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Ab initio based description of the unusual increase of the electric field gradient
with temperature at Ti sites in rutile TiO2
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Combining a precise ab initio electron band structure calculation of the TiO2 rutile structure with the
temperature evolution of the Ti mean-square displacements, we reproduce a puzzling temperature increase of
the electric field gradient at Ti sites in TiO2, observed experimentally. Our method employs a procedure of
averaging two quadrupole electron density components (L = 2) inside a sphere vibrating with the Ti nucleus at
its center, where the key factor introducing the temperature dependence is the square root of the Debye-Waller
factor. Although the Debye-Waller factor always reduces the corresponding Fourier component, in TiO2 due to
the interplay between terms of opposite signs, it results in a net increase of the whole sum with temperature,
leading to the growth of the electric field gradient. Quantitatively, we find that the increase of electric field
gradient is only half of the experimental value, which we ascribe to anharmonic effects or a strong oxygen
position influence. In addition, our method reproduces the unusual temperature dependence of the asymmetry
parameter η, which first decreases with temperature, goes to zero, and then increases.
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I. INTRODUCTION

Nuclear spectroscopic methods, such as the time-
differential perturbed angular correlation (TDPAC) technique
and the Mössbauer spectroscopy, are very sensitive experi-
mental instruments probing the local charge distributions of
complex materials of interest over a wide temperature (T )
range [1–3]. These methods measure the electric field gradient
(EFG) at nuclear probes [4,5], reflecting minute changes in
their chemical environment and local bonding. In the case
of a phase transition, EFG (or Vzz) can change abruptly [6],
but even without phase transitions the EFG demonstrates a
smooth change with T [4,5]. Usually, this is a monotonic
decrease with increasing T , very often in the functional form
of Vzz ∝ (1 − BT 3/2) [4,7] (where B is a constant) but in some
instances unexpectedly an increase of Vzz with T takes place.
In particular, a weak increase of Vzz with T has been observed
for the 47Ti and 49Ti nuclear probes in the rutile structure of
titanium dioxide [8].

The nature of a strong temperature behavior of Vzz has
been addressed in a number of theoretical and experimental
research [4,5,9]. In principle, one can consider it as an an-
harmonic effect. Then, taking the experimental temperature
dependence of lattice constants [a(T ) and c(T ) for TiO2, for
example] and performing a set of EFG calculations at distinct
values of ai and ci corresponding to various temperatures Ti,
one can obtain the evolution of Vzz as a function of T . This
is of course not a true ab initio approach, but even worse the

method in many cases does not work, giving wrong depen-
dence: a decrease instead of increase and vice versa. This was
realized already at the early stage of investigation albeit for a
simple point charge model [4]. The challenge is to explain the
temperature evolution of Vzz in the harmonic approximation,
at least its general tendency to increase or decrease with T .
To date there have been only a few attempts of such research
[9,10].

A recent study [9] has combined an ab initio band struc-
ture approach with computing Debye-Waller factors (DWFs),
exp ( − W (K, T )) [11], to reproduce correctly the experimen-
tal temperature evolution of EFG in pristine metallic zinc and
cadmium [7]. This method is in accord with early idea of Jena
[12], who used a simple empirical model for the temperature
dependence of DWFs and obtained a (1 − BT 3/2) decrease
of EFG. The model of Jena can only describe the reduction
of Vzz with T , which seems logical taking into account the
monotonic decrease of DWFs with temperature [11]. A fun-
damental question is as follows: Can the consideration based
on DWFs explain an increase of EFGs, for example, in TiO2?
As discussed in Ref. [9], in principle it is possible. However, it
has been shown only that this type of behavior is not forbidden
and can occur within a certain model dependence for the
temperature evolution of mean-square displacements. In this
paper, we extend the considerations developed in Ref. [9] to
the rutile structure of TiO2 and demonstrate that the method is
capable of predicting the increase of Vzz with T .
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FIG. 1. Unit cell of the rutile phase of TiO2 and the Cartesian
coordinate system (titanium, black spheres; oxygen, red spheres).
The distorted oxygen octahedron around the central Ti atom is shown
by red dashed lines. The lattice constants a, b = a, c are indicated.

The rutile phase of TiO2 is the thermodynamically sta-
ble form of the three known modifications (rutile, anastase,
brookite) of titanium dioxide [13]. The Ti ions form the body-
centered tetragonal structure, with each Ti ion surrounded by
a distorted octahedron of six oxygen ions (Fig. 1). In the rutile
unit cell there are two different Ti sites distinguished by two
alternating orientations of the surrounded distorted oxygen
octahedra. These octahedra and two tensors of electric field
gradients at two Ti sites are related by a rotation through π

about the z axis. Below in considering EFG tensor we refer to
the central Ti site in Fig. 1.

