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Localization, phases, and transitions in three-dimensional extended Lieb lattices
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We study the localization properties and the Anderson transition in the three-dimensional Lieb lattice L3(1)
and its extensions L3(n) in the presence of disorder. We compute the positions of the flatbands, the disorder-
broadened density of states, and the energy-disorder phase diagrams for up to n = 4. Via finite-size scaling, we
obtain the critical properties such as critical disorders and energies as well as the universal localization lengths
exponent ν. We find that the critical disorder Wc decreases from ∼16.5 for the cubic lattice, to ∼8.6 for L3(1),
∼5.9 for L3(2), and ∼4.8 for L3(3). Nevertheless, the value of the critical exponent ν for all Lieb lattices studied
here and across various disorder and energy transitions agrees within error bars with the generally accepted
universal value ν = 1.590 (1.579, 1.602).
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I. INTRODUCTION

Flat energy bands have recently received renewed attention
due to much experimental progress in the last decade [1]. The
hallmark of such flatbands is an absence of dispersion in the
whole of k space [2–5], implying an effectively zero kinetic
energy. This leads to a whole host of effects in transport
and optical response such as, e.g., localization of eigenstates
without disorder [6] and enhanced optical absorption and ra-
diation. Further studies of flatband physics have now been
done in Wigner crystals [5], high-temperature superconduc-
tors [3,7], photonic waveguide arrays [1,8–12], Bose-Einstein
condensates [13,14], ultracold atoms in optical lattices [15],
and electronic systems [16].

Systems that exhibit flatband physics correspond usually
to specially “engineered” lattice structures such as quasi-
one-dimensional (quasi-1D) lattices [6,17,18], diamond-type
lattices [19], and so-called Lieb lattices [7,20–24]. Indeed, the
Lieb lattice, a two-dimensional (2D) extension of a simple
cubic lattice, was the first where the flatband structure was rec-
ognized and used to enhance magnetic effects in model studies
[2,25,26]. Most other flatband systems cited above are also
of the Lieb type and exist as either 2D, quasi-1D, or 1D lat-
tices [27]. Less attention has been given to three-dimensional
(3D) flatband systems [19] or extended Lieb lattices [24,28].
Furthermore, while disorder in quasi-1D [29–32] and 2D [33]
has previously received some attention, comparatively little
work has investigated the influence of disorder on 3D flat-
band systems [17,34,35]. Recently, instead of concentrating
on the properties of flatband states, we investigated how the
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localization properties in the neighboring dispersive bands are
changed by the disorder for 2D flatband systems [28].

In the present work, we extend these studies to the class of
3D extended Lieb lattices. As is well known [36] the Ander-
son transition in a simple cubic lattice with uniform potential
disorder εx ∈ [−W/2,W/2] at each site x is characterized by
a critical disorder Wc = 16.0(5)t [37], with t denoting the
nearest-neighbor hopping strength. The full energy-disorder
phase diagram consists of a simple-connected region of ex-
tended states ranging from ±6t at W = 0 and ending at Wc =
16.530(16.524, 16.536) for E = 0 [38]. The critical expo-
nent of the transition has been determined with ever greater
precision as close to, e.g., ν = 1.590(1.579, 1.602) [38] and
1.57(2) [39]. The 3D Lieb model, shown in Fig. 1 together
with its extensions, is characterized by additional sites on the
edges between the original site of the cubic lattice. As such,
the transport along the edges should become more 1D like and
we expect that the phase diagram should have a smaller region
of extended states.

II. MODELS AND METHOD

A. Transfer-matrix method for the 3D Lieb
lattices and its extensions L3(n)

We denote the Lieb lattices as Ld (n) if there are n equally
spaced atoms between two original nearest neighbors in a
d-dimensional lattice. Here, we shall concentrate on L3(1),
L3(2), and L3(3) as shown in Fig. 1. To explore the effects of
disorder, we use the standard Anderson Hamiltonian

H =
∑

x

εx|x〉〈x| −
∑
x�=y

txy|x〉〈y|. (1)

The orthonormal Wannier states |x〉 describe electrons located
at sites x = (x, y, z) of the Lieb lattice with a hard bound-
ary condition (we have similar results for periodic boundary
conditions as well). The hopping integrals txy = t only
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FIG. 1. (a) The Lieb lattice L3(1) and its extensions (b) L3(2)
and (c) L3(3). The blue spheres denote the original nearest-neighbor
sites in the underlying cubic lattice while the red spheres show the
added sites. The solid lines indicate the cubic structure. The coordi-
nate system is to help identify the TMM setup used in our study as
are the labels A, B, C, and D.

for x, y being nearest neighbors as indicated by the lines in
Fig. 1, otherwise txy = 0.

