can be obtained within the present scheme, while using only the energy or momentum relaxation
time cannot capture the correct trend of Lorenz ratio. The calculation scheme can be expanded to other metallic
systems and is valuable for a better understanding of the transport properties of metals.
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I. INTRODUCTION

Heat conduction in metals involves complicated electron
and phonon transport and scattering processes, which has
historically been a research focus in solid-state physics [1,2].
The Wiedemann-Franz law states that the ratio of electronic
thermal conductivity (κel ) to electrical conductivity (σ ) is
proportional to the absolute temperature T [3], and plays a
vital role in evaluating the electronic thermal conductivity
of metals. The proportionality constant (also known as the
Lorenz ratio) is often taken as the Sommerfeld value, L0 =
2.44 × 10−8 W �/K2. It has been well recognized that the
Lorenz ratio is generally similar to the Sommerfeld value
at low- or high-temperature ranges [4], in which the elastic
electron-impurity scattering or nearly elastic electron-phonon
scattering prevails. However, at the intermediate temperature
range (0.1�D−�D, with �D being the Debye temperature)
where inelastic electron-phonon scattering dominates, the
Lorenz ratio can significantly deviate from the Sommerfeld
value and the mechanism is worth exploring further [5].

Although experimental measurements of electrical and
thermal conductivity are available for typical elemental metals
at the intermediate temperature range [6], correctly obtain-
ing electronic components of thermal conductivity is still
challenging. In most experiments, the phonon thermal con-
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ductivity is simply neglected when calculating the Lorenz
ratio [7]. In order to explicitly obtain electron and phonon
contributions to thermal conductivity, one either needs to ap-
ply large magnetic fields to suppress electron transport [8,9],
or use the complicated alloying method to extrapolate a series
of samples with different solute concentrations [10]. Due to
these difficulties, the experimental data are only available
for a handful of simple metals [8,10,11]. On the other hand,
to understand the underlining physics, the Bloch-Grüneisen
(BG) model [5,12,13] developed in the 1930s is still widely
used to explain the deviation of Lorenz ratio in the intermedi-
ate temperature range [8,14]. The variation with temperature
for transport coefficients and Lorenz ratio can be partially
captured by the BG model [5]. Nevertheless, the BG model
is based on the assumptions of free electrons, the Debye
phonon spectrum, and that electrons only scatter when inter-
acting with longitudinal-acoustic phonons. Also, the inelastic
electron-phonon scattering is treated with the ideal spherical
Fermi-surface assumption [5]. Therefore, it is difficult to ob-
tain the thermal conductivity and Lorenz ratio for metals at
intermediate temperatures in a quantitative manner.

Recent advances in first-principles calculations allow re-
searchers to quantitatively determine the transport coefficients
of metals. Early calculations adopted constant electron re-
laxation time approximation combing first-principles electron
band structure [15], which can introduce large deviations
even in simple elemental metals [16,17]. Moreover, due to
the assumption of constant relaxation time, the Wiedemann-
Franz law must be valid for free-electron metals across the
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whole temperature range [5]. Allen’s model, which is the
lowest order variational approximation of the solution to the
electron Boltzmann transport equation (BTE) [18], allows us
to obtain the transport coefficients in real metallic systems.
Nevertheless, non-negligible deviations still exist in some el-
emental metals in this model [19,20]. Recently, the accurate
mode-level calculation of electron-phonon scattering is en-
abled by employing the maximally localized Wannier function
(MLWF) interpolation technique [21]. Using this approach,
explicit electron-phonon scattering rates can be extracted and
substituted into the electron BTE. Combining this with an-
harmonic lattice dynamics, the phonon and electron thermal
conductivities can be calculated separately. This method has
been successfully applied to element metals [22–24], inter-
metallics [25], doped semiconductors [26–28], and intrinsic
semiconductor at high temperature [29]. All these calcula-
tions are conducted at temperatures similar to or higher than
the Debye temperature. As a result, the predicted Lorenz
ratios in metals are quite consistent with the Sommerfeld
value [23,24]. The mechanism of inelastic electron-phonon
scattering and its effect on electron transport in metals at
intermediate temperatures has not yet been carefully explored.

In this work, the thermal transport properties and Lorenz
ratio at intermediate temperatures (10–300 K) for metals are
studied from first principles with a detailed analysis of in-
elastic electron-phonon scattering. Two representative metals,
copper (Cu) and aluminum (Al), are considered. We first re-
view the transport theory of the electron BTE and describe
the necessity of using different relaxation times for the electri-
cal transport and thermal transport. Next, convergence issues
for the transport coefficients with respect to the broadening
parameter and mesh size for Brillouin-zone integration are
examined. We point out the importance of these parameters
to the correct prediction of the transport coefficients. The
electrical conductivity and electronic thermal conductivity
are then presented and compared with existing models. The
mechanism of inelastic scattering and its effect on transport
coefficients and Lorenz ratios in the intermediate temperature
range are also discussed.

II. THEORY AND METHODS

The calculation of electron transport properties can be
performed under the framework of the electron BTE. With
both the external electrical field and temperature gradient, the
steady-state linearized electron BTE can be written as(

−∂ f 0
nk

∂εnk

)
vnk ·

[
eE + εnk − εF

T
∇T

]
=

(
∂ fnk

∂t

)
coll

, (1)

where f 0
nk is the electron equilibrium distribution at the

electron mode nk (n-band index, k-wave vector), namely
Fermi-Dirac distribution. e is the elementary charge, εnk is the
electron energy, εF is the Fermi energy, vnk is the electron
group velocity, and E is the electrical field (both the external
electrical field and the term ∇εF /e induced by the temperature
gradient are included). The two terms on the left-hand side
denote the deviations of the distribution function from the
equilibrium state generated by electrical field and temperature
gradient, respectively. The right-hand side is the electron colli-
sion term, which draws the system into equilibrium. Under the

relaxation time approximation, the collision term is usually
simplified as(

∂ fnk

∂t

)
coll

= − fnk − f 0
nk

τnk
= −δ fnk

τnk
, (2)

where τnk is the relaxation times and it quantifies how quickly
the electron returns to equilibrium [5].