The Ti-site EFGs have been measured with the native 47Ti
and 49Ti nuclear probes by means of the nuclear magnetic
resonance (NMR) spectroscopy [8]. These measurements per-
formed on a single crystal over a large temperature range
indicate that Vzz increases from 2.11 × 1021 V/m2 at 150 K
to 2.86 × 1021 V/m2 at 1420 K. The second parameter η, the
EFG asymmetry, starts from 0.2 at 300 K, goes to zero around
970 K, and then increases to 0.13 at 1420 K [8,14]. (The
interpolated experimental plots for EFG and η are shown in
Fig. 7 later.) In addition, the TDPAC spectroscopy has been
applied to TiO2 to study EFG with the impurity 111In → 111Cd
[15–17], 181Hf → 181Ta [16,18], and 44Ti → 44Sc [19,20] nu-
clear probes. The Vzz behavior of the 111Cd and 181Ta probes
differs considerably from that of Ti. In contrast to 181Ta TD-
PAC measurements [16] showing as 47,49Ti an increase with
T , the substitutional 111Cd probes result in a slow decrease
of Vzz with T [16]. The room-temperature values of Vzz are
13.4 × 1021 V/m2 for 181Ta and 5.8 × 1021 V/m2 111Cd. The
asymmetry parameter η with these impurities also changes
differently. In 181Ta, η increases slightly from 0.57 at 300 K
to 0.58 at 1300 K, whereas with 111Cd, η changes from
0.2 at 300 K, goes to zero at 700 K, and then increases to
0.2 at 1300 K. Although recent TDPAC measurements of
44Sc probes in rutile modification of TiO2 found that EFG
increased with T [20], they also showed a remarkable differ-
ence from the native 47Ti and 49Ti nuclear probes, detecting
essentially T -independent antiaxial EFG with η = 0.94 close
to unity [19,20].

The EFG at Ti sites has been a subject of band structure
investigations [17,21–23]. In the early study of Blaha et al.

[21] in pure TiO2 it has been found that in addition to valence
states, there is a relatively large contribution to Vzz from the
semicore Ti 3p electron states, and that the value of Vzz is
very sensitive to details of the electron band structure. In a
series of first-principles calculations, the problem of a substi-
tutional Cd impurity located at the Ti site has been addressed
in Refs. [17,22,23]. On substituting the Ti atom by a Cd
impurity, the ab initio calculation predicts strong anisotropic
relaxations of the nearest oxygen neighbors and a change of
the orientation of the largest EFG tensor component V33 from
the (001) to the (110) direction [17]. To calculate the tempera-
ture dependence of Vzz at Cd the structural relaxation has been
performed for a set of experimental temperature-dependent
lattice constants a and c [23]. This study, however, refers to
a decrease of Vzz.

To the best of our knowledge, no attempt was made to
explain the temperature increase of Vzz in TiO2. This issue
is the main goal of this study. In Sec. II we briefly describe
the method. Here, we generally follow the considerations of
Ref. [9], but apply the approach to the problem of TiO2. In
Sec. III we present our results and discuss them. The conclu-
sions are summarized in Sec. IV.

II. THEORETICAL METHOD

A. Electric field gradient in TiO2

The EFG tensor Vi j is defined as the second partial spa-
tial derivatives of the electric part of the self-consistent-field
potential V ( �R) evaluated at the nuclear site, i.e.,

Vi j = ∂2V

∂i∂ j
, (1)

where i = x, y, z. Vi j , being a symmetric second-rank tensor,
can be further diagonalized by transforming coordinates to the
principal system of axes (x′, y′, z′) chosen such that |Vz′z′ | �
|Vy′y′ | � |Vx′x′ |. (Since Vi j is traceless, in the principal axis sys-
tem the number of independent parameters for EFG is reduced
to two.) The principal component (Vz′z′ ) is called the electric
field gradient, and the second independent parameter is the
asymmetry η defined as η = (Vx′x′ − Vy′y′ )/Vz′z′ (0 � η � 1).