For L3(1), in order to calculate the localization length λ of
the wave function by the transfer-matrix method (TMM), we
consider a quasi-one-dimensional bar, with cross area M2 and
length L � M. A unit length corresponds to original site-to-
site distances as indicated by the A sites in Fig. 1. Along the
transfer axis in the z direction, there are two different slices
in L3(1). The first slice contains the original A sites, and the
added B and C sites to form an A-B-C slice; the second (D-)
slice only contains the added D sites as shown in Fig. 1. The
TMM equation implementing H� = E� at energy E for the
Hamiltonian (1) can be written as two parts. First, transferring
from slice A-B-C to slice D, we have

(
�D

z+1

�A
z

)
= TA→D

(
�A

z

�D
z−1

)

=
(
E1M2 − 1

εz,x−1,y−E tx− − 1
εz,x+1,y−E tx+ − 1

εz,x,y−1−E ty− − 1
εz,x,y+1−E ty+ −1M2

1M2 0M2

)(
�A

z

�D
z−1

)
, (2)

where

E = εz,x,y − E

t
− t

εz,x−1,y − E
− t

εz,x+1,y − E
− t

εz,x,y−1 − E
− t

εz,x,y+1 − E
, (3)

and 0M2 , 1M2 denote M2 × M2 zero and identity matrices,
respectively. Similarly, tx+, tx−, ty+, and ty− are M2 × M2

connectivity matrices in the positive/negative x/y directions.
With this choice of TMM setup, we effectively renormalize
the added B,C (red) sites shown in Fig. 1(a). Taking M = 3 as
an example, we can explicitly write the 32 × 32 matrices

tx− = t

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

(1) 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 (1) 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 (1) 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4)

and tx+ = t†
x−. Similarly,

ty− = t

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

(1) 0 0 0 0 0 0 0 0
0 (1) 0 0 0 0 0 0 0
0 0 (1) 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5)

and ty+ = t†
y−. In Eqs. (4) and (5), the matrix entries (1)

can be chosen 0 for hard-wall boundaries and 1 for periodic
boundaries. In this way, the effects of sites B and C have
been renormalized into effective on-site energies E and hop-

ping terms tx±, ty± keeping the transfer matrix TA→D in the
standard 2M2 × 2M2 form. We emphasize that �A,D

z denotes
a vector of length M2 for wave function amplitudes in the zth
slice [40], either A or D, with x, y = 1, . . . , M, labeling the
position of the original cubic sites in this slice. In this notation
the term εz,x,y−E

t 1M2 ≡ diag( εz,1,1−E
t ,

εz,1,2−E
t , . . . ,

εz,M,M−E
t ) and

similarly for E1M2 and the hopping terms with tx±, ty± in
Eq. (2). From the D slice to the A-B-C slice, we can write
a more standard TMM form as(

�A
z+1

�D
z

)
= TD→A

(
�D

z

�A
z−1

)

=
(

εz,x,y−E
t 1M2 −1M2

1M2 0M2

)(
�D

z

�A
z−1

)
, (6)

in similar notation.
The TMM method proceeds by multiplying successively

TA→D by TD→A along the bar in the z direction, using M2

possible starting vectors �A
z (1) = (1, 0, . . . , 0), �A

z (2) =
(0, 1, . . . , 0), �A

z (M2) = (0, 0, . . . , 1) to form a complete
set. We regularly reorthogonalize these M2 � states, usually
after every tenth multiplication. The Lyapunov exponents γi,
i = 1, 2, . . . , M2, and their accumulated changes are calcu-
lated until a preset precision is reached for the smallest γmin