In most works [22,25,27], τnk is regarded to be the same
for both electrical transport and thermal transport processes.
However, recent work [4] proposed that the relaxation times
for charge transport and energy transport should be distinct
from each other in order to accurately capture the trans-
port properties and Lorenz ratio at intermediate temperatures.
Therefore, the deviation of the electron distribution within the
relaxation time approximation can be expressed as [4,5]

δ fnk = τσ,nk(T )evnk · E
(

∂ f 0
nk

∂εnk

)
+τκ,nk(T )

× εnk − εF

T
vnk · ∇T

(
∂ f 0

nk

∂εnk

)
, (3)

in which τσ,nk is the electrical relaxation time (also called
momentum relaxation time) and τκ,nk is the thermal relaxation
time (also called energy relaxation time). If we only consider
the electron-phonon scattering process, the scattering rate cor-
responding to the energy relaxation time can be determined
from an integration of all scattering processes for the electron
at εnk and expressed as

1

τκ,nk
= 2π

h̄

∑
mk+q

|gmn,v (k, q)|2

×
{[

n0
qv (T ) + f 0

mk+q(T )
]
δ(εnk − εmk+q + h̄ωqv )

+[
n0

qv (T )+1− f 0
mk+q(T )

]
δ(εnk−εmk+q−h̄ωqv )

}
,

(4)

where n0
qv is the equilibrium Bose-Einstein distribution related

to phonon qv. The first and second terms in the curly braces
are related to the absorption process and emission process
during electron-phonon coupling, respectively. The electron-
phonon coupling matrix element [30] can be expressed as

gmn,v (k, q) = (2ωqv )−1/2〈ψmk+q|Vqv|ψnk〉, (5)

where ωqv is the phonon frequency. ψnk and ψmk+q are the
initial and final Bloch electron states of the scattering process,
respectively. V is the first-order derivative of the Kohn-
Sham potential.

The scattering rate corresponding to the momentum relax-
ation time at εnk is given by

1

τσ,nk
=

∑
mk+q

1

τκ,nk,mk+q
(1 − cos θnk,mk+q ). (6)

The two scattering rates in a scattering process differ by an ef-
ficiency factor αnk,mk+q = (1 − cos θnk,mk+q ), which is located
in the range of 0–2. Here θnk,mk+q is the scattering angle be-
tween the electron states nk and mk + q. With the assumption
of τnkvnk ≈ τmk+qvmk+q [31], we have

cos θnk,mk+q = vmk+q · vnk

|vmk+q||vnk| . (7)
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The efficiency factor arises from the fact that the scattering
of electrical current is efficient only when the direction of
electron motion is changed. However, the energy exchange
occurs in any scattering process and thus the scattering effi-
ciency of the heat current is always effective. Such a physical
picture has been described in standard textbooks [5,32,33].
The relaxation times in Eqs. (4) and (6) are equivalent to the
transport relaxation times mentioned in other places [34–36],
shown in Appendix A. Note that in several works, either
τσ,nk [22,27] or τκ,nk [23,37] is used to predict both electrical
conductivity and electronic thermal conductivity. This may
not cause much error at the high-temperature range since
the large-angle scatterings dominate the scattering processes.
However, as will be shown later, at lower temperatures, the
correct relaxation times must be employed in order to obtain
accurate transport properties and Lorenz ratios.

The electrical current (J) and heat current (Q) can be ex-
pressed as [5]

J =
∑
nk

evnk fnk =
∑
nk

evnk
(

f 0
nk + δ fnk

)

Q =
∑
nk

(εnk − εF )vnk fnk =
∑
nk

(εnk − εF )vnk
(

f 0
nk + δ fnk

)
.

(8)

Insert Eq. (3) into Eq. (8) and we get

J = LEE E + LET ∇T

Q = LT E E + LT T ∇T, (9)

with the coefficients given by

LEE = − e2

NkV

∑
mk

vmk,αvmk,βτσ,mk(εF , T )

× ∂ f 0(εmk, εF , T )

∂εmk
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× ∂ f 0(εmk, εF , T )

∂εmk

LT E = − e

NkV

∑
mk

vmk,αvmk,βτσ,mk(εF , T )(εmk − εF )

× ∂ f 0(εmk, εF , T )

∂εmk

LT T = 1

NkV

∑
mk

(εmk − εF )2

T
vmk,αvmk,βτκ,mk(εF , T )

× ∂ f 0(εmk, εF , T )

∂εmk
. (10)

α and β are Cartesian coordinate components. Nk is the total
number of k points in the first Brillouin zone. V is the volume
of the unit cell.

From Eq. (9), the electrical and thermal conductivity have
the following expression using the definitions of the two trans-
port coefficients,

σ = LEE

κel = −(
LT T − LT E LET

LEE

). (11)

The term LT E LET
LEE

in the expression of electronic thermal con-
ductivity is very small in metals and is usually ignored.
Therefore, only energy relaxation time τκ is contained in
electronic thermal conductivity in our later calculations. Note
that for LEE , the momentum relaxation time is adopted, while
for LT T , the energy relaxation time is used.

In the subsequent discussions, we consider two common
metals, copper (Cu) and aluminum (Al), as examples. The
first-principles calculations are carried out with Quantum
ESPRESSO [38]. A Perdew-Burke-Ernzerhof (PBE) form [39]
of the exchange-correlation functional is employed. The cut-
off energy of the plane wave is set to be 180 Ry for Cu and
100 Ry for Al to ensure convergence, and the convergence
threshold of electron energy is set to be 10−10 Ry for the
self-consistent field calculation.

