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Effective-medium theory for multilayer metamaterials: Role of near-field corrections
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Although many effective-medium theories have been proposed for studying metamaterials, most of them do
not work well for multilayer metamaterials with small interlayer distances. Based on rigorous mode-expansion
analyses on a model system consisting of multiple layers of subwavelength gratings, we identify that the
failures of conventional effective-medium theories are caused by neglecting strong near-field couplings in
homogenizing such systems. These understandings motive us to propose an alternative homogenization approach
for strongly coupled multilayer metamaterials, in which predominant near-field corrections have been considered
automatically. Our effective-medium theory can well describe multilayer metamaterials with arbitrary interlayer
distances including particularly those systems for which conventional effective-medium theories fail. We finally
extend our theory to multilayer metamaterials with complicated microstructures and validate the theory by
full-wave simulations as well as microwave experiments. Our theory not only well complements the available
effective-medium theory formalisms, but also provides a powerful tool to study the properties of strongly coupled
metamaterials, which may find many applications in practice.
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I. INTRODUCTION

Metamaterials are man-made composite materials con-
structed by subwavelength-sized electromagnetic microstruc-
tures, which can exhibit tailored effective permittivity ε and
permeability μ dictated by the details of microstructures.
Metamaterials have attracted much attention recently due to
their strong abilities to manipulate electromagnetic waves
[1–4], generating fascinating effects such as negative refrac-
tion [5], superlensing [6,7], perfect light absorption [8–10],
and polarization controls [11–13], which are difficult to
realize with natural materials. In this research field, effective-
medium theory (EMT) plays a crucial role since it serves
as a bridge to link theoretical predictions (based on effec-
tive parameters) with practical realizations (based on realistic
systems). Therefore, a good effective-medium theory, which
can accurately retrieve the effective parameters of metamate-
rials with arbitrary microstructures, is always highly desired.
A series of effective-medium theories has been developed
for metamaterials in recent years, including S-parameters
retrieval [14,15], field averaging [16,17], coherent-potential
approximation and its generalizations [18–21], and so on.
These approaches have been widely used in the community
with great successes.

However, we note that these effective-medium theories
do not always work well for metamaterials. In practical
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applications, occasionally one needs to stack multiple lay-
ers of microstructure array to form a bulk metamaterial
[22–25], since usually a single layer does not yield the desired
wave-manipulation effects. In studying these multilayer meta-
materials, a commonly adopted approach is to first retrieve
the effective-medium parameters of a carefully chosen sub-
system (say, a single metallic layer plus appropriate spacers),
and then use the obtained effective parameters to describe
the whole multilayer metamaterial system [see Fig. 1(a)].
However, while such an approach can indeed work well for
those metamaterials with one or few layer(s), derivations be-
tween its predictions and full-wave simulations significantly
increase for metamaterials with more layers [Fig. 1(b)], not
to mention the complexities in selecting a correct branch from
multiple solutions of effective-medium parameters. Moreover,
the deviations between theory and simulations become more
significant in those metamaterials with smaller interslab dis-
tances [Fig. 1(c)], which are a bit counterintuitive at first
glance since the effective-medium theory is supposed to work
better for systems with better subwavelength properties. Such
issues are intrinsic to conventional effective-medium theories,
and cannot be solved by simply taking a larger subsystem
(consisting of more layers) to determine the effective param-
eters [26,27]. In fact, one may even need to homogenize the
whole system in order to get reasonable effective parameters
if the multilayer metamaterials exhibit very small interlayer
distances. Given the many potential applications of multilayer
metamaterials, it is highly desired to establish an effective-
medium theory to analyze such systems in a simple and
reliable way.
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FIG. 1. (a) Schematics of the conventional effective-medium theory to determine the effective parameters of a multilayer metamaterial.
Transmission spectra obtained by finite-element-method simulations (open circles) and the conventional effective-medium theory (red solid
lines) for a series of N-layer metamaterials with (b) N changing from 1 to 7 with hd = 3 mm fixed and for a series of N-layer metamaterials
with (c) hd changing from 9 to 3 mm with N = 5 fixed. A metallic layer contains a periodic array (with lattice constant 15 mm along two
directions) of metallic crosses, each formed by two 0.018-mm-thick bars with width 5 mm and length 10 mm.

In this paper, we establish an alternative effective-medium
theory formalism to study multilayer metamaterials with
arbitrary interlayer distances. We first briefly describe in
Sec. II the bottleneck issues faced by conventional effective-
medium theories. Through analyzing a model system based
on a rigorous mode-expansion method (MEM) in Sec. III,
we identify that the failure of conventional effective-medium
theories in studying multilayer metamaterials is caused by
neglecting near-field couplings between metallic layers. In
Sec. IV, inspired by the analytical results obtained with the
mode-expansion method, we propose an alternative approach
to retrieve the effective parameters of such multilayer meta-
materials. Detailed comparisons with numerical simulations
reveal that the effective-medium theory works well in a much
wider parameter region than conventional effective-medium
theories, since the predominant near-field couplings have been
taken into account. After extending our theory to general
situations with microstructures exhibiting complex shapes
(Sec. V), supported by both full-wave simulations and mi-
crowave experiments, we conclude our paper in Sec. VI.

II. ISSUES IN CONVENTIONAL
EFFECTIVE-MEDIUM THEORY

We start from quantitatively studying a concrete exam-
ple to illustrate the issues in conventional effective-medium
theories. Without losing generality, we assume that the meta-

material under study consists of N layers of a metallic “cross”
array separated by dielectric spacers with permittivity εd =
4.3 and interlayer distance hd . Such metamaterials are widely
used to realize high-index materials in different frequency
regimes [17,28–30].

To obtain the effective-medium properties of the
metamaterials under study, we follow the typical strategy
to first choose a single metallic layer sandwiched by
two spacer layers with thickness hd/2 [see Fig. 1(a)],
and then retrieve its effective-medium parameters by the
S-parameter retrieval method. The effective parameters thus
obtained are supposed to describe the metamaterials with
arbitrary thicknesses. However, as we use such parameters to
compute the transmission spectra of N-layer metamaterials
with N changing from 1 to 7, we find that significant
deviations exist between the effective-medium-theory results
(solid lines) and those calculated by finite-element-method
(FEM) simulations on realistic structures (open circles)
as long as N > 1 [see Fig. 1(b)]. To quantitatively
measure such discrepancies, we define the mean squared
error (MSE) between two calculated spectra as σMSE =∫ fmax

fmin
[|rEMT − rFEM|2 + |tEMT − tFEM|2]df /( fmax − fmin),

where {rEMT, tEMT} and {rFEM, tFEM} denote the reflection and
transmission coefficients calculated by the effective-medium
theory and numerical simulations, respectively, and
[ fmin, fmax] is the frequency region of interest. Obviously,
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σMSE increases significantly as N becomes larger [see
Fig. 1(b)], implying that the effective parameters thus
obtained do not work well for bulk metamaterials.

