
PHYSICAL REVIEW B 102, 174304 (2020)

Complexity and Floquet dynamics: Nonequilibrium Ising phase transitions
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We study the time-dependent circuit complexity of the periodically driven transverse field Ising model using
Nielsen’s geometric approach. In the high-frequency driving limit the system is known to exhibit nonequilibrium
phase transitions governed by the amplitude of the driving field. We analytically compute the complexity in this
regime and show that it clearly distinguishes between the different phases, exhibiting a universal linear behavior
at early times. We also evaluate the time-averaged complexity, provide evidence of nonanalytic behavior at
the critical points, and discuss its origin. Finally, we comment on the freezing of quantum dynamics at specific
configurations and on the use of complexity as a tool to understand quantum phase transitions in Floquet systems.
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I. INTRODUCTION

Understanding the organizing principles underlying the
nonequilibrium dynamics of quantum many-body systems is
of key importance for the development of new quantum mate-
rials. The concept of universality, which provides a unified
description of equilibrium critical phenomena, is not well
understood for systems far from equilibrium. In the case of
adiabatic dynamics the so-called Kibble-Zurek mechanism
and its quantum extension can provide some insights into the
breakdown of adiabaticity close to a quantum phase transition
(QPT) point and the associated scaling behavior of the exci-
tation density of defects [1–5], which opened a venue for the
analysis of universal features in nonequilibrium QPTs. The
preclusion of adiabatically connecting states belonging to dif-
ferent quantum phases can be given a geometric interpretation
as a diverging curvature with the introduction of a metric on
the Hilbert space [6]. This geometric paradigm is part of an
ongoing effort in the last two decades to employ concepts
and tools from quantum information science to improve our
understanding of quantum many-body physics. This approach
has led to remarkable progresses, such as the discovery of
topologically ordered states and of the critical behavior of
entanglement close to a QPT [7,8] (see [9] for a review).

As part of this effort, [10–12] proposed to characterize
QPTs, including topological ones, using a geometric notion
of circuit complexity introduced by Nielsen [13,14]. Inspired
by its computer science analog, this object quantifies how dif-
ficult it is to construct a particular unitary operator that maps
between a pair of given reference and target states, i.e., the
minimum number of basic operations needed to implement
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this task. With an appropriate definition of depth functional
associated with each circuit, the space of allowed unitaries
acquires a Riemannian structure and the problem of finding
the optimal circuit reduces to finding minimal geodesics in
this geometry. Nielsen’s complexity has recently also attracted
a lot of interest from the high-energy physics community due
to conjectured connections with black hole properties within
the scope of the holographic duality [15–19].

A major difficulty to unravel universal nonequilibrium
properties independent of specific models comes from the
variety of ways in which a system can be put away from
equilibrium. Perhaps the simplest and one of the most studied
among these nonequilibrium protocols is that of a quantum
quench, where a parameter of the Hamiltonian is suddenly
changed and the system is left to evolve under the new Hamil-
tonian [20,21]. This also includes the study of the quench
dynamics of circuit complexity [10,11,22–25]. Here we pro-
pose to go a step further in the endeavor of using circuit
complexity as a tool to understand the dynamics of quantum
many-body systems and explore a different nonequilibrium
protocol corresponding to the periodic driving of many-body
systems. These so-called Floquet systems can be experimen-
tally realized with ultracold quantum gases in optical lattices
(see [26,27] for a review of theoretical and experimental
results) and give rise to several exotic phenomena such as
dynamical localization, Floquet topological insulators, and
driving-induced phase transitions [26–30].

We shall focus on the Ising model under periodic driving of
the transverse field [31–34]. The model can be solved analyti-
cally in the fast-driving limit, where it is effectively described
by a time-independent Hamiltonian and it displays quantum
phase transitions of a nonequilibrium nature controlled by the
transverse field amplitudes. It also exhibits the phenomenon
of dynamic localization [35], where the time evolution gets
frozen in the initial state as a consequence of a many-body
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version of the coherent destruction of tunneling (CDT) [36]
that occurs in each momentum sector of the Hilbert space.
CDT has been observed experimentally, and it is particularly
important for quantum dynamics control [37–39].