The lattice vectors and atomic positions are fully relaxed
based on the Broyden-Fretcher-Goldfarb-Shanno (BFGS) op-
timization method [40–43]. The optimized lattice constants
come out to be 3.669 and 4.043 Å (experimental values are
3.615 and 4.050 Å) [44] for Cu and Al with face-centered-
cubic (fcc) lattice, respectively. For the electronic properties
calculations, the two categories of electron-phonon scattering
rates are calculated using our in-house modified electron-
phonon Wannier (EPW) package [30]. The phonon spectrums
are obtained on 6 × 6 × 6 q-point mesh using density func-
tional perturbation theory (DFPT) [45] and the spectrums
match experimental data well, as shown in Sec. S1 of the Sup-
plemental Material [46] (see, also, Refs. [47,48] therein). The
electron-phonon coupling matrix elements are first calculated
on the coarse grids of 12 × 12 × 12 k point and 6 × 6 × 6
q point, and are then interpolated to the sufficiently dense
k-point and q-point meshes to ensure the convergence of elec-
trical transport coefficients in the whole temperature range.
The electron band structures calculated under the Wannier
scheme match density function theory (DFT) band structures
quite well, as shown in Sec. S1 of the Supplemental Material
[46].

To calculate the phonon thermal conductivity component,
we employed the widely used anharmonic lattice dynamics
scheme to calculate the phonon-phonon scattering process
[49]. The harmonic force constant is obtained employing the
DFPT [45] under a 6 × 6 × 6 q-point mesh. The cubic force
constant is extracted with the THIRDORDER.PY package [49]. A
supercell of 4 × 4 × 4 is used and the third nearest neighbor is
considered for the cubic force-constant calculation. A 3 × 3 ×
3 k-point mesh is used and the convergence is ensured. Note
that in metals, the limitations of phonon-electron scattering
to phonon thermal conductivity must also be considered. The
calculation method of phonon-electron scattering and phonon
thermal conductivity has been described in our previous works
[23] and thus not repeated here.
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FIG. 1. Variations of (a) electrical conductivity and (b) electronic
thermal conductivity of Al in the temperature range of 50–300 K
with broadening parameters 1, 2, 5, 10, 30, and 50 meV. The q-
and k-point meshes are set as 60 × 60 × 60 and 200 × 200 × 200,
respectively.

III. RESULTS AND DISCUSSIONS

A. Convergence study

In order to obtain the correct relaxation times in Eqs. (4)
and (6) numerically, Brillouin-zone integration needs to be
performed. Unlike in the calculations at high temperatures,
the electron-phonon scattering at intermediate temperature
is weak and very dense Brillouin-zone sampling must be
performed in order to obtain the converged electron relax-
ation times [50]. The approximation form employed for the
δ function in Eq. (4) is also a curial issue in the conver-
gence of electron scattering rates. In this work, we follow
the method described in Ref. [30] and adopt the Gaussian
broadening scheme as δ(x) = limη→0

1√
π

1
η
e−(x/η)2

. The choice
of the broadening parameter η must be balanced with the
density of q- and k-point sampling. Usually, a small enough
η compatible with q- and k-point mesh is used. As will be
shown below, inappropriate usage of the Gaussian broadening
parameter can yield unphysical results.

We predict the electrical conductivity and electronic ther-
mal conductivity with six different η values, 1, 2, 5, 10, 30,
and 50 meV, in Al. The q- and k-point meshes are set as
relatively dense values, 60 × 60 × 60 and 200 × 200 × 200,
respectively. As it is shown in Fig. 1, there is not much
difference in both electrical and thermal conductivity with dif-
ferent η when the temperature is larger than 200 K. However,
significant deviations appear in both electrical and thermal
conductivity when the temperature is below 150 K. When

FIG. 2. Calculated electrical conductivity for (a) Cu and (c) Al
with respect to the q-point meshes in the temperature range of 10–
100 K. Calculated electronic thermal conductivity for (b) Cu and (d)
Al with respect to the q-point meshes in the temperature range of
10–100 K. The k-point mesh size is kept as 200 × 200 × 200 in all
the calculations.

the broadening parameter is set to be 30 or 50 meV, the
electronic thermal conductivity displays an increasing trend
in temperature, which contradicts experimental observations
[6]. Note that such an unphysical phenomenon was observed
in previous calculations [22] and it is expected to be related
to the improper use of η. As it is shown in Sec. S2 of the
Supplemental Material [46], η should be reduced to 10 meV
to ensure the convergence of the energy scattering rate of Al
at 100 K. The larger η would significantly overestimate the
scattering rate. However, a large value of η = 30 meV can also
ensure the convergence of scattering rates at 300 K, which is
the case in Ref. [22]. η is set as 30 meV in the whole tem-
perature range in Ref. [22]. As thus, we expect the electronic
thermal conductivity of Al to be underestimated below 300 K
in Ref. [22], resulting in the unphysical behavior. Therefore,
to accurately obtain the converged electron-scattering rates,
smaller η should be used as the smearing of the Fermi-Dirac
distribution will be smaller with decreasing temperature. The
value of kBT (kB is the Boltzmann constant) for η works well
for the cases in this work.

Because small Gaussian broadening parameters are em-
ployed at low temperatures, an ultradense q-point mesh and
k-point mesh should be used to ensure the convergence of
electron-scattering rates. Here we present the convergence test
using different q-point meshes for both electrical conductivity
and electronic thermal conductivity of Cu, as shown in Fig. 2.
An ultradense k-point mesh of 200 × 200 × 200 is fixed for
all cases, as it is dense enough to capture the variation in
scattering rates near the Fermi surface. Both electrical conduc-
tivity and electronic thermal conductivity get converged easier
as the temperature is larger than 40 K, where we find that
60 × 60 × 60 q-point mesh is enough to achieve convergence.
In comparison, for temperatures below 40 K, an extremely
dense q-point mesh of 150 × 150 × 150 (200 × 200 × 200)
is sufficiently large to ensure the convergence of electrical
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FIG. 3. The electron scattering rates (1/τσ ) corresponding to mo-
mentum relaxation times with different temperatures for (a) Cu and
(c) Al. The electron scattering rates (1/τκ ) corresponding to energy
relaxation times with different temperatures for (b) Cu and (d) Al.
The electron energy is normalized to Fermi energy (εF ).

conductivity and thermal conductivity for Cu (Al). Small
q-point meshes can result in an overestimation of the two
transport coefficients due to the insufficient scattering phase
space accessible for electron modes. Note that even denser
q-point meshes are needed to ensure the convergence at lower
temperatures. We do not consider the temperatures below 10
K due to the formidable computation cost. Therefore, we use
150 × 150 × 150 q-point mesh for Cu and 200 × 200 × 200
q-point mesh for Al in the subsequent calculations.