Moreover, we find that such discrepancies are larger in
metamaterials with thinner spacers. As illustrated in Fig. 1(c),
repeating the same analyses as in Fig. 1(b) on metamaterials
with the same number of layers (N = 5) but with different
interlayer distances, we find that σMSE increases significantly
for systems with smaller hd . Such effect is physically coun-
terintuitive at first glance since an effective-medium theory
is usually supposed to work better for systems with better
subwavelength properties.

We emphasize that such an issue is intrinsic to all con-
ventional effective-medium theories. In principle, one can
certainly retrieve the effective parameters based on larger
subsystems to better fit finite-element-method calculations,
but the parameters thus obtained are at the cost of more
time-consuming calculations, and exhibit less clear physical
meanings. In what follows, still using very thin subsystems,
we propose an alternative yet physically transparent approach
to derive the effective parameters of multilayer metamateri-
als, which can better describe the metamaterials with larger
thicknesses.

III. RIGOROUS ANALYSES ON A MODEL SYSTEM

We now choose a model metamaterial, which can be an-
alytically solved by the mode-expansion method, to reveal
the underlying physics. The analytical results obtained with
such a model system can not only help identify the inherent
reasons accounting for the failure of conventional effective-
medium theories, but more importantly, also point out a route
to solve the problem. As schematically shown in Fig. 2(a),
the metamaterial consists of three layers of metallic grat-
ings (with thickness hm) separated by two dielectric spacers
(with thickness hd and permittivity εd ). The periodicity of
the grating is P, while the gap between two adjacent metallic
stripes is a. The structure is invariant along the y direction.
In the wavelength regime where P � λ and hd + hm � λ, the
whole system can be homogenized as an effective medium. In
this paper, we only consider the low-frequency domain (e.g.,
GHz regime) where metals can be treated as perfect electric
conductors.

We now study the scattering properties of the system under
normal illumination of a transverse-magnetic (TM) polarized
plane wave with �H ‖ ŷ. Here, the z = 0 plane is defined at
the top surface of region III. Following the standard mode-
expansion method [31–34], we expand electromagnetic waves
in different regions to linear combinations of eigenmodes in
those regions [see Fig. 2(a)]. For example, while electromag-
netic eigenmodes in regions I, III, V, and VII are plane waves
with different diffraction orders, they must be appropriate
waveguide modes inside the slits in the regions labeled as
II, IV, and VI. By matching the boundary conditions at the
interfaces between two adjacent regions, we get a set of cou-
pled linear equations to determine all expansion coefficients
representing the strengths of these modes. Solving the cou-
pled linear equations, we thus obtain the scattering properties
of the whole system, including the coefficients of reflected
and transmitted modes in different diffraction channels repre-

FIG. 2. (a) Schematics of the three-layer model metamaterial
under study with geometric parameters given by a = 0.2 mm,
P = 3 mm, hm = 0.018 mm, hd = 0.4 mm. The permittivity of the
spacer is εd = 4.3. (b) Spectra of transmission amplitude calcu-
lated by finite-element-method simulations (blue open circles) and
rigorous mode-expansion method (red solid line). (c) Calculated
σMSE vs Nspacer (blue triangles), Nair (green squares), and Nslit (red
circles), respectively. (d) Spectra of transmission amplitude cal-
culated by finite-element-method simulations (blue open circles)
and mode-expansion method with Nspacer = 1 and Nair = Nslit = 201
(green line) and Nair = Nslit = 1 and Nspacer = 201 (red line).

sented by ρn and tn respectively (see Appendix A for detailed
derivations). Although in principle we should take an infinite
number of modes in different regions into our calculations,
practically we only need to keep a finite number of modes
in each region to ensure the computational convergence. We
perform finite-element-method simulations to justify the de-
veloped mode-expansion method. Figure 2(b) compares the
transmission spectra of such a metamaterial calculated by
finite-element method and mode-expansion method, which
agree with each other very well.

With such a powerful tool at hand, we now use it to
reveal the physics underlying the failures of conventional
effective-medium theories. As shown in Fig. 1(a), in the stan-
dard approach to determine the effective parameters, we first
study the transmission/reflection properties of a single layer
(appropriately cut from the multilayer system) and then map
the system to a homogeneous slab with the same thickness
[18,21]. Since no diffractions exist as a homogeneous slab
is shined by a normally incident light, naturally one may
expect that such mapping would be more reasonable as we
“cut” the realistic sample at a position where all high-order
diffractions are as weak as possible. Therefore, it is highly
desired to explore the roles played by high-order modes in
different regions in such a system.

To gain such information, we compute the σMSE of our
system with different numbers of modes retained in three
regions (denoted as Nspacer, Nslit , and Nair, respectively), and
then depict in Fig. 2(c) how the calculated σMSE vary against
these cutoff mode numbers. In all three cases, we find that
increasing the cutoff numbers pushes the computed results
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FIG. 3. (a) |Hy| field distribution on an arbitrary x−z plane inside
the metamaterial, calculated by finite-element-method simulations at
23.02 GHz. (b) Computed |Hy| field distributions along the central
line in the spacer region (blue solid line) and along the central line
across the metallic layer (red dashed line). (c) The ratios between
energy flows carried by all high-order modes and that carried by the
fundamental mode in the spacer (blue line) and the slit region (red
line), calculated by the mode-expansion method for different values
of hd . (d) Spectra of transmission amplitude calculated by finite-
element-method simulations (blue open circles) and the conventional
effective-medium theory (red solid line).

to the numerically calculated one. However, the speeds to
reach convergence with respect to increasing them are quite
different. Specifically, the convergence against increasing
Nspacer is ten times slower than increasing Nslit and Nair [see
Fig. 2(c)], indicating that the high-order modes in the spacer
regions play much more important roles than those in the
other two regions. Indeed, the transmission spectrum calcu-
lated by the mode-expansion method assuming Nslit = Nair =
1 has already captured the key features of the finite-element-
method-calculated spectrum [red line in Fig. 2(d)], while the
same thing is not true as we set Nspacer = 1 [green line in
Fig. 2(d)].