In this setup, we compute the circuit complexity of the
instantaneous time-evolved state and argue that it can be used
to characterize these nonequilibrium phase transitions, show-
ing that its time average exhibits nonanalytic behavior at the
critical points. We also unveil a universal linear behavior at
early times and show that the CDT phenomenon is naturally
diagnosed by points of vanishing complexity. Our work takes
to the next level the connection between circuit complexity
and quantum phase transitions, opening the route for periodi-
cally driven systems and dynamical phase transitions.

II. THE DRIVEN TRANSVERSE FIELD ISING MODEL

We consider a periodically driven transverse field Ising
model (TFIM) described by the Hamiltonian

H (t ) = −J
L∑

i=1

σ z
i σ z

i+1 − g(t )
L∑

i=1

σ x
i , (1)

where σα
i are Pauli matrices at the ith lattice site, J > 0

is the exchange coupling, and g(t ) = g0 + g1 cos �t is the
transverse field, made of a constant contribution g0 and a
monochromatic driving with frequency �. Here we assume a
closed lattice with periodic boundary conditions σα

L+1 ≡ σα
1

and restrict ourselves to even L. The Z2 symmetry of the
model is implemented by the parity operator P = ∏L

i=1 σ x
i ,

resulting in a decomposition of the Hilbert space into a
direct sum of parity-odd (P = −1) or -even (P = +1) sub-
spaces [40], each of dimension 2L−1,the so-called Ramond
and Neveu-Schwarz (NS) sectors, respectively. We shall focus
on only the NS sector.

In terms of Jordan-Wigner fermions c j , after the discrete
Fourier transform, c j = e−i π/4√

L

∑
k∈BZ ckeik j , the Hamiltonian

can be written as H (t ) = ∑
k>0 Hk (t ), with

Hk (t ) = [2g(t ) − ωk](c†
kck + c†

−kc−k )

+�k (c†
kc†

−k + c−kck ) − ωk, (2)

where ωk = 2J cos k,�k = 2J sin k, and we have neglected
the trivial contribution −2Lg(t ). The momenta are constrained
to the first Brillouin zone, BZ = {±π

L ,± 3π
L , . . . ,± (L−1)π

L }, by
the antiperiodic boundary condition satisfied by c j in the NS
sector.

Since the Hamiltonian conserves momentum and parity,
the state of a system initialized in a ground state of the un-
driven model will acquire at any time t the following form
[3,31,41]:

|ψ (t )〉 =
⊗
k>0

[uk (t ) |1−k1k〉 + vk (t ) |0−k0k〉]; (3)

that is, for each k the dynamics is restricted to the
two-level Nambu subspace spanned by {|0−k0k〉, |1−k1k〉}.
One can unify the coefficients into the spinor 	k (t ) ≡
[uk (t ) vk (t )]ᵀ, which obeys Schrödinger’s equation generated
by the Bogoliubov–de Gennes (BdG) Hamiltonian (2), such
that the dynamics of each momentum mode takes the form of

a driven two-level system. In terms of u(2) generators, one has

Hk (t ) = [2g(t ) − ωk] σ z
k + �k σ x

k − ωk 1k. (4)

According to the Floquet theorem, the solution can be
written as

	k (t ) =
∑
λ=±

Aλei ε(λ)
k t�

(λ)
k (t ), (5)

where the Floquet modes �
(±)
k (t ) = �

(±)
k (t + 2π�−1) are pe-

riodic with the same period as the external driving and satisfy
the time-independent Schrödinger equation for the Floquet
Hamiltonian Hk ≡ Hk (t ) − i ∂t . The Floquet quasienergies
ε

(λ)
k are defined only modulo � since ei m�t �

(±)
k (t ) for

any m ∈ Z obviously defines another Floquet mode with
quasienergy shifted by m�, meaning, in particular, that the
driven system admits no notion of a ground state. For sim-
plicity, in the following section we discuss exact solutions in
the limit of high � following [34,42]. Generalizations to low
� are possible using the full exact solution [43] or the 1/�

expansion of [44].

A. High-frequency driving approximation

It will be convenient to split the constant part of the trans-
verse field as g0 = δg0 + g̃0, where g̃0 is a resonant value (to
be determined) and δg0 ≡ g0 − g̃0 is a detuning measuring the
distance to this resonance.