The converged electron-scattering rates corresponding to
momentum and energy relaxation times at different tempera-
tures for Cu and Al are shown in Fig. 3. The scattering rates
increase significantly with temperature, which is mainly due
to the increase of phonon distribution n0. A drastic variation
appears near the Fermi surface. There is a sharp decrease of
around five orders of magnitude for 1/τσ and around three
orders of magnitude for 1/τκ as the temperature goes from
100 K to 10 K for Cu. It clearly demonstrates that the constant
electron relaxation time assumption [15] may give a large
uncertainty for calculating the electrical transport properties
and the mode-level calculation is necessary. The difference
between 1/τσ and 1/τκ is small at 50 and 100 K for both Cu
and Al. But the difference is large at 10 K, which is more
than one order of magnitude in Cu. There are valleys near
the Fermi energy as the temperature is less than 100 K. It
originates from the suppression of long wave-vector phonon
modes as the temperature decreases. A similar phenomenon is
also observed in the calculation for Pb [50].

FIG. 4. The electrical conductivity for (a) Cu and (b) Al calcu-
lated with MRTA (black solid lines), ERTA (red dash lines), and
Allen’s model (blue dot lines). The experimental data are taken from
Ref. [52]. The insets of (a) and (b) are the electrical conductivity
in the temperature range of 100–300 K. The ideal experimental
data is obtained by subtracting the residual resistance from the total
resistance. The results predicted by the correct model are in bold
lines.

B. Electrical transport coefficients

The electrical conductivities for Cu and Al calculated using
momentum relaxation time approximation (MRTA), energy
relaxation time approximation (ERTA), and Allen’s model
[18,51] are shown in Fig. 4. The experimental data [52] are
also presented for comparison. The electrical conductivities
are found to decrease with the increase of temperature. This
is related to the increase in electron-phonon scattering with
temperature. Overall, the electrical conductivity predicted by
MRTA is closer to the experimental data [52] in the whole
temperature range. The ideal experimental electrical conduc-
tivity is obtained by subtracting the residual resistance from
the total electrical resistance of the material. Here we only
consider the electrical transport properties limited by phonons
in the calculations. It should be noted that the electron-
electron scattering can further impede electron transport if the
temperatures are very low. As such, our predicted electrical
conductivity should be larger than the intrinsic experimental
data for temperatures below 15 K. The energy relaxation time
approximation (ERTA) is also employed in electrical con-
ductivity prediction in previous works [23,37,53]. We found
that the electrical conductivity predicted by ERTA is very
close to that evaluated by MRTA when the temperature is
greater than 40 K for Cu. However, the difference becomes
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FIG. 5. The electronic thermal conductivity for (a) Cu and (b)
Al calculated with MRTA (black solid lines), ERTA (red dash lines),
and Allen’s model (blue dot lines). The experimental data are taken
from Ref. [6]. The insets of (a) and (b) are the electronic thermal
conductivity in the temperature range of 100–300 K. The ideal
experimental data are obtained by subtracting the residual thermal
resistance from the total thermal resistance. The phonon thermal con-
ductivity (obtained by first-principles calculation) is also subtracted
from the experimental thermal conductivity. The results predicted by
the correct model are in bold lines.

significant once the temperature gets below 40 K. This arises
from the difference between the two relaxation times, as later
shown in Fig. 6(a). The momentum relaxation time is larger
than the energy relaxation time and ultimately results in the
smaller electrical conductivity in ERTA. It should be noted
that the difference between ERTA and MRTA is noticeable
in Al even at temperatures of 100–300 K, which was also
observed in the previous study [54]. These results demon-
strate that ERTA is inappropriate in the prediction of electrical
conductivity for Al even at room temperature. Allen’s model
is also widely used to predict electrical transport coefficients
[19,20,55,56]. Details of Allen’s model can be found in Ap-
pendix B. The predicted electrical conductivities using Allen’s
model are shown as the blue dotted lines in Fig. 4. Allen’s
model matches the MRTA model well in the temperature
range of 100–300 K. However, it has a significant deviation
from MRTA as the temperature is below 60 K for Cu and 80
K for Al.

The electronic thermal conductivity of Cu and Al is shown
in Fig. 5. It first decreases dramatically with temperatures
below 40 K, and then tends to a constant value as the tem-
perature increases. Electronic thermal conductivity is related
to electronic heat capacity and energy relaxation time. The

FIG. 6. The average momentum relaxation time 〈τσ 〉 and energy
relaxation time 〈τκ〉 with different temperatures for (a) Cu and (b)
Al. The insets are the average efficiency factors 〈α〉 for Cu and Al,
respectively.

heat capacity linearly increases with temperature. The energy
relaxation time decreases dramatically with temperature in
the low-temperature range, as it is shown in Fig. 6. Hence,
the electronic thermal conductivity decreases quickly with
temperature. At higher temperatures, the energy relaxation
time is almost inversely proportional to the temperature due
to the increase of phonon distribution n0, resulting in the less
temperature-dependent electronic thermal conductivity. The
electronic thermal conductivity predicted by ERTA matches
the experimental data [6] well within the entire temperature
range. For Cu, the difference between ERTA and MRTA is less
than 5% when the temperatures are larger than 40 K, while
the difference is significant in the whole temperature range
for Al. Specifically, the difference is ∼22% at 300 K for Al.
This can be similarly interpreted as we have done in electrical
conductivity.

