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site disorder analyzed with Monte Carlo techniques

Stanislav Kazmin 1,2,* and Wolfhard Janke 2

1Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, 04103 Leipzig, Germany
2Institut für Theoretische Physik, Universität Leipzig, IPF 231101, 04081 Leipzig, Germany

(Received 7 August 2020; revised 29 September 2020; accepted 13 October 2020; published 20 November 2020;
corrected 1 February 2021)

We study the critical behavior of the Ising model in three dimensions on a lattice with site disorder by using
Monte Carlo simulations. The disorder is either uncorrelated or long-range correlated with correlation function
that decays according to a power law r−a. We derive the critical exponent of the correlation length ν and the
confluent correction exponent ω in dependence of a by combining different concentrations of defects 0.05 �
pd � 0.4 into one global fit ansatz and applying finite-size scaling techniques. We simulate and study a wide
range of different correlation exponents 1.5 � a � 3.5 as well as the uncorrelated case a = ∞ and are able to
provide a global picture not yet known from previous works. Additionally, we perform a dedicated analysis of
our long-range correlated disorder ensembles and provide estimates for the critical temperatures of the system in
dependence of the correlation exponent a and the concentration of defects pd . We compare our results to known
results from other works and to the conjecture of Weinrib and Halperin: ν = 2/a, and discuss the occurring
deviations.
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I. INTRODUCTION

The influence of quenched disorder on phase transition
properties of a system is of great importance as many real-
world materials show defects or impurities. The simplest way
to introduce the disorder is by assuming it to be pointwise
and uncorrelated. A prominent achievement in describing the
critical behavior of such systems was done by Harris [1].
The result is known as the Harris criterion. It states that if
the system has a negative specific heat exponent in the pure
case (without disorder, αpure < 0) the disorder does not influ-
ence the system’s universality class. On the other hand, for
αpure > 0 the disorder will change the system’s universality
class. This universality class will have new critical exponents
which will not depend on the disorder concentration. Various
studies [2–7] confirmed the change of the universality class of
the three-dimensional Ising model for which αpure > 0 is true.

However, in nature the disorder usually comes with a cer-
tain structure. One possible way to introduce such disorder to
a model is by adding a spatial correlation to the disorder. For a
magnetic system this could be nonmagnetic lines or planes or
clustered nonmagnetic impurities. Other interesting areas are
magnetic foams and magnetic elements in porous media [8,9].
The correlated disorder in systems was intensively studied
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with the help of the renormalization group theory by Weinrib
and Halperin [10] and the result is known as the extended
Harris criterion. It states that a system with long-range cor-
related disorder where the spatial disorder correlation follows
a power law r−a will change its universality class if a < d
and otherwise the standard Harris criterion will be recovered.
Further, they claim that the critical exponent of the correlation
length ν in the long-range correlated three-dimensional Ising
model is given by

ν = 2

a
. (1)

They argue, but do not prove rigorously, that this result is
exact. Several studies dealt with the Ising model with cor-
related disorder in two dimensions by applying Monte Carlo
simulations [11,12] or renormalization group techniques [13].
In three dimensions, Monte Carlo simulations were performed
in Refs. [14–20] while renormalization group techniques were
used in Refs. [10,21]. While it is generally accepted that the
correlated disorder case belongs to a new universality class,
the quantitative results and in particular the claim given in
Eq. (1) are controversially discussed. One condition which is
often overseen when assuming Eq. (1) is that d = 4 − ε ≈ 4
and a = 4 − δ ≈ 4 is a necessary condition in Ref. [10]. So it
remains unclear which range of a values fulfills this require-
ment. As a further reinforcement of the prediction given in
Eq. (1), Honkonen and Nalimov [22] claimed that Eq. (1) is
exact to all orders in the ε-δ expansion. This has been further
analyzed in Refs. [23,24].

The results for the ν exponent obtained by different groups
for the uncorrelated and the long-range correlated disordered
three-dimensional Ising model are summarized in Table I. The
ambiguity about the numerical values of the critical exponents
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TABLE I. Various results of the critical exponent ν and the confluent correction exponent ω for the three-dimensional Ising model with
uncorrelated and long-range power-law correlated disorder. We schematically denote the uncorrelated disorder case with a = ∞.