The dynamics can then be solved by going to a ro-
tating frame tweaked to the driving field g(t ) through a
unitary transformation Rk (t ). First, we split Hk (t ) = H0

k (t ) +
H1

k , with H0
k (t ) ≡ 2(g̃0 + g1 cos �t ) σ z

k and H1
k ≡ �k σ x

k +
(2δg0 − ωk ) σ z

k − ωk 1k , and go to the interaction picture with
H1

k being the interaction Hamiltonian. The desired transfor-
mation is the time evolution operator associated with H0

k (t ),
namely,

Rk (t ) = e− i
2 α(t )σ z

k , α(t ) = 4g̃0t + 4g1

�
sin �t . (6)

The rotated Hamiltonian H̃k (t ) ≡ R†
k (t )Hk (t )Rk (t ) =

H0
k (t ) + H̃1

k (t ) has the same free contribution and a rotating
part given by

H̃1
k (t ) =

(
2δg0 − 2ωk �kei α(t )

�ke−i α(t ) −2δg0

)
. (7)

States |ψ (t )〉k whose dynamics is governed by (4) are mapped
to rotated states |ψ̃ (t )〉k = R†

k (t ) |ψ (t )〉k with Schrödinger
time evolution dictated by (7). The full rotated Hamilto-
nian H̃1(t ) ≡ ∑

k>0 H̃1
k (t ) in terms of the original spins

contains all possible nearest-neighbor free-fermion terms
σ x

i , σ z
i σ z

i+1, σ
y
i σ

y
i+1, σ

z
i σ

y
i+1, σ

y
i σ z

i+1 [34].
In order to determine the resonance condition, we

first make use of the Jacobi-Anger expansion ei z sin �t =∑
n∈Z Jn(z) exp(i n�t ), where Jn(z) are Bessel functions

of the first kind, to rewrite (7) in the form H̃1
k (t ) =∑

n∈Z h̃(n)ei(4g̃0−n�)t for some h̃(n). Then, the high-frequency
approximation (sometimes referred as the rotating wave ap-
proximation) is performed assuming that all the terms in the
summation oscillate wildly and can be neglected with respect
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to a single resonant term given by

g̃(�)
0 = �

�

4
, � ∈ Z. (8)

The corresponding detuning parameter will be denoted by
δg(�)

0 = g0 − g̃(�)
0 . As a result, the effective Hamiltonian de-

scribing the dynamics of the system at the �th resonance
becomes time independent.

In terms of the original spins, the full rotating frame Hamil-
tonian H̃1(�) = ∑

k>0 H̃1(�)
k takes the form

H̃1(�) = −
L∑

j=1

[
δg(�)

0 σ x
j + J (�)

+ σ z
j σ

z
j+1 + J (�)

− σ
y
j σ

y
j+1

]
, (9)

with J (�)
± ≡ J

2 (1 ± γ (�) ) and

γ (�) ≡ (−1)�J�

(
4g1

�

)
. (10)

This is unitarily equivalent to the familiar transverse XY chain
with the anisotropy parameter γ (�) [40,45]. The nontrivial de-
pendence of γ (�) on �,�, g1 already anticipates the influence
of the driving on the critical behavior of the system, which
will be confirmed in the next section. Near the resonance there
is pure coupling between the two-level system basis states at
mink |ωk|, with oscillation frequency given by ωeff = J|γ (�)|,
indicating that this large-� approximation remains valid as
long as δg(�)

0 , ωeff � �.

B. Nonequilibrium QPTs in the rotating frame

The XY model (9) describing the high-� dynamics in
the rotating frame is exactly solvable via Jordan-Wigner and
discrete Fourier transforms following closely the discussion
for the TFIM in Sec. II. The Bogoliubov angle ϑk,� defined by

tan(2ϑk,�) = �k γ (�)

2δg(�)
0 − ωk

(11)

diagonalizes the corresponding BdG Hamiltonian to the free-
fermion form H̃1(�) = ∑

k>0 εk,�(b†
kbk − 1

2 ), with

εk,� =
√(

2δg(�)
0 − ωk

)2 + (�k γ (�) )2. (12)

The positive- and negative-energy eigenstates, with eigenval-
ues ε±

k,�
= −ωk ± εk,�, are φ

(�)
k,+ = (cos ϑk,� − sin ϑk,�)ᵀ and

φ
(�)
k,− = (sin ϑk,� cos ϑk,�)ᵀ.