The electronic thermal conductivities predicted by Allen’s
model are also presented. Allen’s model can capture the vari-
ation features of electronic thermal conductivity for both Cu
and Al. However, it has significant deviations from ERTA
within the entire temperature range. It should be noted that the
electronic thermal conductivity predicted by Allen’s model
holds a slightly increasing trend as the temperature is larger
than 150 K, shown in the insets of Fig. 5. We expect such a
phenomenon to be induced by the lowest-order approximation
in Allen’s model [18], as higher-order terms can also have
a contribution to the thermal resistance. Moreover, Allen’s
model cannot consider the anisotropy (variation with k in the
Fermi surface) and Fermi smearing effects [18,51]. It takes
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the average scattering rate and velocity around the Fermi
energy. Actually, the electron modes with energy in the range
of εF ± dE contribute to the electronic thermal conductivity
and the electron scattering rate cannot be approximated as
a constant at the Fermi surface, as shown in Fig. 3. The
variation of electrical and thermal conductivity at 100 K with
a width of the Fermi window (dE ) is shown in Sec. S3 of the
Supplemental Material [46]. To ensure the convergence, the
Fermi window width is set as 0.1 eV for temperatures smaller
than 100 K, and it is set as 1.0 eV for temperatures within
100–300 K.

We further perform the calculations on electrical transport
properties of superconductivity metals niobium (Nb) and tan-
talum (Ta), shown in Secs. S4 and S5 of the Supplemental
Material [46]. Similar to Cu and Al here, the ERTA would un-
derestimate the electrical conductivity and the MRTA would
overestimate the electronic thermal conductivity at low tem-
peratures.

C. Electron relaxation times

To further analyze the differences in the results predicted
by MRTA and ERTA, the weighted averages of momentum
relaxation time and energy relaxation time are given by [57]

〈τσ 〉 =
∑

km
∂ f 0

km
∂εkm

|vkm|2τσ,km∑
km

∂ f 0
km

∂εkm
|vkm|2

〈τκ〉 =
∑

km
∂ f 0

km
∂εkm

|vkm|2τκ,km∑
km

∂ f 0
km

∂εkm
|vkm|2

(12)

with |vkm|2 = (vx
km)2+(vy

km)2+(vz
km)2.

The momentum and energy relaxation times both show a
similar temperature dependence for Cu and Al, as shown in
Fig. 6. They show a rapid decline when the temperature is
less than 40 K and then the decreasing trend slows down in
the higher temperature range. The magnitude of momentum
relaxation time is significantly larger than that of energy relax-
ation time for Cu and Al at low temperatures. This indicates
that the efficiency factor has a significant effect on electron
scattering in this temperature range. To quantify the effects of
the efficiency factor, the average efficiency factor 〈α〉 is given
by

〈α〉 = (1/〈τσ 〉)/(1/〈τκ〉). (13)

As can be seen in the inset of Fig. 6(a), the average efficiency
factor increases with temperatures below 40 K for Cu and
converges to ∼1.0 in the higher temperature range. It should
be noted that the efficiency factor is close to 1 in the vicinity of
50 K and there exists a slight fall in Al at higher temperatures,
which is different from the variation trend of Cu.

D. Lorenz ratio

The temperature-dependent Lorenz ratios of different mod-
els are presented in Fig. 7. According to the kinetic theory of
electrons [5], the Lorenz ratio for metals should be the Som-
merfeld value, as L0 = π2k2

B/(3e2) = 2.44 × 10−8 W �/K2.
This is based on the constant relaxation time assumption for
free-electron metals. However, based on our present work

FIG. 7. The temperature dependent Lorenz ratio predicted in the
present work, by constant relaxation time (Constant), MRTA, ERTA,
Allen’s model (Allen) and the BG model for (a) Cu and (b) Al. The
Lorenz ratio is normalized by the Sommerfeld value, as L0 = 2.44 ×
10−8 W �/K2.

(momentum relaxation time for electrical conductivity and
energy relaxation time for electronic thermal conductivity),
the Lorenz ratio is no longer a constant at intermediate temper-
atures. It approaches zero at low temperatures and goes toward
L0 with temperature increasing. Our predicted Lorenz ratio
is consistent with the existing theory [4], which states that
the Lorenz ratio should be very small in the low-temperature
range and increase with temperature if only electron-phonon
scattering was considered. The Lorenz ratio predicted by
constant relaxation time is almost temperature independent
and very close to the Sommerfeld value. The Lorenz ratios
predicted by ERTA and MRTA also have large variations with
temperature, which indicates that the variation is induced by
the mode-dependent electron relaxation time.

The Lorenz ratios predicted by ERTA and MRTA have
large deviations from the present work in the lower tem-
perature range, which further confirms that only momentum
relaxation time is used for electrical conductivity and energy
relaxation time for thermal conductivity can capture the cor-
rect Lorenz ratio. However, these two models predict similar
Lorenz ratios as in the present work when the temperature is
higher than 40 K for Cu. This is because the two relaxation
times do not differ much in that temperature region. For Al,
the Lorenz ratios predicted by ERTA and MRTA approach
that of the present work only in the vicinity of 50 K and
significant deviations exist in other temperature ranges. The
average momentum relaxation time and average energy re-
laxation time are close to each other at ∼50 K. Therefore,
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FIG. 8. Schematic representation of electron scattering in (a) an
electric field and (b) under a temperature gradient. The electrons
close to the Fermi surface are driven by the external perturbations.
As for the external electrical field, the electrons can only return to
equilibrium through large-angle scatterings (horizontal processes), as
illustrated by the orange arrow in (a). As for the external temperature
gradient, the electrons can return to equilibrium through both large-
angle scatterings [orange arrow in (b)] and small-angle scatterings
(vertical processes), as illustrated by the small black arrows in (b).
The filled small spheres are occupied electron states and the open
small spheres are unoccupied electron states.

the further Lorenz ratio difference between the present work
and single relaxation time models is induced by the large
difference in the two relaxation times τσ and τκ .