[36,41–43]. The localization length λ(M, E ,W ) = 1/γmin >

0, the dimensionless reduced localization length is
�M (E ,W ) = λ(M, E ,W )/M [44]. These considerations
set out the TMM for L3(1). For the extended Lieb lattices, we
follow a similar strategy, leading to an even more involved
renormalization scheme which we refrain to review in the
interest of brevity.
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L3(1) L3(2) L3(3) L3(4)
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FIG. 2. (a)–(d) Dispersion relations for clean systems and (e)–(h) dependence of the normalized DOS on W for L3(1) to L3(4). In all cases,
the flatbands are doubly degenerate. In (a)–(d), we start in (kx, ky, kz ) space from the � point (0,0,0), increase k as (k, k, 0) until we reach the
M point (π, π, 0), decrease as (k, π, 0) to the X point (0, π, 0), increase via (k, π, k) to the R point (π, π, π ), and last, decrease as (k, k, k)
back to the � point at (0,0,0). Different colors in the dispersion relations denote different bands while the colors in the DOS indicate different
DOS values as also emphasized by the contour lines.

B. Finite-size scaling

The metal-insulator transition (MIT) in the Anderson
model of localization is expected to be a second-order phase
transition [36,45,46], characterized by a divergence in a cor-
relation length ξ (W ) ∝ |W − Wc|−ν at fixed energy E , and
ξ (E ) ∝ |E − Ec|−ν at fixed disorder W [47], where Ec is the
critical energy and ν, Wc as before. We determine the reduced
correlation length ξ/M in the thermodynamic limit assuming
the single parameter scaling, i.e., �M (M, E ,W ) = f (ξ/M )
[37]. For a system with an MIT this scaling function con-
sists of two branches corresponding to localized and extended
phases. Using finite-size scaling (FSS) [44], we can obtain es-
timates of the critical exponent. Here, we use a method [39,47]
that models two kinds of corrections to scaling: (i) the pres-
ence of irrelevant scaling variables and (ii) nonlinearity of the
scaling variables. Hence one writes � = F (χrM1/ν, χiMy),
where χr is the relevant scaling variable and χi the irrelevant
scaling variable. We next Taylor-expand � and F up to order
ni and nr such that

� =
ni∑

n=0

χn
i MnyFn(χrM1/υ ), Fn =

nr∑
k=0

ankχ
k
r Mk/ν . (7)

Furthermore, we also expand χi and χr by ω = (Wc −
W )/Wc [or (Ec − E )/Ec] to consider the importance of the
nonlinearities,

χr (ω) =
mr∑

m=1

bmωm, χi(ω) =
mi∑

m=0

cmωm. (8)

In order to fix the absolute scales of � in (7) we set
b1 = c0 = 1. We then perform the FSS procedure for various
values of ni, nr, mi, mr , in order to obtain the best stable and
robust fit by minimizing the χ2 statistic. We quote goodness
of fit p values to allow the reader to judge the quality of
our results. A summary of all input parameters, including the

range of system sizes as well as energies and disorders used
in the FSS analysis is given in Table I.

III. RESULTS

A. Dispersion and disorder-broadened
density of states for L3(n)

For a clean L3(1) system, the dispersion relation can be
derived from (1) as

E1,2 = 0, E3,4 = ±√
6 + 2(cos kx + cos ky + cos kz ), (9)

where the kx, ky, kz are the reciprocal vectors corresponding to
the x, y, and z axes, respectively. Figure 2(a) shows the energy
structure of L3(1), where we can see two dispersive bands
which meet linearly at the R point (kx, ky, kz ) = (π, π, π ) at
E = 0. This coincides in energy with the doubly degenerate
flatband. Analogously, we calculate the energy structures for
L3(n), n = 2, 3, 4 and plot them in Figs. 2(b), 2(c), and 2(d),
respectively. We can see that each L3(n) lattice has n doubly
degenerate flatbands separating n + 1 dispersive bands. Fur-
thermore, the two dispersive bands at high and low energies
are separated by energy gaps for these models. We also note
that for L3(3) two dispersive bands again meet linearly, as for
L3(1), but in this instance at the � point (kx, ky, kz ) = (0, 0, 0)
at E = 0. No such linear behavior can be found for L3(n) with
n even.