Such distinct convergence behaviors against different cut-
off numbers can be understood as follows. Since our system
is in subwavelength regime (P � λ), all high-order modes
in two semi-infinite air regions below/above the sample (i.e.,
regions I and VII) must be evanescent waves and thus their
contributions to the zero-order transmission/reflection coef-
ficients are less important. Meanwhile, as we consider the
thin-slit limit (a � P), all high-order waveguide modes in
the slit regions have a very small overlap with plane waves
in air or spacers, and thus their contributions to the final
results are also not important. Such an argument is well
supported by the finite-element-method-calculated field dis-
tribution inside a slit [Figs. 3(a) and 3(b)], which shows
a very uniform distribution along the x direction, already
implying that the total wave function mainly contains the fun-
damental transverse-electromagnetic (TEM) mode. However,
high-order modes in the spacer regions, even being evanescent
in nature, cannot be neglected as the spacer is thin, since they

can have non-negligible contributions to the zero-order trans-
mission/reflection coefficients through complicated multiple
scatterings. Indeed, the field pattern inside the spacer region
[Figs. 3(a) and 3(b)] exhibits a clear inhomogeneous fea-
ture, highlighting the important role played by the high-order
evanescent modes. We note that the contribution of high-order
modes becomes more significant as the spacer turns thinner,
which is understandable since the coupling between evanes-
cent modes belonging to adjacent layers becomes stronger in
the thin-spacer limit [Fig. 3(c)]. Meanwhile, as the interlayer
distance is larger than the decay length of the first high-order
evanescent mode, the coupling between evanescent waves
from two adjacent metallic layers is very weak and thus the
final contributions of high order modes become less signifi-
cant, as shown in Fig. 3(c).

The physical picture established above helps us understand
why conventional effective-medium theories break down for
multilayer metamaterials with small interlayer distances. In
conventional approaches, typically the subsystem for homog-
enization is chosen to contain one or a few metallic layer(s)
with appropriate spacer layers. However, in doing so one
has to “cut” the original system at the positions (i.e., inside
the spacer regions) where the near-field coupling effects are
most significant [see Figs. 3(a)–3(c)]. As a result, the sub-
system loses very important information (i.e., the near-field
couplings) contained in the original system, which explains
why the effective-medium theory thus established cannot well
describe the original system [see Fig. 3(d)].

IV. DEVELOPMENT OF THE NEAR-FIELD-CORRECTED
EFFECTIVE-MEDIUM THEORY

The physical understandings gained in the last section stim-
ulate us to develop an alternative approach to homogenize the
complex system, aiming to take the near-field couplings into
consideration as much as possible. From Fig. 3(c), we find
that the electromagnetic wave inside the slit region (region IV)
mainly contains the fundamental waveguide mode while the
strengths of high-order modes are very weak. This is because
the thin-slit nature of the waveguide leads to

|Sn0|2 � |Snq|2, q �= 0, (1)

where Snq denotes the coupling strength between the q th
waveguide mode in the slit to the n th diffraction mode in
the air or spacer region [34]. Equation (1) indicates that the
strength of the excited fundamental mode must be much larger
than that of high-order modes inside the slits. Therefore,
for such metamaterial systems, if we choose the subsystem
through “cutting” the realistic system at the middle planes
inside a metallic layer [see Fig. 4(a)], then the strong near-
field couplings in the spacers are fully taken into account.
Meanwhile, such a cutting procedure does not drop too much
information contributed by high-order modes in metallic lay-
ers, which are very weak anyway.

We now explicitly derive the effective-medium-theory
formalism based on the homogenization process described
above. As shown in Fig. 4(b), we first study the scattering
properties of the chosen subsystem, shined by the zero-order
mode allowed in the slit regions which are now assumed to
be semi-infinite. Based on the mode-expansion method, we
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FIG. 4. (a)–(d) Schematics of retrieving the effective parameters of a multilayer metamaterial in the near-field-corrected effective-medium
theory. (e),(g) Effective parameters retrieved by (e) the near-field-corrected effective-medium theory and (g) the conventional effective-medium
theory. (f),(h) Transmission spectra computed by finite-element-method simulations (open circles), (f) the near-field-corrected effective-
medium theory (red curves), and (h) the conventional effective-medium theory (red curves).

analytically obtain (see Appendix B for detailed derivations)
that

ρ
single
0 = −1 + 1

1 + α − γ
+ 1

1 + α + γ

t single
0 = 2γ

1 + 2α + α2 − γ 2
, (2)

where α = i
∑

m |Sm0|2Y III
m /Y II

0 cot(kIII
m,zhd ) and γ =

i
∑

m |Sm0|2Y III
m /Y II

0 csc(kIII
m,zhd ), with kIII

m,z representing the
propagating wave vector of the m th diffraction mode in the
spacer region and Y i

m referring to the admittance of the m th
eigenmode in region i. It is not surprising to see from Eq. (2)
that all diffraction channels in the spacer region can contribute
to the response of the whole system, since terms cot(kIII

m,zhd )
and csc(kIII

m,zhd ) just represent the multiple scatterings of the
mth diffraction modes between two adjacent metallic layers.

We now map the subsystem to a homogenous slab with
the same thickness. As shown in Fig. 4(c), in order to make
such mapping reasonable, we study the electromagnetic re-
sponse of a homogeneous slab (with effective parameters εeff

and μeff to be determined), sandwiched by two semi-infinite

materials representing the metallic gratings. Here, two semi-
infinite background materials are modelled by a homogeneous
effective medium with εslit

eff = |S00|−2 and μslit
eff = |S00|2, ob-

tained by the mode-expansion method under the single mode
approximation [35]. A simple calculation yields the following
expressions for the reflection/transmission coefficients of the
model described in Fig. 4(c):

ρ
single
0 =

(
Y 2

slit − Y 2
eff

)
sin(neffk0hd )

2iYeffYslit cos (neff k0hd ) + (
Y 2

slit + Y 2
eff

)
sin (neff k0hd )

t single
0 = 2iYeffYslit

2iYeffYslit cos (neff k0hd ) + (
Y 2

slit+Y 2
eff

)
sin (neff k0hd )

,

(3)

where Yslit =
√

εslit
eff /

√
μslit

eff = |S00|−2 is the effective admit-
tance of the background medium, and Yeff and neff are the
effective admittance and refractive index of the metamate-
rial layer, respectively. Comparing Eq. (3) with Eq. (2), we
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obtain