It can be shown (see, e.g., Ref. [9]) that the EFG tensor
Vi j is closely related to the quadrupole components (l = 2) of
the expansion of the electric part of the full potential V ( �R) in
terms of the angular functions Sτ

l (θ, φ):

V (r, θ, φ) =
∑
l,τ

V τ
l (r) Sτ

l (θ, φ). (2)

Here, Sτ
l (θ, φ) are the angular functions adapted for the rutile

point crystal symmetry, l is the multipole orbital index, and τ

counts functions with the same l (if there are few such func-
tions). The polar angles (θ, φ) are specified by the vector �r
from the closest nuclear position. Sτ

l (θ, φ), called symmetry-
adapted functions (SAFs), are linear combinations of real
spherical harmonics (Y m,c

l ∼ cos mφ and Y m,s
l ∼ sin mφ) de-

fined by the crystal site symmetry and tabulated in Ref. [24].
Equation (2) can be viewed as a standard expansion in terms
of spherical harmonics, where each angular function has
the full point crystal symmetry. Expansion (2) is a standard
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FIG. 2. Two angular quadrupole functions SQ,1 (a) and SQ,2

(b) [Eqs. (3a) and (3b)], used for the expansion of the electron density
and electric potential at the titanium site in TiO2. The x, y, and z axes
correspond to those shown in Fig. 1.

procedure in the full potential version of modern electron band
structure codes [25].

At titanium site there are two quadrupole SAFs related to
the EFG tensor (Fig. 2):

SQ,1(θ, φ) = Y 0
l=2(θ, φ) ∼ 3z2 − r2, (3a)

SQ,2(θ, φ) = Y 2,s
l=2(θ, φ) ∼ xy. (3b)

Here, Y m=0
l and Y m,s

l are real spherical harmonics with l = 2.
Thus, the quadrupole part of the electric potential [Eq. (2)] is
given by

VQ(r, θ, φ) = VQ,1(r) SQ,1(θ, φ) + VQ,2(r) SQ,2(θ, φ). (4)

Here, VQ,i(r) (i = 1, 2) are two independent radial com-
ponents corresponding to the angular parts SQ,i(θ, φ). The
EFG tensor Vi j [Eq. (1)] comes solely from the function VQ

[Eq. (4)], the contribution from the other terms in Eq. (2) is
zero. As shown in Ref. [9], for the radial components VQ,i(r)
at r → 0 we obtain

VQ,1(r) = vQ,1 r2, VQ,2(r) = vQ,2 r2, (5)

where vQ,1 and vQ,2 are potential constants. The calculated
dependencies of vQ,1 and vQ,2 on the lattice constant ratio c/a
are shown in Fig. 3. From Eqs. (4) and (5) one can obtain the
diagonal components of the EFG tensor

V11 = −vQ,1
1

2

√
5

π
+ vQ,2

1

2

√
15

π
, (6a)

V22 = −vQ,1
1

2

√
5

π
− vQ,2

1

2

√
15

π
, (6b)

V33 = vQ,1

√
5

π
. (6c)

Here, the diagonal component V11 is oriented along the (1,1,0)
crystal lattice direction, V22 along the (−1, 1, 0) direction, and
V33 along the (0,0,1) direction.

The calculated dependence of the components Vj j on the
lattice constant ratio c/a with the fixed u = 0.3041 is de-
picted in Fig. 4. From Figs. 3 and 4 (see also Sec. III)
it follows that in TiO2 where c/a ≈ 0.640–0.644, vQ,1 < 0
and Vzz = Vz′z′ = V33 < 0 and hence V11 > 0, V22 > 0. That
is, the EFG value is associated with the V33 component along
the (0,0,1) crystal lattice direction. For c/a < 0.641 vQ,2 < 0,
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FIG. 3. vQ,1 and vQ,2 [Eq. (5)] versus the lattice constant ratio c/a
(with u fixed) at T = 0, in units (eV/a.u.2). For c/a > 0.641 vQ,2 > 0
and V11 > V22, for c/a < 0.641 vQ,2 < 0 and V11 < V22 [Eqs. (6a) and
(6b)]. At c/a ≈ 0.641 η = 0. (Calculations with the Moscow-FLAPW

code, details are given in Sec. II C.)

V11 < V22, and Vx′x′ = V11, Vy′y′ = V22, η = (V11 − V22)/V33.
For c/a > 0.641 vQ,2 > 0 and η = (V22 − V11)/V33 (Fig. 3).

Interestingly, at c/a > 0.653 the largest diagonal compo-
nent becomes V11 (i.e., Vz′z′ = V11) (Fig. 4). The change of Vz′z′

orientation from (001) to (110) directions is experimentally
observed for Cd probes in Ti sites in TiO2 [17,22], where it
comes from the local anisotropic atomic relaxation introduced
by the Cd impurity. In pure TiO2 the situation is different
and the change of EFG is caused by the potential increase of
c/a modifying the nearest neighbors’ Ti-O relative distances

FIG. 4. Diagonal components Vj j ( j = 1, 2, 3) of the EFG ten-
sor [Eqs. (6a)–(6c)] versus the lattice constant ratio c/a at T = 0
(with u fixed). The electric field gradient Vz′z′ = V33 for c/a < 0.653,
and Vz′z′ = V11 for c/a > 0.653. At c/a ≈ 0.641, η = 0, at c/a ≈
0.653, η = 1. For comparison the T = 0 value of Vz′z′ obtained by
the extrapolation of experimental data [8] is also shown. (Calcula-
tions with the Moscow-FLAPW code, details are given in Sec. II C.)
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(those from the apical oxygens and those of the basal plane)
and thus producing a similar effect.