We now include the disorder, i.e., W > 0, and we calcu-
late the disorder-dependent density of states (DOS) by direct
diagonalization for small system sizes M3 = 53, 53, 43 and 43

for L3(n), n = 1, 2, 3, 4, respectively. The DOS is generated
from W = 0 to W = 5.2 in steps of 0.05 with 300 samples for
L3(n), n = 1, 2, 3, while we have 100 samples for L3(4). We
also apply a Gaussian broadening, using Silverman’s rule to
determine the bandwidth broadening [48] of the energy levels
to obtain a smoother DOS. The results are shown in Fig. 2.
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TABLE I. Critical parameters of the MIT for L3(n), n = 1, 2, and 3. The columns denoting system width M, fixed E (or W ), range of W
(or E ), expansion orders nr , mr are listed as well as resulting critical disorders Wc (or energies Ec), their 95% confidence intervals (CIs), the
critical exponent ν, its CI, and the goodness of fit probability p. The averages contain the mean of the three preceding Wc (or Ec) and ν values,
with standard error of the mean in parentheses. The italic Wc, Ec, and ν values highlight the fits used as examples in Figs. 5 and 6.

L3(1)
�M E δW nr mr Wc CI(Wc) ν CI(ν) p
16–20 0 8.25–8.9 3 1 8.594 [8.585,8.604] 1.57 [1.49,1.65] 0.15
16–20 0 8.25–8.9 2 2 8.598 [8.586,8.610] 1.55 [1.46,1.63] 0.08
16–20 0 8.25–8.9 3 2 8.595 [8.582,8.607] 1.57 [1.48,1.66] 0.13
Averages: 8.596(4) 1.56(3)

�M E δW nr mr Wc CI(Wc) ν CI(ν) p
14–20 1 8.0–8.8 3 1 8.435 [8.429,8.441] 1.60 [1.54,1.65] 0.18
14–20 1 8.0–8.8 2 2 8.439 [8.432,8.447] 1.57 [1.53,1.62] 0.19
14–20 1 8.0–8.8 2 3 8.438 [8.431,8.446] 1.57 [1.53,1.62] 0.21
Averages: 8.437(3) 1.58(2)

�M W δE nr mr Ec CI(Ec) ν CI(ν) p
16–20 3 3.725–3.785 2 1 3.748 [3.747,3.749] 1.75 [1.68,1.82] 0.88
16–20 3 3.725–3.785 2 2 3.748 [3.747,3.749] 1.76 [1.67,1.84] 0.86
16–20 3 3.725–3.785 3 1 3.748 [3.747,3.749] 1.75 [1.68,1.82] 0.86
Averages: 3.748(1) 1.75(3)

�M W δE nr mr Ec CI(Ec) ν CI(ν) p
16–20 6 3.04–3.11 1 1 3.077 [3.070,3.083] 1.54 [1.08,2.01] 0.14
16–20 6 3.04–3.11 2 1 3.076 [3.069,3.082] 1.54 [1.09,1.99] 0.24
16–20 6 3.04–3.11 2 2 3.077 [3.069,3.084] 1.54 [1.07,2.00] 0.21
Averages: 3.077(3) 1.54(14)

L3(2)
�M E δW nr mr Wc CI(Wc) ν CI(ν) p
12,14,18 0 5.85–6.05 2 2 5.964 [5.958,5.969] 1.75 [1.57,1.92] 0.08
12,14,18 0 5.85–6.05 2 3 5.965 [5.959,5.970] 1.70 [1.51,1.89] 0.08
12,14,18 0 5.85–6.05 3 2 5.963 [5.956,5.971] 1.75 [1.57,1.92] 0.07
Averages: 5.964(3) 1.73(6)

�M W δE nr mr Ec CI(Wc) ν CI(ν) p
10,12,14 4 1.6–1.8 2 1 1.704 [1.701,1.708] 1.55 [1.43,1.68] 0.18
10,12,14 4 1.6–1.8 1 3 1.705 [1.701,1.709] 1.56 [1.43,1.70] 0.1
10,12,14 4 1.6–1.8 2 2 1.703 [1.700,1.707] 1.53 [1.40,1.66] 0.2
Averages: 1.704(2) 1.55(5)

L3(3)
�M E δW nr mr Wc CI(Wc) ν CI(ν) p
12–18 0 4.7–4.875 2 1 4.79 [4.786,4.794] 1.63 [1.48,1.78] 0.49
12–18 0 4.7–4.875 1 2 4.791 [4.786,4.795] 1.63 [1.48,1.78] 0.47
12–18 0 4.7–4.875 2 2 4.791 [4.786,4.795] 1.63 [1.48,1.78] 0.47
Averages: 4.790(2) 1.63(5)

For weak disorders we can clearly identify the large peaks in
the DOS with the flatbands for all L3(n) models. From W ∼ 3
onward, the various peaks have merged into one broad DOS.
Also, the energy gaps for L3(n), n = 1, 2, 3, 4, vanish quickly
with increasing W .