Yeff = |S00|−2√α − γ
√

α + γ

neff = 2

k0hd

[
tan−1

(
i

√
α − γ√
α + γ

)
+ gπ

]
, (4)

with which we finally derive that

εeff = 2

k0hd |S00|2
√

α − γ
√

α+γ

[
tan−1

(
i

√
α − γ√
α+γ

)
+ gπ

]

μeff = 2

k0hd

|S00|2√
α − γ

√
α + γ

[
tan−1

(
i

√
α − γ√
α + γ

)
+ gπ

]
,

(5)

where g ∈ Z . Equation (5) gives the explicit forms of the
effective parameters of the multilayer metamaterial under
study, with the predominant part of near-field couplings
successfully taken into account. We call such an effective-
medium theory the near-field-corrected effective-medium
theory (NFC-EMT), in order to differentiate it from the
conventional effective-medium theory. Obviously, multiple
solutions of effective-medium parameters exist due to the
presence of g. In principle, we choose the correct branch
based on the criterion that calculations on subsystems with
different thicknesses should yield identical (at least nearly
identical) solutions of effective-medium parameters. We find
that the g = 0 branch for the one-layer subsystem is the
correct branch, because the one-layer subsystem exhibits a
deep-subwavelength thickness (hd � λ) and thus the g = 0
branch naturally describes the fundamental mode propagat-
ing in such a subsystem. Moreover, the effective-medium
parameters thus selected match very well with solutions
found in subsystems containing more layers, simply because
the present approach has already captured the predominant
part of near-field couplings (see Appendix C for a detailed
discussion).

We now check the validity of the near-field-corrected
effective-medium theory by studying a realistic nine-layer
metamaterial. The solid line in Fig. 4(f) represents the trans-
mission spectrum of an effective-medium slab with εeff and
μeff given in Fig. 4(e), derived from the near-field-corrected
effective-medium theory. Compared to the numerically calcu-
lated transmission spectrum on the realistic structure [open
circles in Fig. 4(f)], we find that results obtained with our
theory have captured all essential features, reinforced by the
small value of σMSE (0.096) between the two spectra. In sharp
contrast, repeating all calculations based on the conventional
effective-medium theory [Figs. 4(g) and 4(h)], we find that the
difference between spectra calculated by effective-medium
theory and the finite-element method is much larger (σMSE =
0.559). In fact, the effective parameters calculated by our
theory [see Fig. 4(e)] exhibit very different, even opposite dis-
persion behaviors, as compared to those by the conventional
effective-medium theory [Fig. 4(g)]. For example, while the
μeff calculated by conventional effective-medium theory ex-
hibits quite weak frequency dependence and is very close to 1,
μeff derived by the near-field-corrected effective-medium the-
ory, however, diverges at a particular frequency signifying the
existence of a magnetic resonance. Such a magnetic resonance
is formed by electric currents flowing in opposite directions on

FIG. 5. (a),(b) σMSE calculated with the conventional effective-
medium theory (red squares) and the near-field-corrected effective-
medium theory (blue circles) for a series of N-layer metamaterials
with (a) N changing from 3 to 15 with hd = 0.4 mm fixed and another
series of nine-layer metamaterials with (b) hd changing from 0.02 to
2 mm. (c),(d) σMSE as functions of hd and λd for the nine-layer meta-
materials computed by (c) the near-field-corrected effective-medium
theory and (d) the conventional effective-medium theory. Here, the
white solid line denotes the wavelengths of the magnetic resonance
for different hd .

two metallic layers, which is automatically considered by our
effective-medium theory.

We continue to examine the performance of the near-
field-corrected effective-medium theory by studying more
metamaterials with different layers (N) and interlayer distance
hd . Figure 5(a) presents how σMSE varies against N, calcu-
lated by both our theory and the conventional theory. For all
samples studied, near-field-corrected effective-medium theory
always works much better than the conventional effective-
medium theory, evidenced by much smaller values of σMSE.
Interestingly, the larger N becomes, the better the near-
field-corrected theory is as compared to the conventional
effective-medium theory. We can understand such an intrigu-
ing result based on the following arguments. We note that
our near-field-corrected theory does not consider the higher-
order diffraction modes in two air regions above/below the
sample, which is one possible source to generate discrepan-
cies. However, such an interfacial effect has smaller relative
contributions to the final results as N increases. Quite on the
contrary, as N increases, the conventional effective-medium
theory must get worse as it naturally neglects the interlayer
couplings which can accumulate more errors as more layers
are stacked. These different trends well explain why the ad-
vantages of the near-field-corrected theory are more dramatic
in large-N samples [Fig. 5(a)]. Figure 5(b) illustrates how
σMSE calculated by two methods vary against hd for a series of
nine-layer samples with different hd . Again, we find that the
near-field-corrected theory works better than the conventional
effective-medium theory for all cases studied.

In order to gain deeper understandings, we now
study the mean-square errors between results obtained by

174208-6



EFFECTIVE-MEDIUM THEORY FOR MULTILAYER … PHYSICAL REVIEW B 102, 174208 (2020)

effective-medium theory and finite-element method at ev-
ery wavelength, defined by σMSE(λd ) = |rEMT − rFEM|2 +
|tEMT − tFEM|2 with λd = λ/

√
εd denoting the wavelength in-

side the spacer. Figures 5(c) and 5(d) depict, respectively,
how σMSE(λd ) varies against λd and hd , calculated by two
different versions of effective-medium theory for a series of
nine-layer samples with different hd . Comparisons between
Figs. 5(c) and 5(d) clearly demonstrate that the near-field-
corrected effective-medium theory works much better than the
conventional effective-medium theory for all cases studied,
represented by much smaller values of σMSE(λd ) of near-field-
corrected theory in the entire parameter space. In contrast, we
find from Fig. 5(d) that σMSE(λd ) can be quite large in certain
spikelike regions where transmission resonances take place.
To facilitate our further analyses, we add to the two figures an
auxiliary line, defined by λd = 6htot with htot representing the
total thickness of the sample. Such an auxiliary line together
with the shadow region with properties discussed below di-
vide the whole parameter region to three different subregions
labeled by i, ii, and iii, respectively. We find that the near-field-
corrected effective-medium theory is more advantageous in
region ii, where the sample is thick enough to accumulate the
errors caused by neglecting the near-field couplings. Mean-
while, in region i where htot is too thin, two effective-medium
theories can both work well since the errors caused by neglect-
ing near-field couplings do not accumulate to large-enough
values. Finally, in region iii (the shadow region), the near-
field-corrected effective-medium theory does not work well
since the effective parameters obtained by Eq. (5) will contain
imaginary parts. In fact, this region is tightly connected with
the appearance of the magnetic resonance as discussed in
Fig. 4(e), which makes the usual effective-medium description
invalid for the metamaterial. Although one can still use the
conventional effective-medium theory to derive the effective
parameters of the metamaterial in this region, the obtained
parameters cannot accurately describe the metamaterial, as
demonstrated by the large σMSE(λ) values. In such regions
with relatively strong scatterings, one has to use other meth-
ods (say, the quasimode approach [21]) to derive meaningful
effective parameters for the metamaterials.