The model is known to present two critical lines: an
Ising-like QPT between a ferromagnetic and a paramagnetic
(PM) phase at |δg(�)

0 | = J and an anisotropic QPT at γ (�) = 0
(provided that |δg(�)

0 | < J) between two distinct phases with
ferromagnetic order along the y direction (FMY, for γ (�) < 0)
or along the z direction (FMZ, for γ (�) > 0). For a given
�, the former defines a pair of lines δg(�)

0 = ±J , while the
latter corresponds to an infinite family of critical lines, one
for each zero of J�(z). The phase diagram as a function of
the transverse field strengths g0, g1 for fixed (and large) �

is illustrated in Fig. 1. The FMY-FMZ transition lines are
almost evenly spaced (except for the first few) since the se-
quence {zi+1 − zi}i∈Z+ of differences between two subsequent
Bessel zeros converges very quickly to the constant value

FIG. 1. Nonequilibrium phase diagram as a function of the trans-
verse field strengths g0, g1 in the high-� regime. The phases are PM
(purple), FMZ (dark green), and FMY (light green). Vertical and hor-
izontal lines identify the Ising-like and anisotropic phase transitions,
respectively. The latter are located at zi, the ith root of J�(z) (� = 2
is shown in the plot); the width zi+1 − zi quickly approaches π as i
grows.

π , as seen intuitively from the asymptotic behavior J�(z) ≈√
2
πz cos [z − (2� + 1)π

4 ] at z � �. Note that in the special

case δg(�)
0 = 0, i.e., when g0 is tuned exactly to the resonant

value g(�)
0 , the transverse field in (9) disappears, and we are

left with only the anisotropic transitions.
The horizontal lines in Fig. 1 occur at γ (�) = 0, where

ωeff = 0 forces the quantum tunneling between σ z
k eigenstates

to completely freeze. This phenomenon, known as coherent
destruction of tunneling, occurs at every sector k once the
driving amplitude is fine-tuned to one of the Bessel zeros,
leading to a coherent suppression of the dynamics even at
infinite L. We will show how this dynamic localization effect
manifests in the circuit complexity in the next section.

C. Floquet modes and quasienergies

The Floquet modes that define a basis for the dynamics in
the Schrödinger picture follow by applying Rk to the eigen-
states of the XY Hamiltonian,

�
(�)
k,±(t ) ≡ e−i( ��

2 t+ 2g1
�

sin �t )R(�)
k (t ) φ

(�)
k,± (13)

[the U (1) phase is added for convenience], and correspond to
quasienergies

ε±
k,� ≡ −ωk ± εk,� + ��

2
. (14)

Here we recall that there is an infinite family of Floquet
modes, labeled by an integer m that is omitted here, corre-
sponding to the rescaling �

(�)
k,±(t ) → eim�t �

(�)
k,±(t ) and shift

ε±
k,�

→ ε±
k,�

+ m�. We choose the m = 0 representative with-
out loss of generality.

Finally, the general solution (5) with initial condition
	

(�)
k (0) ≡ [u(�)

k (0) v
(�)
k (0)]ᵀ is completely determined due to

the orthogonality of the Floquet modes by the coefficients
A±

k,�
≡ 	

(�)
k (0) φ

(�)
k,±. We will focus on 	

(�)
k (0) = (0 1)

ᵀ
, i.e.,
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a system initialized in the paramagnetic state of the un-
driven model with all the spins aligned along the x direction,⊗

k>0 |0k0−k〉, corresponding to A+
k,�

= − sin ϑk,� and A−
k,�

=
cos ϑk,�. In terms of the spinor components introduced in (3),
the explicit solution 	

(�)
k (t ) reads (up to a global phase e−i ε−

k,�
t )

(
u(�)

k (t )
v

(�)
k (t )

)
=

(
e−i α(�) (t )(1 − e−2i εk,�t ) sin ϑk,� cos ϑk,�

cos2 ϑk,� + e−2i εk,�t sin2 ϑk,�

)
. (15)