B. Phase diagrams

Figure 3 shows the energy-disorder phase diagram for
L3(1). The phase diagram was determined from the scal-
ing behavior of the �(E ,W ) for small system sizes M = 6,
M = 8, and M = 10 with TMM error �0.1% [47]. Data for
W < 1 fluctuates too much to give useful results and hence
has been omitted from the figure. Clearly, the phase diagram

is qualitatively similar to the phase diagram of the standard
3D cubic Anderson model [49], although the bandwidth and
the critical disorder at E = 0 are different. In particular, the
critical disorder is reduced by about 50% compared to the
Anderson model. This is in agreement with the discussion in
Sec. I. Close to the band edges for small W � 4 we also see
a small reentrant region as is also found in the 3D Anderson
model [49–52]. However, the shoulders that develop at E ∼
±2.75 and W = 6 are a novel feature; they are not present in
the 3D cubic Anderson model [49,50] nor, to the best of our
knowledge, in other Anderson lattices [47,53]. However, the
DOS at such strong disorder does not retain any corresponding
signatures. The inset of Fig. 3 indicates that even for the
flatband energy E = 0 and disorders as low as W = 0.01, the
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FIG. 3. Phase diagram for L3(1). The three solid and colored
lines represent the approximate location of the phase boundary es-
timated from small M, i.e., the blue line is constructed by widths
M = 6 and M = 8 with blue circle (©), the red line by widths
M = 6 and M = 10 with red cross (×), and the green line by width
M = 8 and M = 10 with green plus (+). The solid squares (�) filled
with dashed lines denote high-precision estimates from FSS for large
M. The shaded area in the center contains extended states while
states outside the phase boundary are localized. The dashed lines
on both sides are guides to the eye for the expected continuation
of the phase boundary for W < 1. The red short vertical line at
E = 0 represents the position of the doubly degenerate flatbands. The
diamonds (�) denote the band edges for W = 0, i.e., Emin = −2

√
3

and Emax = 2
√

3. The dotted lines are the theoretical band edges
±(|Emin| + W/2) and the forbidden areas below those band edges
have been shaded. Inset: Weak disorder behavior at the flatband
energy E = 0 down to W = 0.01. The strip widths vary from M = 4
(sparse dotted line), 6 (condensed dotted), 8 (short dashed), M = 10
(long dashed), M = 12 (dashed-dotted) to M = 14 (solid). Error bars
are shown but very small.

values of � continue to increase with increasing M, hence
indicating that the extended phase survives [4,12].

For L3(2) and L3(3), we show the phase diagrams in Fig. 4,
determined with TMM errors of �0.2% and with the same
system sizes as for L3(1). As before, small disorder results
have to be excluded. Our numerical results support, as for
L3(1), a mirror symmetry at E = 0 and the results as shown
in Fig. 4 have been explicitly symmetrized. For both L3(2)
and L3(3), the phase boundaries of the central dispersive
band support a reentrant behavior, although this is less so
for L3(3). Similarly, the extended behavior at low disorder
for the flatband energy at E = 1 is indicated in the inset
of Fig. 4(a).

The obvious difference between the phase diagrams of
L3(1), L3(2), and L3(3) is that the extended region for the
L3(1) lattice is simply connected, while for L3(2) and L3(3)
it is disjoint. This difference can be attributed to the presence
of the energy gaps in L3(2) and L3(3) as in Fig. 2. Let us
denote, as in the cubic Anderson model, a critical disorder
Wc as the disorder value at the transition point from extended
to localized behavior at energy E = 0. Then we see that the
critical disorders are Wc ∼ 16.530 for the cubic lattice [38],
∼8.6 for L3(1), ∼5.9 for L3(2), and ∼4.8 for L3(3). Hence
as expected, in the Lieb lattices the last extended states van-
ish already at much weaker disorders and the trend becomes
stronger with increasing n in each successive L3(n).

C. High-precision determination of critical
properties for the Lieb models

1. Model L3(1)

In order to determine the critical properties at the phase
boundaries for the Lieb models, we have to go to larger system
size for a reliable FSS. In all cases, the results are collected
up to M = 20 and with TMM convergence errors �0.1%.