Therefore, there are two critical points in Fig. 4. At
c/a = 0.641, η = 0 and the EFG tensor is axial, whereas
at c/a = 0.653, η = 1 and the EFG tensor is antiaxial [19].

B. Temperature dependence of EFG

A general model for theoretical calculations of temperature
dependence of EFG is presented in Ref. [9]. Here, we briefly
outline it applying to TiO2 and working within the linear
augmented plane-wave (LAPW) method [25].

The electron density around a nucleus being strongly cou-
pled to it by the Coulomb interaction follows adiabatically the
vibrating ion, while the electron density in the interstitial re-
gion interacting with several neighboring ions is less affected
by the motion of a single atom. The dichotomy is resolved
by considering vibrating spheres (muffin-tin or MT spheres)
in the crystal with the electron density virtually unchanged
in the interstitial region (between the spheres). That is, we
assume that the Fourier expansion coefficients ρ( �K ) of the
electron density in the interstitial density remain constant,
and, following the procedure of LAPW method, calculate
multipole density components on the vibrating MT spheres,
which serve as the boundary surface conditions. Inside the MT
spheres the electron density is expanded in terms of spherical
harmonics. As shown in Ref. [9] at a finite and even zero
temperature T the average quantities 〈ρ( �K )〉 on vibrating MT
spheres are effectively reduced. In the language of the LAPW
method, this implies a modification of boundary conditions
for the solutions inside the MT spheres [25]. In particular, this
procedure affects the average value of quadrupole components
of electron density 〈ρQ〉 associated with the multipole index
l = 2. The change of 〈ρQ〉 on the sphere surface (at r = RMT)
translates inside it (i.e., at r � RMT) and finally leads to a
change of EFG at r → 0.

Unlike Ref. [9], the point symmetry of the Ti site in
TiO2 supports two angular quadrupole functions SQ,i, i =
1, 2 [Eqs. (3a) and (3b)], in the multipole expansions of the
potential and electron density. Extending the considerations
of Ref. [9], we then write for the average values of two
quadrupole components of electron density on the Ti MT
sphere,

〈ρQ,i〉 = −4π
∑

�K
j2(KRMT)SQ,i(K̂ ) e−W ( �K,T ) ρ( �K ). (7)

Here, the summation is over the reciprocal vectors �K , K̂ spec-
ifies the direction of �K , i.e., K̂ ≡ (θ �K , φ �K ), j2 are spherical
Bessel functions, SQ,1 and SQ,2 are the quadrupole SAFs given
by Eqs. (3a) and (3b), and, finally,

W ( �K, T ) = 1
2 〈( �K · �u)2〉, (8)

where �u is the vector of the MT-sphere displacement. In
Eq. (7), the effective reductions of 〈ρ( �K )〉 are described by
the temperature function exp(−W ), which is the square root of
the Debye-Waller factor (SRDWF). [The conventional Debye-
Waller factor is exp(−2W ) [11].] Earlier, SRDWF has been
used by Kasowski in explaining the temperature-dependent
Knight shift in cadmium [26,27].

As argued in Ref. [9] in a first approximation one can use
an r-independent change (often reduction) of the quadrupole
electron density component ρQ,i(r) inside the Ti MT sphere
(r � RMT),

〈ρQ,i(r, T )〉
ρQ,i(r, u = 0)

= 〈ρQ,i(RMT, T )〉
ρQ,i(RMT, u = 0)

= Ri(T ). (9)

Here, 〈ρQ,i(r, T )〉 is the ith averaged quadrupole value inside
the sphere (i = 1, 2), while ρQ,i(r, u = 0) is the quadrupole
component in the absence of displacements (u = 0).
Note that 〈ρQ,i(RMT, T )〉 on the surface of Ti MT sphere can
be calculated by means of Eq. (7). Combining Eqs. (7) and (9),
we obtain R1 and R2 as functions of T . At T = 0, Ri(T ) ≈ 1.
[The deviations of Ri(T = 0) from one are due to the zero
point vibrations.]