The Lorenz ratios predicted by Allen’s model and the BG
model are also shown in Fig. 7. Allen’s model replicates the
Lorenz ratio of the present work in almost the entire tem-
perature range in Cu, while deviations exist in Al. The BG
model can be regarded as a special case of Allen’s model [51].
The details about the BG model are presented in Appendix
C. The Lorenz ratio predicted by the BG model holds the
similar variation tendency with our present method, which is
attributed to the two relaxation times being also employed in
the BG model [5]. Also, the Lorenz ratio predicted by the BG
model converges to 1 as the temperature is high. However, it
does not match our first-principles calculation in a quantitative
manner. This is attributed to the strong assumptions in the BG
model.

E. Inelastic electron-phonon scattering

The anomalous behavior of the Lorenz ratio at low tem-
peratures in Fig. 7 can be further attributed to the inelastic
electron-phonon scattering, which induces the difference be-
tween momentum relaxation time and energy relaxation time.
The electron-scattering processes for electrical current and
heat current are different [5,33], as shown in Fig. 8. The
electrons driven by the external electric field can only be
scattered by the large-angle scattering (horizontal process)
and return to equilibrium, which can change the direction of
motion. In comparison, the electrons driven by the external
temperature gradient can be effectively scattered by both the
large-angle scattering and the small-angle scattering (vertical
process). The type of large-angle scattering is sometimes also
called quasielastic scattering, while the small-angle scattering
is sometimes also called inelastic scattering. One should note
there always exists energy transport in an electron-phonon

FIG. 9. The efficiency factor at electron mode n k with different
temperatures for (a) Cu and (b) Al. The electron energy is normalized
to Fermi energy (εF ).

scattering process. Strictly speaking, both large-angle scatter-
ings and small-angle scatterings are inelastic.

At low temperatures, the electron scattering from long
wave-vector phonons is largely suppressed and the short
wave-vector phonons are the dominant scattering sources for
electrons. Short wave-vector phonons cannot easily switch the
direction of electron motion, but they do affect the energy
transport of electrons by inelastic scattering. As a result, the
momentum relaxation time is larger than the energy relax-
ation time. To further clarify this mechanism, the mode-level
efficiency factor αnk, as (1/τσ,nk )/(1/τκ,nk ), is presented in
Fig. 9. The efficiency factor at 10 K for the electron modes
close to the Fermi energy is significantly smaller than one
for both Cu and Al, which indicates the significant inelastic
scattering. There is almost no difference between 100 and
50 K for Cu and the value approaches 1, implying that the
quasielastic scattering dominates. The efficiency factor of Al
has a deviation from 1 at 100 K. Note that the value at 100
K is slightly smaller than that at 50 K. This is consistent with
the decreasing trend of the average efficiency factor at higher
temperatures in the inset of Fig. 6(b).

The Fermi surface with a superimposed efficiency factor
αnk is shown in Fig. 10. The topological features of Cu and Al
are completely different. The Fermi surface of Cu is close to
spherical in shape while Al holds the irregular Fermi surface.
There is only one sheet for Cu and two sheets for Al. The
Fermi surface of Cu shows “neck,” “belly,” and “bulge” fea-
tures in the regions marked by L, K, and X points, respectively
[16]. However, the inner sheet of the Fermi surface of Al
overall shows a “depression” trend toward the Brillouin-zone
center. We can clearly see the anisotropy of the efficiency
factor on the Fermi surface which is related to the topology
of the Fermi surface. The blue ribbons on Fermi surfaces at
10 K in Fig. 10 for Cu and Al correspond to the small values
in Fig. 9. The electron modes near the bulges hold the smallest
efficiency factor at 50 and 100 K for Cu. The electron modes
close to the Brillouin-zone boundary hold larger efficiency
factors, and the depression regions of the inner sheet have
smaller efficiency factors in Al. Most regions of the Fermi
surface of Al hold smaller efficiency factors at 100 K com-
pared to 50 K, which eventually results in the slightly smaller
average efficiency factors at 100 K, as shown in the inset of
Fig. 6(b).
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FIG. 10. Fermi surfaces showing the efficiency factor at electron
mode nk at 10, 50, and 100 K for (a) Cu and (b) Al. There is only
one sheet for the Fermi surface of Cu, while there are two sheets
for the Fermi surface of Al. Note the different scales at different
temperatures. L, K, and X are the three high-symmetry points of the
Brillouin zone. The Fermi surfaces are plotted with the FermiSurfer
package [58].

F. Phonon thermal conductivity

The phonon thermal conductivity (κph) for both Cu and Al
at temperatures ranging from 10 to 300 K is shown in Fig. 11.
Both phonon-phonon and phonon-electron scattering are in-
cluded in the estimation of κph. As we can see, the phonon
thermal conductivity first increases with temperature and then
decreases with temperature. The increase at low temperatures
is related to the increase of phonon heat capacity. Phonon-
electron scattering is the main phonon-scattering source in this
region and it is weakly dependent on the temperature [59]. It
would have a significant effect on the phonon thermal con-
ductivity as the temperature is smaller than 100 K, as shown
in Appendix D. The decrease at higher temperatures is mainly
attributed to the increase of anharmonic phonon-phonon scat-
tering. Note that κph occupies only a small proportion of the

FIG. 11. The phonon thermal conductivity for Cu (solid line) and
Al (dot line) in the temperature range of 10–300 K. Both phonon-
phonon and phonon-electron scattering effects are included.

FIG. 12. The electron-scattering rates calculated using Eqs.
(A11) and (A12) for (a) momentum scattering rate (1/τσ ) and (b)
energy scattering rate (1/τκ ). The calculation is conducted on Al
at 100 K with 80 × 80 × 80 q-point mesh and 100 × 100 × 100
k-point mesh. The electron energy is normalized to the Fermi energy
(εF ).

total thermal conductivity, as it is smaller than 5% in the entire
temperature range. The Lorenz ratio will have a minor change
if the total thermal conductivity is included in its estimation.
In this work, the iterative calculation scheme [49] is employed
in calculating intrinsic phonon thermal conductivity. This is
important as the RTA calculation scheme would underesti-
mate intrinsic phonon thermal conductivity at intermediate
temperatures. We note that the phonon thermal conductiv-
ity of Cu at 300 K is smaller than the value reported in
Ref. [23], which is attributed to the different pseudopotentials
used for the DFT calculation. This issue has been discussed in
Ref. [59].