FIG. 4. Phase diagrams for (a) L3(2) and (b) L3(3) lattices. The symbols, lines, and colors are as in Fig. 3, i.e., representing small M
estimates with M = 6, 8, and 10. The solid squares (�) denote high-precision FSS results from �M with a TMM error �0.1% for width
M � 16 and �0.2% for width M = 18. The diamonds (�) denote the maximal band edges from W = 0 at ±3 for L3(2) and ±2

√
2 for L3(3).

Inset for (a): Weak disorder behavior at the flatband energy E = 1 down to W = 0.01 with error bars and lines indicated as in Fig. 3, i.e., the
strip widths vary from M = 4 (sparse dotted line) to M = 14 (solid).
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(a) (b)

(c) (d)

FIG. 5. (a) FSS of the localization lengths for L3(1) with E = 0, (b) E = 1, (c) W = 3, and (d) W = 6. System sizes M are 14 (gray +),
16 (dark yellow ×), 18 (blue +), and 20 (purple 
). The left half in each panel denotes a plot of �M versus disorder W or energy E ; the solid
lines are fits to the data acquired by Eqs. (7) and (8) with (a),(b) nr = 3, mr = 1, (c) nr = 2, mr = 1, and (d) nr = 1, mr = 1. The right half in
each panel shows the scaling function F (solid line) and the scaled data points with the same nr and mr as in the corresponding left half while
each inset gives the scaling parameter ξ as a function of disorder strength W in (a) and (b), or energy E in (c) and (d). The parameters of the
fits are shown in detail in Table I.

Using the phase diagram as in Fig. 3 as a rough guide, we
pick out four points of special interest, namely, two transitions
as a function of W at the band center at constant E = 0 and
outside the band center at E = 1. Furthermore, we also study
two transitions as a function of E corresponding to the point
marking the reentrant behavior [49] at constant W = 3 and
the kink in the phase boundary at constant W = 6. In Fig. 5,
we show the �M (E ,W ) data, the resulting scaling curves, and
the variation of the scaling parameter ξ for typical examples
of FSS results.

In Table I we present fits for all four cases shown in Fig. 5
with higher expansion coefficients nr and mr that show that
our results are stable with respect to an increase in an expan-
sion parameter. We have also checked that they are stable with
respect to slight changes in the choice of parameter intervals
δW and δE for fixed energy and fixed disorder transitions,
respectively. However, the reader will have noticed from the
small fluctuations in the �M values that the accuracy of the
data is not good enough to reliably fit irrelevant scaling con-
tributions and hence the results in Table I are all for ni =
mi = 0 although we have indeed performed our FSS allowing
for these additional parameters. Furthermore, one can see in

Fig. 5 that the accuracy of the TMM data becomes worse for
the fixed disorder transitions at W = 3 and especially W = 6.
The reason for this behavior is in principle well understood
since at the points, the DOS has an appreciable variation
which leads to extra corrections not well captured in the
FSS [54]. Usually, larger system sizes M can reduce these
variations but this is not possible here due to computational
limitations.

2. Models L3(2) and L3(3)

We follow a similar strategy as in the previous section in
order to finite-size scale the localization lengths for L3(2) and
L3(3). The TMM convergence errors were chosen as �0.1%
up to M = 16 and, due to the increased complexity of these
models, as �0.2% for the largest system size with M = 18.
Figure 6(a) shows �M (E = 0,W ) and the scaling curve for
L3(2) at energy E = 0 with nr = 3, mr = 3. From the panel
with the �M (E = 0,W ) data, it is very hard to observe a clear
crossing at Wc. The situation improves for �M (E ,W = 4)
in Fig. 6(b) which exhibits a clear crossing of �M around
Ec ∼ 1.70. For L3(3) shown in Fig. 6(c) the crossing for
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(a)

(b)

(c)

FIG. 6. FSS of the localization lengths for (a) L3(1) at E = 0 and
(b) W = 4 as well as for (c) L3(3) at E = 0. System sizes M are 10
(orange �), 12 (blue �), 14 (gray +), 16 (dark yellow ×), and 18
(blue +). The arrangement in each panel is as in Fig. 5, i.e., scaling
curves (solid lines) and scaled �M data (symbols) in the left half of
each panel, scaling curve F (lines) with scaled data (symbols) in the
right half, and ξ in the inset. The chosen expansion coefficients are
(a) nr = 2, mr = 2, (b) nr = 2, mr = 1, and (c) nr = 2, mr = 1 as
highlighted in Table I.