The temperature changes of ρQ,i inside the Ti MT-
spheres described by Eq. (9) lead to the proportional changes
of the quadrupole potential components, i.e., VQ,i(r, T ) =
Ri(T )VQ,i(r) [9]. Equation (4) then reads as

VQ(r,	, T ) = VQ,1(r, T ) SQ,1(	) + VQ,2(r, T ) SQ,2(	),

(10)

where 	 = (θ, φ). At r → 0 we obtain VQ,i(r, T ) =
vQ,i(T ) r2 [compare with Eq. (5)] where we have introduced
temperature-dependent functions

vQ,1(T ) = vQ,1 R1(T ), vQ,2(T ) = vQ,2 R2(T ). (11)

Then, the temperature dependence of three components of
EFG [Eqs. (6a)–(6c)] is explicitly expressed as

V11(T ) = −R1(T )
vQ,1

2

√
5

π
+ R2(T )

vQ,2

2

√
15

π
, (12a)

V22(T ) = −R1(T )
vQ,1

2

√
5

π
− R2(T )

vQ,2

2

√
15

π
, (12b)

V33(T ) = R1(T ) vQ,1

√
5

π
. (12c)

As long as V33 remains the largest diagonal component (i.e.,
Vzz = V33) we arrive at

Vzz(T ) ≈ R1(T )Vzz, (13)

where Vzz is the T = 0 value of EFG. On the other hand,
the asymmetry parameter η(T ) depends on both vQ,1(T ) and
vQ,2(T ).

In the following we will work in this approximation and,
therefore, the only quantities that we have to calculate are
two ratios of quadrupole components on the surface of Ti
MT sphere Ri(T ), which completely describe the temperature
dependence of the EFG tensor Eqs. (12a)–(13).

C. Technical details of calculations

Electron density functional calculations have been per-
formed with the Moscow-FLAPWcode [28]. The code explic-
itly takes into account the nuclear size and the change of
the potential and the wave function inside the nuclear region
to obtain the electric field gradient accurately. In addition,
the number of radial points inside the MT region has been
increased to 3000 (for some runs 3500). The typical LAPW
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basis-set cutoff parameter was RMTKmax from 7.8 to 8 with
the number of basis functions from 583 to 737 for various
runs, a typical number of k points in the irreducible part of
the Brillouin zone (BZ) was 840. We have used the tetrahe-
dron method for the linear interpolation of energy between k
points. For calculation of the exchange-correlation potential
we have used the PBEsol variant [29] of the generalized-
gradient approximation (GGA) within the density functional
theory (DFT). The precise calculations of Vzz and η have been
performed for a number of various lattice constants whose
c/a ratios are shown in Figs. 3 and 4. The correct behav-
ior of η with T has been obtained for the lattice constants
a = 4.5685 Å, c = 2.9115 Å, u = 0.304 14 with the MT radii
0.8731 Å. It was assumed that the semicore (Ti 3p) states
followed adiabatically the nuclei vibrations and their contri-
bution to the interstitial region and temperature dependence
was not considered.

For the phonon part required for mean-square displace-
ment calculations, we have used the pseudopotential method
as implemented in QUANTUM ESPRESSO (QE) [30,31], with
the PBEsol exchange-correlation functional [29] and PBEsol
optimized norm conserving Vanderbilt pseudopotentials
(ONCVPSP) [32] from the ONCVPSP library [33]. The inte-
gration over the BZ for the electron density of states has been
performed on a 24 × 24 × 12 grid of k points, the plane-wave
kinetic cutoff energy was 70 Ry. The lattice-dynamical cal-
culations have been carried out within the density-functional
perturbation theory (DFPT). Phonon dispersions have been
computed using the interatomic force constants based on a
6 × 6 × 4 k-point grid, with a 48 × 48 × 24 grid used to
obtain the phonon densities of states and the mean-square
displacements of titanium and oxygen.

In both cases, the thermal expansion of the unit cell has not
been taken into account.

III. RESULTS AND DISCUSSION

First, we note that both the expansion of the lattice and a
slight increase of c/a with temperature (with the rate 2.2 ×
10−6 K−1 [34]) lead to a smooth decrease of the electric field
gradient Vzz = V33 (Fig. 4) (around c/a = 0.64). Thus, the
effect of the increase of EFG observed experimentally [8] is
highly nontrivial.

Our typical calculation of the temperature evolutions of
the potential quadrupole quantities vQ,1 and vQ,2 [Eq. (5)] are
shown in Fig. 5 (for c/a = 0.6373). The increase of vQ,1 with
T unambiguously results in increase of EFG [Eqs. (12c) and
(13)]. Interestingly, |vQ,2| decreases with T and crosses the
zero value at 940 K, after which the sign of vQ,2 is reversed.
From Eqs. (12a) and (12b) then it follows that at 940 K η = 0,
in close correspondence with experimental observations [8].