IV. CONCLUSIONS

In summary, we perform a rigorous first-principles study
on the thermal conductivity and Lorenz ratio for Cu and Al
in the temperature range of 10–300 K. The small broaden-
ing parameter, extremely dense k-point and q-point meshes,
should be used in order to obtain the correct electrical trans-
port coefficients at intermediate temperatures. It is shown
that momentum relaxation time should be used for electri-
cal conductivity and energy relaxation time for electronic
thermal conductivity. Large deviations in Cu would occur
at temperatures below 40 K and non-negligible deviations
even at room temperature in Al if the electron relaxation
times were misused. It is found that there is an intrin-
sic deviation of the Lorenz ratio from the Sommerfeld
value as the temperature is smaller than 40 K for Cu and
almost the whole temperature range for Al, which is at-
tributed to the inelastic electron-phonon scattering. Finally,
the phonon thermal conductivity in the pure metals is shown
to be significantly smaller than the electron component.
The current calculation scheme can quantitatively obtain the
phonon-limited thermal conductivity and Lorenz ratio at in-
termediate/low temperatures, which is a relatively unexplored
area. This approach can also be applied to other metallic
systems and enables the design of high performance metallic
materials.
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APPENDIX A: DERIVATION OF THE EXPRESSION FOR THE TWO ELECTRON RELAXATION TIMES

Using the detailed balance condition, we have

S(nk, mk′) f 0
nk

(
1 − f 0

mk′
) = S(mk′, nk)

(
1 − f 0

nk

)
f 0
mk′ (A1)

with S(nk, mk′) the differential scattering rate from state nk to state mk′. As we consider the electron-phonon scattering,
S(nk, mk′) holds the form [36,60]

S(nk, mk′) = 2π

h̄

∑
q,ν

|gmn,v (k, q)|2
{

n0
qvδ(εnk − εmk′ + ωqv )

+[
n0

qv + 1
]
δ(εnk − εmk′ − ωqv )

}
. (A2)

We ignore the electron band indexes n and m in the next discussion for simplification. The collision term in the Eq. (1) of the
main text can be expressed as(

∂ fk

∂t

)
coll

= δ fk

τk
= I{ fk} = −

∫
d3k′

(2π )3 [S(k, k′) fk(1 − fk′ ) − S(k′, k) fk′ (1 − fk )]. (A3)

Here τk can be either τσ,k or τκ,k. Insert fk = f 0
k + δ fk into Eq. (A3) and we find

δ fk

τk
= I{ fk}= −

∫
d3k′

(2π )3 S(k, k′)
[
δ fk

1 − f 0
k′

1 − f 0
k

− δ fk′
f 0
k

f 0
k′

]
. (A4)

From Eq. (3), we have

δ fk=τσ,k(T )evk · E
(

∂ f 0
k

∂εk

)
with only electrical field

δ fk = τκ,k(T ) ε(k)−εF

T vk · ∇T
(

∂ f 0
k

∂εk

)
with only temperature gradient

. (A5)

From Eq. (1), we get the following collision term for the electrical field condition:

I{ fk} =
(

−∂ f 0
k

∂εk

)
vk · eE. (A6)

Similarly, for the temperature gradient condition, we have

I{ fk} =
(

−∂ f 0
k

∂εk

)
vk · εk − εF

T
∇T . (A7)

Enter the first line of Eq. (A5) and Eq. (A6) into Eq. (A4) and with the assumption τσ,kvk ≈ τσ,k′vk′ , we get

1

τσ,k
=

∫
d3k′

(2π )3

1 − f 0
k′

1 − f 0
k

(
1 − vk · vk′

|vk||vk′ |
)

S(k, k′). (A8)

Similarly, enter the second line of Eq. (A5) and Eq. (A7) into Eq. (A4) and with the assumption τκ,kvk ≈ τκ,k′vk′ , we get

1

τκ,k
=

∫
d3k′

(2π )3

1 − f 0
k′

1 − f 0
k

(
1 − εk′ − εF

εk − εF

vk · vk′

|vk||vk′ |
)

S(k, k′). (A9)

The term vk ·vk′
|vk||vk′ | in Eqs. (A8) and (A9) can also be expressed as cosθk, k′ . Change the integral Eqs. (A8) and (A9) to the summation

form and insert the Eq. (A2), and we have

1

τσ,nk
= 2π

h̄

∑
mv

∫
BZ

dq
�BZ

|gmn,v (k, q)|2 1 − f 0
mk′ (T )

1 − f 0
nk(T )

{
n0

qv (T )δ(εnk − εmk′ + ωqv )

+[
n0

qv (T ) + 1
]
δ(εnk − εmk′ − ωqv )

}
(1 − cos θnk,mk′ )

1

τκ,nk
= 2π

h̄

∑
mv

∫
BZ

dq
�BZ

|gmn,v (k, q)|2 1 − f 0
mk′ (T )

1 − f 0
nk(T )

{
n0

qv (T )δ(εnk − εmk′ + ωqv )

+[
n0

qv (T ) + 1
]
δ(εnk − εmk′ − ωqv )

}(
1 − ε

mk′ − εF

εnk − εF
cos θnk,mk′

)
. (A10)
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We add the electron band indexes n and m in Eq. (A10). The term
ε

mk′ −εF

εnk−εF
cos θnk,mk′ in the second line of Eq. (A10) can be

further dismissed [4,34]. Therefore, we obtain the final expression for the two electron scattering rates:

1

τσ,nk
= 2π

h̄

∑
mv

∫
BZ

dq
�BZ

|gmn,v (k, q)|2 1 − f 0
mk′ (T )

1 − f 0
nk(T )