V. EXTENSIONS TO ARBITRARY STRUCTURES
AND EXPERIMENTAL VALIDIFICATION

The theoretical formalism presented in last section, derived
with a simple structure, can be extended to study general
multilayer metamaterials. Take a multilayer metamaterial with
unit microstructure being a metallic cross [see Fig. 6(a)] as
an example; we follow the general homogenization strategy
as described in the last section to derive its effective param-
eters. Comparing the present system to that studied in the
last section, we find the following two differences: First, the
fundamental eigenmode in the metallic region is no longer
a transverse-electromagnetic waveguide mode, but rather a
quasi- transverse-electromagnetic mode with field distribution
given by �EFloquet

q=0 , which can only be obtained by numerical
simulations. Second, now an eigenmode in the spacer region
should be labeled by three indices: {mx, my} describing the
diffraction channel with parallel wave vector �k|| = mxGxx̂ +

FIG. 6. (a),(b) Schematics of retrieving the effective parameters
of an arbitrary multilayer metamaterial in the near-field-corrected
effective-medium theory. Here, εd = 3.5, μd = 1, and the metallic
layer contains a periodic array (with lattice constant 6.5 mm) of
metallic cross with geometric parameters: bar length 6 mm, bar
width 3.2 mm, thickness 0.018 mm. The spacer thickness is 1.6
mm. (c) Finite-element-method-calculated E-field distributions (with
color/arrow representing the amplitude/direction of the field and
the yellow dashed line representing the profile of the microstruc-
ture) of the fundamental modes inside metallic regions. (d),(e)
Frequency-dependent effective parameters calculated by (d) the near-
field-corrected effective-medium theory and (e) the conventional
effective-medium theory, respectively. (f),(h),(j) Transmission spec-
tra computed by finite-element-method simulations (open circles)
and the near-field-corrected effective-medium theory (solid lines)
for metamaterials with N = 5, 7, 9. (g),(i),(k) Transmission spectra
computed by finite-element-method simulations (open circles) and
the conventional effective-medium theory (solid lines) for metama-
terials with N = 5, 7, 9.

myGyŷ where Gx and Gy are the reciprocal vectors along two
directions, and σ denoting the polarization.

Repeating the same derivations as those in last section, we
find that the effective parameters of such a metamaterial under
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normally incident light with polarization σinc are given by two formulas very similar to Eq. (5):

εeff = 2

k0hd

∣∣Sσinc
{0,0},0

∣∣2

√
α − γ

√
α + γ

[
tan−1

(
i

√
α − γ√
α + γ

)
+ gπ

]

μeff = 2

k0hd

∣∣Sσinc
{0,0},0

∣∣2

√
α − γ

√
α + γ

[
tan−1

(
i

√
α − γ√
α + γ

)
+ gπ

]
, (6)

where

α = i
∑

{mx,my},σ

∣∣Sσ
{mx,my},0

∣∣2
Y III,σ

{mx,my}
/

Y II
0 cot

(
kIII
{mx,my},zhd

)
,

γ = i
∑

{mx,my},σ

∣∣Sσ
{mx,my},0

∣∣2
Y III,σ

{mx,my}
/

Y II
0 csc

(
kIII
{mx,my},zhd

)
,

Sσ
{mx,my},q = (

Sσ
q,{mx,my}

)∗ =
∫

u.c.

( �Eσ,PW
{mx,my},||

)∗ · �EFloquet
q,|| dxdy√∫

u.c.

∣∣ �Eσ,PW
{mx,my},||

∣∣2
dxdy

√∫
u.c.

∣∣ �EFloquet
q,||

∣∣2
dxdy

(7)

with �Eσ ,PW
{mx,my},|| and Y III,σ

{mx,my} representing the parallel com-
ponent of electric field and admittance of the diffraction
mode with index {mx, my} and σ in the spacer region and
Y II

0 referring to the admittance of the fundamental quasi-
transverse-electromagnetic mode in the metallic regime. Here,
we follow the same strategy as described in the last section
and again find it reasonable to choose the g = 0 branch of
solutions for the one-layer subsystem. Obtaining the funda-
mental eigenmode of the complex metallic structure �EFloquet

q=0
by full wave simulations [see Fig. 6(c)], we can then use
Eqs. (6) and (7) to calculate the effective parameters of the
system under study.

Figures 6(d) and 6(e) depict the frequency-dependent
effective permittivity and permeability of the system, cal-
culated by the near-field-corrected theory and conventional
effective-medium theory, respectively. Similar to the system
studied in the last section, here the effective parameters
obtained with two different methods also exhibit opposite
frequency dependencies. In particular, while μeff calculated
by the near-field-corrected theory diverges at a specific fre-
quency indicating the existence of a magnetic resonance, the
same thing is not true for μeff obtained by the conventional
effective-medium theory. We compare in Figs. 6(f)–6(k) the
transmission spectra of three samples with different number
of layers (N), calculated by two different versions of effective-
medium theory with those calculated by the finite-element
method on realistic structures. Obviously, our near-field-
corrected theory performs much better than the conventional
effective-medium theory, demonstrated by the much smaller
values of σMSE for all cases studied.