III. COMPLEXITY ACROSS NONEQUILIBRIUM QPTs

In this section we discuss the circuit complexity of the
instantaneous states (3) using the geometric approach intro-
duced in [13,14]. Namely, we look for the optimal circuit
U = U (t ) connecting the reference and target states, |T 〉 =
U |R〉, with |R〉 = ⊗

k>0 |0k0−k〉 and |T 〉 = |	(t )〉. Note that
we choose |R〉 to be the same as the initial condition |	(0)〉
so that the complexity starts from a vanishing value at t = 0.
Factorization of states in fixed-momentum sectors implies
that U = ⊗

k>0 Uk . In terms of Nambu spinors, each admis-
sible Uk is a Bogoliubov transformation taking the reference
spinor 	R

k = (0 1)ᵀ to 	
(�)
k (t ) = [u(�)

k (t ) v
(�)
k (t )]ᵀ derived in

(15). Since these are SU (2) transformations, it is natural to
seek factorized circuits U (s) = ⊗

k>0 Uk (s) with each factor
having the Hamiltonian form

Uk (s) = Pe
∫ s

0 Hk (s′ )ds′
, Hk (s′) ≡

∑
I

Y I
k (s′)OI , (16)

where s ∈ [0, 1] is a continuous parameter, the functions
Y I

k (s) = − 1
2 Tr[∂s Uk (s)Uk (s)−1OI ] identify a particular cir-

cuit, OI ∈ {i σ x, i σ y, i σ z} are the su(2) generators (our
fundamental gates), and P is a path-ordering operator ensur-
ing that the circuit is built from smaller to larger values of s.
The boundary conditions Uk (s = 0) = 1 and Uk (s = 1) = Uk

guarantee that any such circuit implements the desired task
of connecting the two given states. The optimal circuit is
found by minimizing an associated depth functional, D[Uk] =∫ s

0 ds′F ({Yk (s′)}), and the corresponding complexity corre-
sponds to the depth of this optimal circuit,

C[Uk] = min
{Y I

k (s)}
D[Uk] = D

[
Uopt

k

]
. (17)

We choose as the cost function F the Euclidean norm
F ({Yk}) = (

∑
I |Y I

k |2)1/2, which is the simplest one satisfying
all the required properties from complexity measures [13] (see
[17] for alternatives).

To solve the minimization problem it will be conve-
nient to use the polar representation of the components
of (15), namely, v

(�)
k (t ) ≡ cos �k,�(t ) ei ϕv

k,�(t ) and u(�)
k (t ) ≡

sin �k,�(t ) ei ϕu
k,�(t ), with 0 � �k,�(t ) � π/2, and to further

discard a global phase to choose the element in the ray of
	

(�)
k (t ) to be

	
(�)
k (t ) =

(
ei βk,�(t ) sin �k,�(t )

cos �k,�(t )

)
, (18)

with βk,�(t ) ≡ ϕu
k,�(t ) − ϕv

k,�(t ). The Bogoliubov transforma-
tion to be implemented thus assumes the form

Uk =
(

cos �k,�(t ) ei βk,�(t ) sin �k,�(t )
−e−i βk,�(t ) sin �k,�(t ) cos �k,�(t )

)
. (19)

FIG. 2. Time evolution of the complexity (22) near the Ising
nonequilibrium transition. The parameters are L = 1000, � = 2, J =
0.01�, g1 = �, and varying δg(�)

0 = (0, J, 2J ), corresponding, re-
spectively, to the ferromagnetic phase (FMZ), the quantum critical
point (QCP), and the paramagnetic phase (PM). The dashed line in
the inset shows the universal linear growth (23) at early times.

This suggests a parametrization of the circuit Uk (s) ∈
SU (2) for each momentum sector k in terms of Hopf coor-
dinates (φ1, φ2, ω),

Uk (s) =
(

ei φ1(s) cos ω(s) ei φ2(s) sin ω(s)
−e−i φ2(s) sin ω(s) e−i φ1(s) cos ω(s)

)
. (20)

With this at hand, it is straightforward to show that the optimal
circuit minimizes the functional

D[Uk] =
∫ 1

0
ds′

√
ω′2 + cos2 ω φ′2

1 + sin2 ω φ′2
2 . (21)