Reference a pd ν ω Remarks and method

Uncorrelated disorder
Ballesteros et al. [2] ∞ 0.1 – 0.4 0.6837(53) 0.37(6)
Calabrese et al. [4] ∞ 0.2 0.690(8) −
Berche et al. [5] ∞ 0.3 – 0.6 0.68(2) 0.7(1)
Murtazaev et al. [6] ∞ 0.2 0.683(4) − also values for pd = 0.1−0.4
Hasenbusch et al. [7] ∞ 0.2 0.683(2) 0.33(3) also value for pd = 0.35

Correlated disorder
Weinrib and Halperin [10] 2.0 − 1 − one-loop ε-δ expansion
Prudnikov et al. [21] 2.0 0.2 0.7151 − two-loop massive renormalization
Ballesteros and Parisi [14] 2.0 0.2, 0.35 1.012(10) 1.01(13) pointwise power law
Prudnikov et al. [15] 2.0 0.2 0.710(10) 0.8 defect lines
Ivaneyko et al. [16] 2.0 0.2 0.958(4) 0.8 defect lines / pointwise power law

and considerable differences in the literature motivated us to
attack the problem once again.

We extensively analyzed a three-dimensional Ising lattice
with power-law correlated site disorder by using Monte Carlo
techniques. In contrast to previous works, we performed sim-
ulations for various different correlation strengths a and a
wide range of disorder concentrations pd . We focused on the
critical exponent of the correlation length ν and the confluent
correction exponent ω and obtained a global picture of their
behaviors in the long-range correlated cases and in the un-
correlated disorder case. Additionally, we can present a rich
palette of critical temperatures for various a and pd .

The rest of the paper is structured as follows. In Sec. II,
we specify our model and the details of the performed sim-
ulations. In Sec. III, we analyze the disorder realizations to
confirm the desired power-law behavior. The main analysis
of the Monte Carlo simulations of the Ising model and the
obtained results are contained in Sec. IV. We present the
derivation of the critical exponent ν as well as the correc-
tion exponent ω. We compare our results to the Weinrib
and Halperin conjecture, ν = 2/a, and to the known results.
Finally we obtain critical temperatures for different concen-
trations and correlation exponents. A conclusion in Sec. V
completes this work.

II. MODEL AND SIMULATION DETAILS

A. Ising model with site disorder

We will not discuss the standard Ising model here and refer
to [25,26] as a good starting point for readers who need a
deeper background. For the rest of the paper we will deal with
the Ising model with site disorder which we will refer to as the
disordered Ising model.1 The Hamiltonian of the Ising model
with site disorder has a very similar form to the standard Ising

1The Ising model with random couplings, i.e., bond disorder, is also
called “disordered Ising model” in the literature.

model

H = −J
∑
〈xy〉

ηxηysxsy − h
∑

x

ηxsx, (2)

where the spins can take the values sx = ±1 and the defect
variables can be ηx = 1 when the spin is present at site x and
ηx = 0 when the site x is empty (a defect). The sum runs over
all next-neighbors denoted by 〈xy〉. The coupling constant is
set to J = 1 on the whole lattice and we work without an
external magnetic field, i.e., h = 0. Schematically the Ising
model with and without site disorder is presented in Fig. 1.

We distinguish between two different disorder types. The
first type is the uncorrelated disorder or random disorder. In
this case the defects are chosen randomly according to the
probability density

p(η) = psδ(η) + pdδ(η − 1), (3)

where ps is the concentration of spins, pd = 1 − ps is the
concentration of defects and δ is the Dirac-delta distribution.

The second type is the correlated disorder. In this case, the
probability density for the defects is again given by Eq. (3).
However, now additionally the spatial correlation between the
defects decays according to a power law

〈ηxηy〉 ∝ 1

r(x, y)a
, (4)

(a) pd = 0. (b) pd ≈ 0.35.

FIG. 1. Three-dimensional Ising model lattices (a) without and
(b) with site disorder. The red and blue arrows represent the spins
with the states sx = ±1, respectively. The gray points represent the
defects (vacant sites).
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a = ∞, pd = 0. a = ∞, pd = 0.2. a = ∞, pd = 0.4.

a = 1.5, pd = 0.2. a = 1.5, pd = 0.4.