The increase of EFG in TiO2 is a very stable effect. It
is found in a very wide range of lattice constants and c/a
ratios. The temperature evolution of vQ,2 on the other hand
is very sensitive to details of calculations. We have found that
at c/a < 0.641 |vQ,2| decreases as shown in the lower panel of
Fig. 5, but increases at c/a > 0.641 (Fig. 3).

The principal mechanism of an increase of EFG has
been discussed in Ref. [9]. Below we briefly discuss
it for TiO2. From Eqs. (13) and (9) it follows that
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FIG. 5. Typical temperature dependencies of quadrupole param-
eters vQ,1(T )/vQ,1(0) and vQ,2(T )/vQ,2(0) [Eq. (11)] related to the
quadrupole functions SQ,1 and SQ,2 [Eqs. (3a) and (3b)].

Vzz(T ) ∝ 〈ρQ,1(RMT , T )〉, while the Fourier expansion for
〈ρQ,1(RMT , T )〉 [Eq. (7)], being positive, can be further par-
titioned in two groups:

〈ρQ,1〉 =
∑

m

|c1,m|W1,m(T ) −
∑

n

|c2,n|W2,n(T ). (14)

Here, Wi,p(T ) = exp (−W ( �Ki,p, T )) (i = 1, p = m or i =
2, p = n) are the temperature-dependent SRDW fac-
tors, while ci,p(Ki,p) = −4π j2(Ki,pRMT)SQ,i(K̂i,p) ρ( �Ki,p) are
temperature-independent coefficients, which can be positive
or negative. [ρ( �Ki,p) here are the Fourier coefficients entering
also Eq. (7).] The difference between two explicitly written
groups in Eq. (14) is that for all indices m and n, c1,m � 0
whereas c2,n < 0, and therefore, each of the two sums on the
right-hand side of Eq. (14) is positive. While SRDWFs Wi and
consequently the both sums always reduce with T , the whole
sum for TiO2 increases. This occurs because the second sum
in Eq. (14) drops fast enough to overcompensate the reduction
of the first.

A detailed description of an increase of EFG is com-
plicated: it clearly depends on the lattice structure through
reciprocal vectors �K and connected with them numerical
quantities ci,p [expressed in j2(K ), SQ,i(K̂ )], and also on the
Fourier density components ρ( �K ). All these quantities have
been calculated numerically with the Moscow-FLAPW code
[28]; details are given in Sec. II C. Other important quantities
giving the explicit temperature dependence in SRDWFs are
mean-square displacements 〈u2〉 of titanium [Eq. (8)]. In the
case of the rutile phase of TiO2 there are three independent
quantities: U11 = 〈u2

x〉, U12 = 〈uxuy〉, and U33 = 〈u2
z 〉, since

by symmetry U22 = U11 and U13 = U23 = 0. Then, W ( �K, T )
[Eq. (8)] reads as

W ( �K, T ) = 1
2

[(
K2

x + K2
y

)
U11(T ) + 2KxKy U12 + K2

z U33(T )
]
.

(15a)
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TABLE I. Experimental mean-square displacements (in units
10−3 × Å2) of titanium in TiO2. U1′1′ , U2′2′ , and U3′3′ = U33 are the
diagonal values of the Ti thermal ellipsoid in principal axes. r.t.
stands for the room temperature. U12 > 0 in correspondence with
the chosen coordinate axes (Fig. 1). The asterisk denotes MSDs
converted from β11, β33, β12.

Ref. T U11 U12 U1′1′ U2′2′ U33

[35] 15 K 1.2 0.2 1.0 1.4 1.1
[35] 295 K 5.5 0.3 5.2 5.8 4.5
[37] r.t. 6.8 0.4 6.4 7.2 4.6
[38] r.t. 6.68 0.12 6.56 6.80 4.81
[39] r.t. 6.9 0.0 6.9 6.9 4.4
[40]∗ 298 K 6.41 0.11 6.30 6.52 4.04
[41] 299 K 6.99 0.31 6.68 7.30 4.67
[34]∗ 298 K 7.64 0.06 7.58 7.70 4.21

It can be brought in the diagonal form

W ( �K, T ) = 1
2

[
K2

x′ U1′1′ (T ) + K2
y′ U2′2′ (T ) + K2

z U33(T )
]
.