The minimum corresponds to constant phase functions
φ1(s) = φ0

1 , φ2(s) = φ0
2 and the linear profile ω(s) = ω0 +

s ω1, which immediately implies D[Uopt
k ] = |ω1|. The bound-

ary condition at s = 0 then fixes φ0
1 = 0 and ω0 = 0, while the

one at s = 1 fixes ω1 = �k,�(t ) and φ0
2 = βk,�(t ), which fully

determines C[Uk] defined in (17). After summing over all
momentum sectors, we obtain the circuit complexity C(t ) =∑

k>0 |�k,�(t )|, or, explicitly,

C(t ) =
∑
k>0

∣∣∣∣arcsin

(
�kγ

(�)

εk,�

sin(εk,�t )

)∣∣∣∣. (22)

The full time evolution of C(t ) is depicted in Fig. 2 for
the Ising-like nonequilibrium QPT controlled by g0. The early
time behavior is readily obtained by a series expansion of (22),
with the summation over momenta performed analytically for
the leading term, yielding

C(t → 0) = 2J |γ (�)|
sin π

L

t + O(t3). (23)

Note that in the thermodynamic limit L → ∞ one has a
volume law, C ∼ L. Interestingly, the linear growth at early
times is independent of the constant field g0. The inset in
Fig. 2 shows this universal early time behavior, which can
be estimated to hold up to a timescale t∗(g0) ∼ mink |2δg(�)

0 −
ωk|−1 ≈ |2|g0 − g(�)

0 | + 2J|−1
.
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(a) (b)

(c) (d)

FIG. 3. Time-averaged complexity C over T = 1000 periods and
its derivatives for � = 2, � = π, J = 0.01�, L = 1000. (a) C close
to the Ising QPT for two values of g1; the dotted lines show the
corresponding Floquet mode complexity C−. (b) Singular behavior
of the first derivative of C at the QPT points. (c) and (d) repeat the
analysis of (a) and (b) for the first two anisotropic QPT points.

The complexity clearly distinguishes between the two
phases and the critical point—in particular, it never equili-
brates for g0 in the FMZ phase. In the PM phase, it reaches the
steady value CPM

∞ more rapidly for increasing g0, as one can
infer from t∗(g0) estimated above and confirm numerically.
Note that CPM

∞ is bounded from above by the value at the
critical point CQCP

∞ , and in particular, it decreases as g0 grows.
Physically, this is an expression of the disordered character of
the PM phase: complex (i.e., nonlocal) operations are required
to create order in a state prepared on it, while simple (local)
operations, like a phase shift, would maintain the disorder of
such a state. When g0 is large, the effect of the driving field
is suppressed and does not favor the possibility of creating
operators complex enough to order the system, keeping it
close to the initial paramagnetic ground state.

The critical behavior becomes more evident in terms of the
time-averaged complexity

C = lim
T →∞

1

T

∫ T

0
dt C(t ). (24)

This quantity develops a nonanalytic behavior at the quantum
critical point, as shown in Fig. 3. Such discontinuity manifests
as divergences in the derivatives at the critical points. This
critical behavior is reminiscent of the behavior of the com-
plexity in the undriven Ising model, which is discussed in the
Appendix.

Independent of g0, it is evident that the complexity van-
ishes at the special anisotropic QPT points γ (�) = 0 designed
by tuning g1 and � to the Bessel zeros. This is a manifes-
tation of the previously mentioned dynamic localization or
CDT phenomenon happening at these points that freezes the
quantum dynamics to the initial paramagnetic state. We also
note that (22) is symmetric under γ (�) → −γ (�), showing that
the complexity is unable to distinguish between the FMY and
FMZ phases separated by the CDT point. Near these points,

we can check that C ∝ |γ (�)| ∝ |g1 − gc
1| to first order, which

explains the type of nonanalyticity observed in Fig. 3(c). Such
behavior is essentially due to the complexity of the Floquet
mode �− since in this limit the Bogoliubov angle (11) ap-
proaches zero and, therefore, the amplitude for the positive
mode in (5), A+

k,�
= − sin ϑk,�, vanishes.