FIG. 2. Slices of a three-dimensional Ising model lattice with
L = 128 simulated near the critical temperature for different corre-
lation exponents a and concentrations of defects pd . Red and blue
points represent the spin states sx = ±1 and white points represent
the defects ηx = 0. One can see that correlated defects tend to form
clusters of defects.

where r(x, y) is the distance between sites x and y and a � 0
is the correlation exponent. Note, that for both cases we work
in the so-called grand-canonical approach where the desired
concentration pd is a mean value over a large number of
realizations while for each separate realization pd can vary.
In Fig. 2, we show slices of a three-dimensional Ising model
lattice with different concentrations of defects and different
correlation exponents near the critical temperature.

According to the Harris criterion and the extended Harris
criterion the disordered three-dimensional Ising model falls
into three different universality classes in dependence of the
correlation exponent a and the concentration of defects pd .
The pure case where no defects are present (pd = 0), the
effectively uncorrelated case for a > d and the correlated case
for a � d . These cases are schematically shown in Fig. 3.

pd0 p̂d( ) 1
∞

d

0

p̂d(a)
pure uncorrelated

correlated

FIG. 3. Universality classes of the three-dimensional Ising model
for different correlation exponents a and concentrations of defects
pd . The curve p̂d (a) = 1 − p̂s(a) is the percolation threshold of the
defect concentration below which an infinite spin cluster exists for
L → ∞. It has been shown in Ref. [27] that for smaller a values the
concentration of spins ps can be chosen lower without destroying the
infinite cluster, thus the maximal meaningful concentration of defects
pd increases for stronger correlations (smaller a).

B. Monte Carlo simulation details

We performed Monte Carlo simulations of the disordered
Ising model and used the Swendsen-Wang multicluster update
algorithm [28]. The linear lattice sizes of our cubic lattices
were in the range between L = 8 and 256 and we chose
periodic boundary conditions in each direction. The corre-
lation exponent values were a = 1.5, 2.0, 2.5, 3.0, 3.5, and
∞, which we will use symbolically for the uncorrelated case.
For each a value, we simulated eight defect concentrations
pd = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, and 0.4. After
a thermalization period of 500 sweeps we performed N =
10 000 measurement sweeps at each considered simulation
point βsim = 1/(kBTsim). Throughout the paper we will refer
to the inverse temperature defined by β = 1/(kBT ) simply
as “temperature.” The temperatures were first chosen in a
wide range and with larger spacing for small lattices. After
the first analysis, refined ranges (regions around the critical
points for considered observables for finite lattice sizes L)
were estimated and larger lattice sizes were simulated at less
temperatures. For each parameter tuple (a, pd , L), we simu-
lated Nc = 1000 disorder realizations. After each sweep we
measured and stored the total energy E

E = −J
∑
〈xy〉

ηxηysxsy, (5)

and the total magnetization of the system M

M =
∑

x

ηxsx. (6)

At the end we had two-dimensional arrays of values Ec
i and

Mc
i where i = 1, . . . , N and c = 1, . . . , Nc for each parameter

tuple (a, pd , L, βsim). This was needed in order to apply the
reweighting technique in later analysis.

III. CORRELATED DISORDER ANALYSIS

Before we move to the analysis of the Monte Carlo sim-
ulations of the Ising model, we first take a look at the site
disorder realization and analyze the generated ensembles. It is
a necessary step to gain control over the correlation exponents
a of the disorder ensembles on which we will perform the
simulations later on.

A. Disorder generation

In this work, we mainly study the Ising model on a lattice
with uncorrelated and long-range correlated site disorder. An
important part is the generation of the site disorder for later
Monte Carlo simulations. The uncorrelated disorder case is
realized by setting the defect variables ηx for each site x of the
lattice according to

ηx =
{

0 if Rx � pd

1 else , (7)

where 0 � Rx < 1 is a uniform random number drawn for
each site x.

For the case of long-range correlated disorder let us first
define the correlation function Cη between two defects η at
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sites x and y at a distance r = |x − y|
Cη(r) = 〈ηxηy〉||x−y|=r . (8)

In this work, we assume a power-law decay of the correlation
function for large distances r � 1

Cη(r) ∝ r−a. (9)

For the generation of the long-range correlated disorder we
used a Fourier filter method which conceptionally consists of
the following steps.

(1) Generate uncorrelated complex random variables in k
space where the real and imaginary parts are each drawn from
a normal distribution.

(2) Introduce the desired correlations in x space by mul-
tiplying these variables with the square root of the spectral
density of the chosen correlation function C0 (adapted to lat-
tice periodicity).