{
n0

qv (T )δ(εnk − εmk′ + ωqv )

+[
n0

qv (T ) + 1
]
δ(εnk − εmk′ − ωqv )

}
(1 − cos θnk,mk′ )

1

τκ,nk
= 2π

h̄

∑
mv

∫
BZ

dq
�BZ

|gmn,v (k, q)|2 1 − f 0
mk′ (T )

1 − f 0
nk(T )

{
n0

qv (T )δ(εnk − εmk′ + ωqv )

+[
n0

qv (T ) + 1
]
δ(εnk − εmk′ − ωqv )

}
. (A11)

From Eq. (A11), it can be seen that there exists an efficiency factor in momentum relaxation time, while there is no efficiency
factor in energy relaxation time. In our main text, we use the following expressions for the two electron relaxation times,

1

τσ,nk
= 2π

h̄

∑
mv

∫
BZ

dq
�BZ

|gmn,v (k, q)|2
{[

n0
qv (T )+ f 0

mk′ (T )
]
δ(εnk − εmk′ + ωqv )

+[
n0

qv (T ) + 1 − f 0
mk′ (T )

]
δ(εnk − εmk′ − ωqv )

}
(1 − cos θnk,mk′ )

1

τκ,nk
= 2π

h̄

∑
mv

∫
BZ

dq
�BZ

|gmn,v (k, q)|2
{[

n0
qv (T )+ f 0

mk′ (T )
]
δ(εnk − εmk′ + ωqv )

+[
n0

qv (T ) + 1 − f 0
mk′ (T )

]
δ(εnk − εmk′ − ωqv )

}
. (A12)

There are some differences between Eqs. (A11) and (A12). It is claimed in Ref. [35] that the two expressions are equal. The
relaxation times in Eq. (A11) are also called transport relaxation times [35]. The scattering rates calculated by Eqs. (A11) and
(A12) are shown in Fig. 12. Both momentum relaxation times and energy relaxation times predicted by Eqs. (A11) and (A12)
are almost the same.

APPENDIX B: ALLEN’S MODEL FOR TRANSPORT COEFFICIENTS

The electrical resistivity is given by [18,51]

ρel (T ) = 1

σ (T )
= 2πV kBT

e2h̄NF 〈v2
α〉

∫ ∞

0

dω

ω

x2

sinh2x
α2Ftr (ω). (B1)

NF is the electron density of state per spin and per unit cell at the Fermi surface. α is the coordinate of the Cartesian system.
〈v2

α〉 means the average velocity square in coordinate α. x = h̄ω/2kBT is a dimensionless parameter. The Eliashberg transport
function α2Ftr is expressed as [30]

α2Ftr (ω) = 1

N (εF )

∑
q,v

∑
knm

|gmn,v (k, q)|2δ(h̄ω − h̄ωqv ) × δ(εkn − εF )δ(εk+qm − εF )αk+qm,kn, (B2)

where αk+qm,kn is the efficiency factor in Eq. (6).
The thermal resistivity is given by [18,51]

ρth(T ) = 1

κel(T )
= 1

L0T

2πV kBT

e2h̄NF 〈v2
α〉

∫ ∞

0

dω

ω

x2

sinh2x

{[
1 − 2

π2
x2

]
α2Ftr (ω) + 6

π2
x2α2F (ω)

}

= 1

L0

2πV kB

e2h̄NF 〈v2
α〉

{∫ ∞
0

dω
ω

x2

sinh2x
α2Ftr (ω)

+ ∫ ∞
0

dω
ω

x2

sinh2x

{
2
π2 x2α2Ftr (ω) + 6

π2 x2α2F (ω)
}}

= 1

L0

2πV kB

e2h̄NF 〈v2
α〉 {I1+I2} (B3)

with I1=
∫ ∞

0
dω
ω

x2

sinh2x
α2Ftr (ω) and I2=

∫ ∞
0

dω
ω

x2

sinh2x
{ 2

π2 x2α2Ftr (ω) + 6
π2 x2α2F (ω)}.

The Wiedemann-Franz law holds as we ignore I2 in Eq. (B3). α2F is the Eliashberg spectral function, which is read as [30]

α2F (ω)= 1

N (εF )

∑
q,v

∑
knm

|gmn,v (k, q)|2δ(h̄ω − h̄ωq j ) × δ(εkn − εF )δ(εk+qm − εF ). (B4)

APPENDIX C: LORENZ RATIO BY BG MODEL

The Bloch-Grüneisen model gives the Lorenz ratio as

L = L0

1 + 3
π2

( kF
qD

)2( θD
T

)2 − 1
2π2

J7(θ/T )
J5(θ/T )

, (C1)

where kF and qD are the Fermi wave vector and Debye wave
vector, respectively. θD is the Debye temperature, which is
predicted as 322 K for Cu and 446 K for Al from first princi-
ples. Jn (n is an integer) is defined as

Jn

(
θ

T

)
≡

∫ θ/T

0

xnex

(ex − 1)2 dx. (C2)
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FIG. 13. The phonon thermal conductivity without (pp) and with
(pp + pe) phonon-electron scattering for Cu.

APPENDIX D: PHONON-ELECTRON SCATTERING
EFFECTS ON PHONON THERMAL CONDUCTIVITY

The phonon thermal conductivity is given by

κph,αβ =
∑

λ

cv,λvλ,αvλ,βτλ, (D1)

where λ is the phonon mode denotation. cv,λ is the phonon
heat capacity, vλ is the phonon group velocity, and τλ is
the phonon relaxation time. All three parameters are phonon
mode dependent. According to Matthiessen’s rule, the phonon
relaxation time can be expressed as 1/τλ = 1/τPPI

λ + 1/τPEI
λ .

Here, 1/τPPI
λ and 1/τPEI

λ are the phonon-scattering rates in-
duced by phonon-phonon and phonon-electron scattering.

To demonstrate the effects of phonon-electron scattering,
the phonon thermal conductivity without and with phonon-
electron scattering for Cu is shown in Fig. 13.
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