(15b)

Here, Kx′ and Ky′ are projections of �K on new diagonal crys-
tallographic axes [11̄1] and [111], while the third axis (z′ =
z) remains unchanged, and U1′1′ = U11 − U12, U2′2′ = U11 +
U12. Notice, that due to our initial choice of crystallographic
axes (Fig. 1), the diagonal axes x′ and y′ are interchanged
in comparison with those in experimental Refs. [35–41] and,
consequently, U12 > 0.

A precise calculation of the mean-square displacements
U11, U12, and U33 (or, alternatively, U1′1′ , U2′2′ , and U33) is a
formidable problem. Even experimental data obtained from
fitting neutron and x-ray diffraction study of the rutile using
both single-crystal and powder samples of TiO2 at room tem-
perature are quite different (see Table I).

Almost all of these studies refer to the room-temperature
values of mean-square displacements (MSDs). To the best
of our knowledge, in the literature there is only one low-
temperature (15 K) neutron powder diffraction investigation
of TiO2 carried out by Burdett et al. [35], whose data are
also quoted in Table I. With these two-point MSD data taken
at 15 and 295 K [35] assuming the linear dependence in all
temperature range, one can construct the temperature depen-
dence of U11(T ), U12(T ), and U33(T ). We shall refer to this
T dependence of MSDs as model 1. The EFG parameters
obtained with these MSDs are depicted in Fig. 6.

We have also performed the DF perturbation calculation
of lattice dynamics with the QE package, details of which
are described in Sec. II C. The results are shown in Fig. 6,
model 2. In units 10−3 × Å2 for 15 K we have obtained
U11 = 2.62, U12 = 0.06, U33 = 1.85, and for 300 K, U11 =
12.85, U12 = 0.52, U33 = 6.89. Although these MSDs lie far
above the experimental data, they are close to other val-
ues computed within the harmonic approximation. This is
demonstrated in the Supplemental Material [42] where we
compare our phonon data with a representative PHONOPY [43]
phonon calculation of TiO2 from the phonon database at Ky-
oto University [44]. Thus, the calculated values of MSD are
significantly overestimated in comparison with experimental
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FIG. 6. Temperature evolution of Vzz and η calculated within four
models for mean-square displacements (U11, U12, U33). Model 1:
the linear approximation for MSDs with the values at T = 15 and
295 K taken from Ref. [35]. Model 2: MSDs from the QE calcu-
lations (harmonic approximation). Model 3: the scaled MSDs from
the QE calculations. Model 4: the modified Debye approximation
(TD = 600 K [37]). Calculation with c/a = 0.6373.

ones (Table I). There are several reasons for this discrepancy.
First, the harmonic calculation underestimates the experi-
mental phonon energies [45]. In particular, the discrepancy
reaches to nearly 5 meV for the low-lying transverse acoustic
(TA) branch along the �-Z and M-Z directions [45]. Second,
for the TA branch almost linear increase of phonon energies
with temperature has been detected [45] which implies a
stiffening of the entire TA branch with T [46]. In addition,
in Refs. [45,46] a strong role of anharmonicity has been
found with the phonon mode potential having strong positive
fourth-order components, which leads to an increase of the
phonon frequency for large atomic displacements occurring
at higher temperatures. All these effects should result in a
substantial decrease of MSDs calculated within the harmonic
approximation at room temperature and above.

For a more realistic representation of the temperature evo-
lution of MSD, we have scaled our QE data. The scaling factor
has been chosen to fit the room-temperature MSD values of
Ref. [38] (Table I). We refer to this T dependence of MSDs as
model 3 (Fig. 6).

Finally, we can obtain the temperature dependence of
MSDs using a modified Debye model. In Ref. [37] it has
been shown that the model of isotropic vibrations of average
amplitude with the Debye temperature TD = 600 K [37] fits
the diffraction data. Within the Debye approximation we can
calculate the average value of MSDs [Uav = (2U11 + U33)/3].
We get Uav = 2.72 × 10−3 Å2 at 15 K and Uav = 6.00 ×
10−3 Å2 at 300 K. Based on the T dependence of Uav and us-
ing the linear interpolation for the ratios U11/U33 and U12/U33

in the range from 15 to 300 K with the data of Ref. [35], we
can obtain the anisotropic values of MSDs (U11, U12, U33) at
all temperatures. This is the modified Debye model marked as
model 4 in Fig. 6.
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FIG. 7. Comparison with the NMR experimental data (Ref. [8]).
The upper panel corresponds to the model 4, the lower panel to the
model 1.

All four models for mean-square displacements result in a
growth of EFG with temperature and a characteristic depen-
dence of the asymmetry parameter η (Fig. 6). Numerically,
the plots vary, reflecting a difference in the T evolution of
mean-square displacements. In Fig. 7, the best calculated de-
pendencies for EFG and η are compared with NMR data of
Kanert and Kolem [8].