We now experimentally validate our near-field-corrected
effective-medium theory. We fabricate a five-layer metamate-
rial based on the design [Fig. 6(a)] with its top- and side-view
pictures shown in Figs. 7(a) and 7(b), and then measure its
transmission spectra in the microwave regime. Here, the in-
terlayer spacers are made of F4BM350 (with εr = 3.5 and
loss tangent 0.004). In our experiments, we illuminated the
sample by normally incident y-polarized microwaves emitted
from a horn antenna placed 1 m away from the sample, and

then used another horn antenna placed 1 m away from the
sample to collect the transmitted signals. Both the source
and receiver antennas were connected to a vector-field ana-
lyzer (Agilent E8362c). Open circles in Figs. 7(c) and 7(d)
depict the measured transmission spectrum for the five-layer
metamaterial, which is in excellent agreement with the finite-
element-method simulations. Most importantly, we find that
the spectrum predicted by the near-field-corrected theory is
obviously in much better agreement with our experimental re-
sults than the conventional effective-medium theory, in terms

FIG. 7. (a) Top-view and (b) side-view pictures of the fabricated
five-layer sample. Here, a metallic layer contains an array (with
periodicity 6.5 mm) of metallic crosses with geometric parameters:
bar length 6 mm, bar width 3.2 mm, and thickness 0.018 mm. The
spacer thickness is 1.6 mm. (c) Spectra of transmission amplitude of
the five-layer metamaterial, obtained by finite-element-method sim-
ulations (blue solid line), the near-field-corrected effective-medium
theory (red dashed line), and experimental measurements (open
circles). (d) Spectra of transmission amplitude of the five-layer meta-
material, obtained by finite-element-method simulations (blue solid
line), the conventional effective-medium theory (red dashed line),
and experimental measurements (open circles).
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of both transmission-amplitude fluctuations (dictated by the
effective impedance of the metamaterial) and the frequency
positions of the transmission peaks (dictated by the effective
refraction index of the metamaterial).

Before concluding this section, we discuss more about the
applicable range of our effective-medium theory. First of all,
we note that the near-field-corrected effective-medium the-
ory does not apply to those systems with three-dimensional
nonplanar microstructures, which cannot be “cut” from a
plane inside the metallic layer. In addition, since our ap-
proach crucially relies on the assumption that excitations of
high-order modes inside the metallic layers are weak enough
to be dropped, we understand that the near-field-corrected
theory will also break down when such an assumption is
invalid. Since analytical solutions are difficult to obtain for
microstructures with arbitrary shapes, we employ numerical
approaches to explore when such single-mode approxima-
tion becomes invalid, still based on the metallic cross-shaped
resonators. Here, we use χ = |S{0,0},0|2/

∑
q |S{0,0},q|2 as an

indicator to tell whether the fundamental mode inside the
metallic layer dominates the scattering process. We stud-
ied three different nine-layer metamaterials similar to those
studied in Fig. 6(a), but with metallic “crosses” exhibiting
different shapes [see Figs. 8(a)–8(c)]. For each shape, we
continuously change the thickness of the spacer. As shown in
Fig. 8, numerical calculations demonstrate that shrinking the
size of the metallic “cross” decreases the values of χ , which
suppresses the relative importance of the fundamental mode
inside the metallic layer. As a result, the near-field-corrected
effective-medium theory becomes less accurate as the size of
metallic resonator decreases, reinforced by the increment of
σMSE for the near-field-corrected theory. In other words, the
near-field-corrected theory works better for systems with a
higher ratio of metal occupations. In comparison, for systems
with a lower ratio of metallic occupations, the conventional
effective-medium theory is more applicable. Although such
a trend is obtained through numerical simulations based on
a specific microstructure, we expect it to be generally valid,
which provides important guidance for the researchers to
use our theory. Finally, we note that our near-field-corrected
theory does not work well at high frequencies where electro-
magnetic fields can significantly penetrate inside the metallic
layers, since strong near fields localized inside and outside
plasmonic particles make it no longer reasonable to truncate
the metallic layers as artificial boundaries.

VI. CONCLUSION

To summarize, we propose an effective-medium theory to
study strongly coupled multilayer metamaterials at low fre-
quencies, in which the strong near-field couplings between
adjacent metallic layers are automatically considered. The key
idea is to choose a subsystem via cutting the realistic systems
at the central planes of the metallic layers instead of the spacer
layers. Comparisons with the conventional effective-medium
theory show that our theory is particularly advantageous for
studying those metamaterials with small interlayer distances,
large total sizes, and a large area occupation ratio of metallic
resonators at low frequencies, where the near-field couplings
inside the spacer layers are very important while the high-

FIG. 8. σMSE and χ calculated with the near-field-corrected
effective-medium theory (blue circles) and the effective-medium
theory (red squares) on multilayer metamaterials consisting of cross-
shaped metallic microstructures with varying spacer thickness hd .
Insets schematically depict the shapes of metallic resonators, with
bar width being (a) 5.0 mm, (b) 3.2 mm, (c) 1.6 mm, respectively.

order modes inside the metallic layers are less important.
Our version of effective-medium theory well compliments
the conventional effective-medium theory and is particularly
useful for studying the strongly coupled metamaterials which
have important applications in practice, justified by both nu-
merical simulations and microwave experiments on realistic
structures.
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APPENDIX A: DERIVATION OF MODE-EXPANSION
METHOD ON THE MODEL SYSTEM IN SEC. III

In region I, we expand the total electric field as

�E I = �E I,PW,−
0 +

∑
n

ρn �E I,PW,+
n , (A1)

where �E I,PW,−
0 represents the x-polarized normally inci-

dent plane wave (PW) and �E I,PW,+
n denotes the reflected

plane wave propagating in the n th diffraction chan-
nel (with kI

n,x = nG where G = 2π/P and n = 0,±1, ...)
and ρn is the corresponding reflection coefficient. The
parallel electric component takes the form �E I,PW,±

n,|| =
1/

√
P exp(ikI

n,xx) exp[±ikI
n,z(z − hm)]x̂. Meanwhile, in region

II, the electric field can be expanded as linear combinations of
a series of waveguide modes inside the slits. Specifically, the
electric field inside the slit centered at x j can be expanded as

�E II =
∑

q

(
a+

q
�E II,WG,+

q + a−
q

�E II,WG,−
q

)
, |x − x j | < a/2,

(A2)

where �E II,WG,±
q is the q th waveguide mode prop-

agating along the ±z directions with a±
q denoting

the corresponding expansion coefficients. The parallel
electric field of the q th waveguide mode is �E II,WG,±

q,|| =
1/

√
2a(1 + δq,0)[exp(ikII

q,xx) + ( − 1)q exp( − ikII
q,xx)] exp

(±ikII
q,zz)x̂ (with kII

q,x = qπ/a and q = 0, 1, 2...). We now
consider electromagnetic eigenmodes in region III, which can
be written as