�M (E = 0,W ) is again somewhat less clear. Nevertheless, in
all three cases, the FSS results produce stable and robust fits
with estimates for Wc, Ec, and ν as shown in Table I. As for
L3(1), the FSS fits L3(2) and L3(3) do not resolve potential
irrelevant scaling corrections.

IV. CONCLUSIONS

There are two ways to understand the Lieb lattices as orig-
inating from the normal simple cubic lattices: (i) as shown
in Fig. 1, one can view the L3(n) lattices as a cubic lattice
with additionally added sites between the vertices of the cube,
effectively allowing for additional backscattering and inter-
ference along the original site-to-site connections and hence
potentially leading to more localization. On the other hand,
one might argue that (ii) the L3(n) lattices can be constructed
by deleting sites from a cubic lattice, for example a central
site in Fig. 1(a) and the six face-centered sites. In this view,
the decrease of possible transport channels should give rise to
stronger effective localization. Both constructions lead to the
same predictions and agree with what we find here, namely,
the localization properties in all L3(n) lattices show an in-
creased localization with respect to the cubic Anderson lattice
and become stronger when n increases. This is, for example,
clear from looking at the behavior of Wc(n) in Table I. It is
instructive to study the behavior as n → ∞. From Fig. 2,
we see that the overall bandwidth decreases as n increases.
At the same time, the number of flatbands increases and
the extremal energy of these bands extends as well towards
|E | = 2. For very large n, L3(n) is a M3 renormalized lattice,
but n renormalized sites apart, with proliferating flatbands.
Our results for the critical exponent then suggest that as n
increases and the dispersive bands become smaller, the critical
properties in each band still retain the universality of the 3D
Anderson transition—at least up to n = 3 that we have been
able to compute (cp. Fig. 7). This is in good agreement with
previous results in loosely coupled planes of Anderson models
in which the universal 3D behavior was also retained [55,56].
However, for loosely coupled planes, the MIT was retained
even for small interplane coupling—a truly 2D localization
behavior only emerged when the interplace coupling was zero.

FIG. 7. Variation of the averaged critical exponent ν correspond-
ing to L3(1) (red), L3(2) (blue), and L3(3) (green) for the seven
averages from Table I. The green horizontal dashed lines indicate
ν = 1.590(1.579, 1.602) via FSS of wave functions in the 3D An-
derson model [38] and the green shadow area denotes its error range.
The ν = 1.57(2) value, indicated by gray dotted lines with the gray
shadow area denoting its error bar, is from TMM results [39].
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The point of view of this work is different, i.e., the change
from 3D dispersive bands with an MIT to a solely 1D sys-
tem without MIT is not a continuous change, but rather an
eventual replacement and shrinking of dispersive bands by a
proliferation of flatbands as n grows.

We emphasize that our results have been obtained for
uniformly distributed diagonal disorder. For off-diagonal dis-
order, interesting effects of special energies such as E = 0
can arise due to the chiral symmetry of purely off-diagonal
disorder [57–59]. How such cases interact with the flatband
structure of the Lieb models and its extension can be an
interesting avenue for further studies [60].

The data accompanying this publication are available from
the corresponding authors.
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APPENDIX: DISPERSIONS

For completeness, we here include the dispersion relations
shown in Fig. 2. For L3(2), we have

E1,2 = 1, E3,4 = −1, E5 = ρ+ + ρ−, (A1a)

E6 = ωρ+ + ω2ρ−, E7 = ωρ− + ω2ρ+, (A1b)

where ω = −1+i
√

3
2 , ρ± = 3

√
− q(k)

2 ±
√

( q(k)
2 )

2 − ( 7
3 )

3
, and

q(k) = 2(cos kx + cos ky + cos kz ). For L3(3), we find

E1,2 =
√

2, E3,4 = −
√

2, E5,6 = 0, (A2a)

E7,8,9,10 = ±
√

4 ±
√

10 + q(k). (A2b)

Last, for L3(4), the four doubly degenerate flatbands are
given as

E1,2,3,4,5,6,7,8 = 1
2

(±1 ±
√

5
)
, (A3a)

and the remaining five dispersive bands are the solutions of
the fifth-order equation

E5 − 9E3 + 13E − q(k) = 0. (A3b)
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