The theoretical increase of Vzz is approximately half of the
experimental one. We ascribe it to anharmonic effects which
were found important for the description of the temperature
evolution of EFG in Zn and Cd [9]. EFG is found to be
very sensitive to the correct temperature evolution of the ratio
U33(T )/U11(T ), which could be the case for TiO2 taking into
account a stiffening of its low-lying phonon energy spectrum
with T and a strong fourth-order component of the potential
[45,46]. Another important factor is a possible change of the
oxygen rutile position u with T , which greatly influences the
value of EFG [19].

The calculated Vzz is in good correspondence with the
experimental value of 2.0 × 1021 V/m2, obtained by ex-
trapolating experimental data to T = 0 [8]. The zero-point
vibrations lead to a 0.5% increase of the calculated EFG, to
the corrected value 1.998 × 1021 V/m2 at the experimental
ratio c/a = 0.642.

IV. CONCLUIONS

On the basis of ab initio calculations of the rutile phase
of TiO2 we have reproduced qualitatively the temperature
increase of the electric field gradient Vzz and the evolution
of the asymmetry parameter η (Fig. 7). Note that if only
the anisotropic thermal expansion of the lattice parameters is
taken into account, i.e., an increase of c/a, this would predict
a decrease of Vzz. Our consideration relies on the method
used in Ref. [9] for calculation of the temperature dependence
of EFG in Zn and Cd. The method utilizes the effect of
changing the averaged value of the quadrupole components

〈ρQ,1〉 and 〈ρQ,2〉 [Eq. (7)] on a titanium MT sphere vibrat-
ing with the Ti nucleus. [The angular quadrupole functions
SQ,1 and SQ,2 are explicitly given by Eqs. (3a) and (3b).]
The temperature dependence is introduced through the fac-
tor exp ( − W ( �K, T )) which is the square root of the usual
Debye-Waller factor [11], whereas the thermal expansion of
the unit cell has not been taken into account. SRDWF ef-
fectively reduces the corresponding Fourier component of
the electron density [Eq. (7)] and depends sensitively on
the independent mean-square displacements U11(T ), U12(T ),
and U33(T ).

U11(T ), U12(T ), and U33(T ) have been found experimen-
tally (Table I) in neutron and x-ray diffraction studies at room
temperature and at 15 K [35]. In addition, we have computed
MSDs with QUANTUM ESPRESSO in the temperature range
from 0 to 1000 K, but these values of U11(T ) and U33(T )
have turned out to be overestimated in comparison with the
experimental ones. On the basis of experimental and calcu-
lated MSD data, we have adopted four models for their T
dependence, and calculated corresponding Vzz(T ) and η(T )
(Fig. 6).

For all cases our results indicate a stable increase of EFG
with temperature (Figs. 6 and 7). The increase of EFG is
a remarkable effect arising from interplay of positive and
negative terms [Eq. (14)]. While each term is reduced with
temperature due to the exp ( − W ( �K, T )) factors, the whole
sum can growth with T , leading to the increase of EFG. Quan-
titatively, however, the calculated growth of Vzz is smaller
than the experimental one. This could be explained by an
appreciable change of oxygen polarizability with T [19] or
by anharmonic effects playing an important role in Zn and Cd
[9]. Such effects include a nonlinear change of the U11/U33

and U12/U33 ratios with temperature, a change of oxygen po-
sition, and the thermal expansion of the rutile lattice. MSDs in
TiO2 are apparently influenced by several unusual anharmonic
effects [45–47] found in this compound.

For calculations with c/a < 0.641 when V22 > V11 (Fig. 4),
the calculated temperature evolution of η shows a good
correspondence with experimental data (Figs. 7 and 6). In
particular, it fairly well reproduces the crossing of the zero
value, which is a nontrivial feature of the experimental curve
[8]. This property is connected with the quadrupole potential
parameter vQ,2 going through zero at this temperature (Fig. 5).
For the c/a > 0.641 case corresponding to the experimental
c/a ratio, η demonstrates just a monotonic linear increase with
T in disagreement with the experiment.

Interestingly, when c/a > 0.653, the electric field gradient
switches to another component Vz′z′ = V11 in Fig. 4. Note that
such a situation is experimentally observed for Cd probes in
TiO2 where it is accounted for by local displacements caused
by Cd replacing a Ti atom in the rutile lattice [17,22]. Al-
though the electronic configurations of Ti and Cd are quite
different, the change in the orientation of Vz′z′ from (001)
to (110) is produced by a similar distortion of the nearest-
neighbor oxygen octahedron.
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