(3) Fourier transform the variables in k space back to x
space. The real and imaginary parts of these continuous vari-
ables are two independent sets of spatially correlated Gaussian
variables with correlation function C0.

(4) Map each set of the continuous correlated variables to
{0, 1} by using a threshold which ensures the correct average
concentration of defects 〈ηx = 0〉 = pd . The resulting discrete
variables are approximately correlated with C0.

Initially this method was introduced by Makse et al.
[29,30] and later used in Ref. [14] for the generation of the
long-range correlated disorder. Here we employed the C++
computer code published by Zierenberg et al. [27] which
implements a slightly modified variant of this method. The
modifications only concern technical subtleties that are care-
fully described in Ref. [27] to which we refer for the details.

In order to overcome the divergence of the correlation func-
tion, Eq. (9), at r = 0, we used a slightly modified correlation
function

C0(r) ∝ (1 + r2)−a/2, (10)

which asymptotically approaches Eq. (9) for large distances,

C0(r) → r−a for r → ∞. (11)

We generated ensembles of disorder realizations by pro-
viding two input parameters: The correlation decay exponent
a and the concentration of defects pd . While above steps
(1)–(3) are exact for any finite lattice, step (4) involves a non-
linear mapping from continuous to discrete variables which
is difficult to control mathematically. We therefore carefully
examined the resulting form of Cη(r) and in particular deter-
mined the actual values of the correlation exponent a and the
concentration of defects pd numerically for each ensemble.

B. Mean concentration of defects

First we looked at the distribution of the concentrations
of defects pd for each parameter tuple (a, pd , L). Examples
of the distributions are shown in Fig. 4. We verified the nor-
mality of the distributions for each ensemble with the help of
the Anderson-Darling test [31,32]. Apart from the strongest
correlation with a = 1.5 at low pd � 0.2 all distributions for
L � 24 were classified as normal with 95% confidence. The
results of the test for all parameter tuples (a, pd , L) are

0.0 0.2
pd − pd

0

5

p
(p

d
)

(a) a = 2.0, pd = 0.2, L = 8.

−0.05 0.00 0.05
pd − pd

0

50

p
( p

d
)

(b) a = ∞, pd = 0.2, L = 8.

−0.05 0.00 0.05
pd − pd

0
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p
(p

d
)

(c) a = 2.0, pd = 0.2, L = 32.

−0.005 0.000 0.005
pd − pd

0

200

p
(p

d
)

(d) a = ∞, pd = 0.2, L = 32.

−0.01 0.00 0.01
pd − pd

0

100

p
(p

d
)

(e) a = 2.0, pd = 0.2, L = 256.

-0.00025 0.0 0.00025
pd − pd

0

5000

p
(p

d
)

(f) a = ∞, pd = 0.2, L = 256.

pd md(pd) pd ± σ

FIG. 4. Histograms of concentrations of defects pd for differ-
ent parameter tuples. md(pd ) is the median of the ensemble, σ is
the standard deviation and pd is the imposed concentration value
whereas pd is the calculated mean.

presented in Fig. 5. It can be seen that higher concentrations
approach the normal distribution already for smaller L. The
estimated concentrations pd as a mean over all lattice sizes
with L � 24 for each ensemble match the imposed concentra-
tions pd perfectly in all cases.

C. Mean correlation exponent

The correlation function Cη(r) was calculated as a mean
over all configurations for each parameter tuple (a, pd , L). It
was measured for two different distance directions (along the
x axis and along the diagonal),

r̂1 = (1, 0, 0)T , r̂2 = (1, 1, 1)T , (12)

and all possible distances in the corresponding direction. The
correlation function was calculated by

Cη(r) = 〈ηxηy〉 =
* C

Nr

∑
x,y

y−x=rr̂i

(ηx − pd )(ηy − pd )
+
, (13)

where C is the normalization constant such that Cη(0) = 1 and
Nr is the number of possible realizations of the distance r
on the lattice. From the chosen r̂i vectors and from periodic
boundary conditions it follows that

Nr =
{

V/2 for r = L/2 and r = √
3L/2

V else
. (14)

The sum in Eq. (13) runs over all site pairs x and y, which have
the vector distance rr̂i where i = 1 and 2. The normalization
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32 64 128 192 256
L

0.2

0.4

p
d

(a) a = ∞.