In fact, the similarity between C and the complexity of Flo-
quet modes is to be expected on more general grounds. At late
times, after transients die out, the system synchronizes with
the driving field, and the dynamics is known to be governed
by the Floquet modes [33]. Indeed, one can take a step further
and make a concrete comparison by explicitly evaluating the
complexity for each of the Floquet modes. We first note that
those are easily put in the convenient form (25),

�
+(�)
k (t ) �

(
e−i α(�) (t )−i π sin

(
ϑk,� − π

2

)
cos

(
ϑk,� − π

2

)
)

,

�
−(�)
k (t ) �

(
e−i α(�) (t ) sin ϑk,�

cos ϑk,�

)
, (25)

from which the complexity follows trivially by paralleling
the previous calculation and will be constant in time, namely,
C+ = ∑

k>0 |ϑk,� − π
2 | and C− = ∑

k>0 |ϑk,�|. When t → ∞,
we expect that the e−2iεk,�t oscillations in (15) result in small
contributions to the time-averaged complexity due to destruc-
tive interference (the same cannot be said about the e−iα(�) (t )

prefactor, which contains the resonant term that survives to
wild oscillations), so that the main contributions to C come
from the Floquet state �

−(�)
k (t ). In other words, C(t → ∞) ∼

C−, and as consequence, the time average C should replicate
the behavior of C−, as is, indeed, seen in Figs. 3(a) and 3(c).

IV. FINAL REMARKS

We have studied the Floquet dynamics of Nielsen’s circuit
complexity for the Ising model driven by a time-periodic
transverse field. At high enough driving frequency, the model
is analytically tractable and admits an exact determination of
the nonequilibrium phase transitions induced by the external
field. Here we showed that the complexity is able to diagnose
these nonequilibrium QPTs, extending previous ideas in the
literature for quantum quench protocols and hence strength-
ening the case for complexity as a tool to understand the
nonequilibrium physics of many-body systems. In particu-
lar, we showed that for a paramagnetic reference state, the
complexity of the instantaneous time-evolved state can only
equilibrate at large times provided the critical point is not
crossed; otherwise, it oscillates indefinitely in time. We also
proved that the early time transient behavior of the complexity
is linear and independent of the constant driving field g0 up
to a timescale inversely proportional to g0. The long-time
average of the complexity presents nonanalytical behavior at
the critical points, which can be traced back to the fact that the
asymptotic dynamics is governed by the Floquet modes.

The sensitivity of the circuit complexity to nonequilibrium
critical phenomena encourages us to investigate its role in
the description of dynamical phase transitions [46], which are
characterized by a nonanalytical behavior in the time domain
and whose scaling and universality properties are not fully
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(a) (b)

FIG. 4. (a) Complexity of the ground state of the undriven Ising
model with J = 1. (b) |g0 − J|−1 behavior of the second derivative
near the critical point.

understood. These phenomena can be engineered using quan-
tum quenches or in periodically driven systems similar to the
one studied here [47]. The time evolution of complexity (the
analog of Fig. 2) should develop a singular behavior at the
critical time tc and may help in the classification of nontrivial
topological Floquet phases. This work is in progress.

Another interesting future direction to pursue would be to
see how the present analysis generalizes to the case of interact-
ing models, where gates more elaborate than the simple SU (2)
rotations used here are required to produce physically interest-
ing states. Here the set of integrable spin chains immediately
comes to mind [48]. A more ambitious goal would be the
study of a many-body localization/thermal transition, which
can be modeled with a Floquet system with no conserved
charges [49].
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APPENDIX: COMPLEXITY IN THE ISING MODEL

In order to further illustrate how the circuit complexity
can be used to diagnose an equilibrium QPT as well, let us
evaluate it for the standard Ising model with a constant trans-
verse field. We take both reference and target states belonging
to the ground state manifold; that is, they can be written
as (cos η

(R,T)
k + i sin η

(R,T)
k )⊗k>0|0〉, such that the complexity

assumes the simple form C = ∑
k |�ηk|, where �ηk is the

relative Bogoliubov angle between |R〉 and |T 〉. Here it is
straightforward to work even in the infinite chain limit, where

C = 1

2π

∫ π

0
dk |�ηk|. (A1)

Using the usual spectrum and Bogoliubov angle of the Ising
model, one can easily compute this object, which is illustrated
in Fig. 4, where, for simplicity, we have chosen η

(R)
k = 0.

The first derivative is discontinuous at the quantum critical
point, g0 = J , while the second derivative diverges with a unit
critical exponent, that is, ∼|g0 − J|−1, as shown in Fig. 4(b).
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