�E III =
∑

m

(
b+

m
�E III,SC,+

m + b−
m

�E III,SC,−
m

)
, (A3)

where b±
m are the coefficients for the m th scatter-

ing mode with normalized wave functions, �E III,SC,±
m,|| =

1/
√

P exp(ikIII
m,xx) exp(±ikIII

m,zz)x̂ (with kIII
m,x = mG and m =

0,±1, ...). Electromagnetic waves inside regions IV and VI
can be studied in a similar way to region II, where the total
electric fields inside the slit centered at x j can be expanded as

�E IV =
∑

q

(
c+

q
�E IV,WG,+

q + c−
q

�E IV,WG,−
q

)
, |x − x j | < a/2

�EVI =
∑

q

(
e+

q
�EVI,WG,+

q + e−
q

�EVI,WG,−
q

)
, |x − x j | < a/2,

(A4)

where c±
q and e±

q are the mode coefficients for the qth
waveguide mode in these two regions. Given the position
of the z = 0 plane, the parallel electric components of the
q th waveguide mode in regions IV and VI are slightly
different from those in region II. They are �E IV,WG,±

q,|| =
1/

√
2a(1 + δq,0)[exp(ikIV

q,xx) + (−1)q exp(−ikIV
q,xx)] exp

[±ikIV
q,z(z + hd )]x̂ and �EVI,WG,±

q,|| = 1/
√

2a(1 + δq,0)
[exp(ikVI

q,xx) + (−1)q exp(−ikVI
q,xx)] exp[±ikVI

q,z(z + 2hd +hm)]
x̂ respectively (with kIV

q,x = kVI
q,x = kII

q,x). In region V, the
electric field can be studied in a similar way to region III,
with the total electric fields

�EV =
∑

m

(
d+

m
�EV,SC,+

m + d−
m

�EV,SC,−
m

)
, (A5)

where d±
m are the corresponding coefficients and �EV,SC,±

m,|| =
1/

√
P exp(ikV

m,xx) exp[±ikV
m,z(z + hd + hm)]x̂ (with kV

m,x =
kIII

m,x). Finally, the electric field in region VII is

�EVII =
∑

n

tn �EVII,PW,−
n , (A6)

where tn are the expansion coefficients and �EVII,PW,−
n,|| =

1/
√

P exp(ikVII
n,x x) exp[−ikVII

n,z (z + 2hm + 2hd )]x̂ (with kVII
n,x =

kI
n,x). In all these regions, magnetic fields can be derived

from the electric fields using Maxwell’s equations. We also
note that the perpendicular wave vectors are determined by
the dispersion relation (ki

n,x )2 + (ki
n,z )2 = εi(ω/c)2, where ω

and c denote the frequency and speed of light in the i
th region (i = I, II, III, IV, V, VI, VII), and εI = εII = εIV =
εVI = εVII = 1, εIII = εV = εd are the permittivity in each
region.

By matching the boundary condition for electric field at
the z = hm interface and using the orthonormal conditions∫ P/2
−P/2 ( �EPW

n,|| )
∗ · �EPW

n′,||dx = δn,n′ , we obtain that

ρn+δn,0 =
∑

q

S(1,2)
nq

[
a+

q exp
(
ikII

q,zhm
)+a−

q exp
(−ikII

q,zhm
)]

,

(A7)

where the coupling strength is

S(1,2)
nq =

∫ P/2

−P/2

( �E I,PW
n,||

)∗ · �E II,WG
q,|| dx

=
√

a

2P · (1 + δq,0)
[sinc(nπ · a/P − qπ/2)

+ (−1)q · sinc(nπ · a/P + qπ/2)]. (A8)

Similarly, matching the boundary condition for magnetic
field at this interface and using the orthonormal conditions∫ a/2
−a/2 ( �E II,WG

q,|| )
∗ · �E II,WG

q′,|| dx = δq,q′ , we have
∑

n

S(2,1)
qn Y I

n [ρn − δn,0] = Y II
q

[
a+

q exp
(
ikII

q,zhm
)

− a−
q exp

( − ikII
q,zhm

)]
, (A9)

where the overlapping integrals are S(2,1)
qn =∫ P/2

−P/2 ( �E II,WG
q,|| )

∗ · �E I,PW
n,|| dx = (S(1,2)

nq )∗.
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Matching the tangential components of electric and magnetic fields at other interfaces between adjacent regions and employing
the orthonormal conditions of these eigenmodes, we get the following set of coupled linear equations:

ρn + δn,0 =
∑

q

S(1,2)
nq

[
a+

q exp
(
ikII

q,zhm
) + a−

q exp
( − ikII

q,zhm
)]

∑
n

S(2,1)
qn Y I

n (ρn − δn,0) = Y II
q

[
a+

q exp
(
ikII

q,zhm
) − a−

q exp
( − ikII

q,zhm
)]

b+
m + b−

m =
∑

q

S(3,2)
mq (a+

q + a−
q )

∑
m

S(2,3)
qm Y III

m (b+
m − b−

m ) = Y II
q (a+

q − a−
q )

b+
m exp

( − ikIII
m,zhd

) + b−
m exp

(
ikIII

m,zhd
) =

∑
q

S(3,4)
mq (c+

q + c−
q )

∑
m

S(4,3)
qm Y III

m

[
b+

m exp
( − ikIII

m,zhd
) − b−

m exp
(
ikIII

m,zhd
)] = Y IV

q (c+
q − c−

q )

d+
m + d−

m =
∑

q

S(5,4)
mq

[
c+

q exp
( − ikIV

q,zhm
) + c−

q exp
(
ikIV

q,zhm
)]

∑
m

S(4,5)
qm Y V

m (d+
m − d−

m ) = Y IV
q

[
c+

q exp
( − ikIV

q,zhm
) − c−

q exp
(
ikIV

q,zhm
)]

d+
m exp(−ikV

m,zhd ) + d−
m exp(ikV

m,zhd ) =
∑

q

S(5,6)
mq (e+

q + e−
q )

∑
m

S(6,5)
qm Y V

m

[
d+

m exp
( − ikV

m,zhd
) − d−

m exp
(
ikV

m,zhd
)] = Y VI

q (e+
q − e−

q )

t−
n =

∑
q

S(7,6)
nq

[
e+

q exp
( − ikVI

q,zhm
) + e−

q exp
(
ikVI

q,zhm
)]

−
∑

n

S(6,7)
qn Y VII

n t−
n = Y VI

q

[
e+

q exp
( − ikVI

q,zhm
) − e−

q exp
(
ikVI

q,zhm
)]

. (A10)

Here, Y i
n = ωεi/ki

n,z denotes the admittance for the n th mode in the i th region, S(i,j)
nq = ∫ a/2

−a/2 ( �E i,PW
n )

∗ · �E j,WG
q dx = (S(j,i)

qn )∗

denotes the overlapping integral between the n th diffracting plane wave in i th region and the q th waveguide mode inside the
slit in j th region, and S(k,j)

mq = ∫ a/2
−a/2 ( �Ek,SC

m )
∗ · �E j,WG

q dx = (S(j,k)
qm )∗ has a similar definition. Solving Eq. (A10), we thus obtain all

scattering coefficients.

APPENDIX B: DERIVATION OF EQ. (2)

Consider the wave scattering problem as depicted in Fig. 4(b). We assume that the incident wave coming from the semi-
infinite grating medium is the fundamental waveguide mode inside the grating taking a unit amplitude, and then calculate the
transmitted and reflected waves inside the semi-infinite media below and above the system. The transmitted/reflected waves
can be expressed to linear combinations of different waveguide modes with appropriate coefficients, which can be obtained by
solving the following coupled equations:

b+
m + b−

m =
∑

q

S(3,2)
mq ρsingle

q exp

(
−ikII

q,z

hm

2

)
+ S(3,2)

m0 exp

(
ikII

q,z

hm

2

)

∑
m

S(2,3)
qm Y III

m (b+
m − b−

m ) = Y II
q ρsingle

q exp

(
−ikII

q,z

hm

2

)
− Y II

0 exp

(
ikII

q,z

hm

2

)

b+
m exp

( − ikIII
m,zhd

) + b−
m exp

(
ikIII

m,zhd
) =

∑
q

S(3,4)
mq t single

q exp

(
−ikII

q,z

hm

2

)

∑
m

S(4,3)
qm Y III

m

[
b+

m exp
( − ikIII

m,zhd
) − b−

m exp
(
ikIII

m,zhd
)] = −Y IV

q t single
q exp

(
−ikII

q,z

hm

2

)
. (B1)

174208-11



LIU, MA, YANG, XIAO, AND ZHOU PHYSICAL REVIEW B 102, 174208 (2020)

FIG. 9. Effective-medium parameters calculated by NFC-EMT for subsystems with (a) one layer, (b) two layers, and (c) four layers with
different branches. Effective-medium parameters calculated by (d) NFC-EMT and (e) conventional EMT for structures with different layers
with proper branches selected. (f) σneff calculated with NFC-EMT (blue circles) and conventional EMT (red squares) for a nine-layer structure
vs number of layers (M) taken into account for homogenization.

Assuming hm = 0 since hm/λ → 0 (valid at low frequencies) and using the thin-slit approximation to drop all high order
expansion coefficients (|Sm0|2 � |Smq|2, q �= 0), we get from Eq. (B1) the following set of equations:

b+
m + b−

m = S(3,2)
m0

(
ρ

single
0 + 1

)
∑

m

S(2,3)
0m Y III

m (b+
m − b−

m ) = Y II
0

(
ρ

single
0 − 1

)

b+
m exp

( − ikIII
m,zhd

) + b−
m exp

(
ikIII

m,zhd
) = S(3,4)

m0 t single
0∑

m

S(4,3)
0m Y III

m

[
b+

m exp
( − ikIII

m,zhd
) − b−

m exp
(
ikIII

m,zhd
)] = −Y IV

0 t single
0 (B2)

to determine the specular reflection and transmission coeffi-
cients. Solving Eq. (B2), we get the explicit expressions for
ρ

single
0 and t single

0 , which are just Eq. (2) in the main text.

APPENDIX C: DISCUSSIONS ON BRANCH-SELECTION
ISSUES OF EQS. (4) AND (5)

We use the nine-layer metamaterial described in Sec. IV
as a specific example to illustrate how to choose the correct
branch in our theory. Figures 9(a)–9(c) depict, respectively,
the frequency-dependent effective refractive indices neff of the
metamaterial, calculated with our theory based on subsystems
containing one, two, and four layers of our periodic struc-
ture. Obviously, in all cases studied, we always get multiple
branches of neff solutions specified by the value of g. At every
frequency, we choose the correct solution of neff based on
the criterion that calculations based on different subsystems
should yield identical (at least nearly identical) values. Based
on such a criterion, we find that the first branch in one-layer

calculations is the correct one, as neff thus obtained match
very well with calculations with other subsystems (even in-
cluding the nine-layer system) at all frequencies studied [see
Fig. 9(d)]. Obviously, neff solutions on other branches in one-
layer calculations do not merge well with their counterparts in
two-layer and four-layer calculations. Therefore, we conclude
that the results presented in Fig. 9(d) are the desired ones.
In sharp contrast, as we repeated all the above calculations
based on a conventional effective-medium theory, we found
that results calculated based on different subsystems, even
with proper branches selected in each case, do not match well
with each other [Fig. 9(e)].

The excellent agreement among results obtained with dif-
ferent subsystems further reveal an important advantage of our
theory, that is, a one-layer subsystem is sufficient to obtain the
converged final results. This is physically sound, because the
one-layer subsystem exhibits a deep-subwavelength thickness
(hd � λ) and thus the g = 0 branch naturally describes the
fundamental mode propagating in such a subsystem. Quanti-
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tatively, we computed the averaged deviations (σneff ) between
neff obtained with M-layer and nine-layer calculations within
the frequency domain of interest (12.0–23.5 GHz), and show
in Fig. 9(f) how σneff varies against the number of layers
(M). Circles in Fig. 9(f) indicate that the convergence of neff

against the thickness of subsystem (M) is very fast in our
theory. In sharp contrast, we repeated all calculations with the
conventional EMT, and found that such convergence is much
slower in conventional EMT, and one needs to use a thicker
subsystem to obtain reliable results using the conventional
EMT [see red squares in Fig. 9(f)].

APPENDIX D: NUMERICAL SIMULATIONS

All numerical simulation results in this paper were
obtained by finite-element-method simulations using a numer-
ical solver (COMSOL Multiphysics). In our simulations, we
consider a unit cell of the simulated structure with periodic
boundary conditions imposed. We measure the reflected and
transmitted signals at two planes (ports) placed at two to
three wavelengths away from the metamaterial to ensure that
no near fields generated by the inhomogeneous structure can
reach the ports.
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