32 64 128 192 256
L

0.2

0.4

p
d

(b) a = 3.5.

32 64 128 192 256
L

0.2

0.4

p
d

(c) a = 3.0.

32 64 128 192 256
L

0.2

0.4

p
d

(d) a = 2.5.

32 64 128 192 256
L

0.2

0.4

p
d

(e) a = 2.0.

32 64 128 192 256
L

0.2

0.4

p
d

(f) a = 1.5.

0.05 0.50 1.00
pAD

FIG. 5. Anderson-Darling test results for different parameter tu-
ples (a, pd , L). pAD is the probability according to Anderson-Darling
test for the analyzed variables to come from a normal distribution.
Black and red regions suggest non-normal distributions while white
and blue regions suggest normal distributions.

constant turns out to be

C = 1

pd (1 − pd )
. (15)

Once the correlation functions defined through Eq. (13)
were measured for each disorder ensemble, we had to obtain
the correlation exponent a. We performed a fit to the linearized
ansatz on a logarithmic scale corresponding to the asymptotic
behavior of Eq. (9)

ln Cη(r) = −a ln r + B, (16)

where a is the desired decay exponent. We had to find a min-
imal distance rmin included into the fits in order to obtain the
correlation exponent for r > rmin � 1 where the assumption
of a power-law decay is valid. We used the condition that rmin

is the distance where the relative deviation between C0 and its
asymptotic behavior r−a became less than a threshold value of
εC = 0.05 for the first time,

r−a
min − (

1 + r2
min

)−a/2

r−a
min

� εC = 0.05. (17)

Equation (17) leads to the condition

rmin(a) � ((1 − εC )−2/a − 1)−1/2. (18)

Furthermore we had to set a maximum distance rmax to
exclude the noisy tail of the correlation function and possible

8 64 128 192 256
L

3.0

3.5

4.0

a

(a) a = 3.5.

8 64 128 192 256
L

2.5

3.0

3.5

a

(b) a = 3.0.

8 64 128 192 256
L

2.0

2.5

3.0

a

(c) a = 2.5.

8 64 128 192 256
L

1.5

2.0

2.5

a

(d) a = 2.0.

8 64 128 192 256
L

1.0

1.5

2.0

a

(e) a = 1.5.

pd

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

FIG. 6. Measured correlation exponents a for different concen-
trations of defects pd and chosen correlation exponents a. Larger
lattices have more possibilities to realize a certain distance r and
therefore the estimates a(L) become statistically better with increas-
ing L. For weak correlations (large a), only the largest lattices L �
160 approach the expected values a. Dashed lines are shown to guide
the eye.

finite-size effects. Here we have chosen the distance rmax

where the absolute value of the measured correlation function
|Cη| was below a minimal threshold value of Cmin = 10−5 for
the first time,

|Cη(rmax)| � Cmin = 10−5. (19)

For small lattices with L � 20 and weak correlations (large
a) sometimes the found rmin and rmax where too close together
or even rmin > rmax. Is such cases we reduced rmin until a
fit with four degrees of freedom was possible. The estimated
a(pd , L) are shown in Fig. 6 and the final averages are sum-
marized in Table II while in Fig. 7 examples of the correlation
function fits are presented. The final results a are means over
all pd and L � Lmin which were chosen for each a according
to the quality of the fits. Please note that we will still refer to
different ensembles by the imposed a for clarity.

As naturally follows from the described determination of
rmin and rmax, smaller a(pd , L) have more degrees of freedom
and therefore the estimated values a(pd , L) coincide better
with the imposed a. For weak correlations with a � 3.0, we
find poorer agreement and larger errors for lattice sizes L �
128. Also a systematic underestimation of a can be seen in the
results. It becomes more pronounced with larger a and smaller
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TABLE II. Measured correlation exponents a averaged over all
concentrations of defects pd . The averages were taken only over
a(pd , L) with L � Lmin(a). ν = 2/a are the critical exponent esti-
mates according to the extended Harris criterion.

a a 2 / a Lmin

3.5 3.30(18) – 112
3.0 2.910(96) 0.687(23) 96
2.5 2.451(26) 0.8159(86) 80
2.0 1.979(18) 1.0104(89) 64
1.5 1.500(30) 1.333(26) 56

L. We have plotted the relative deviation of the estimates a to
the expected values a in Fig. 8. One can see a constant increase
in the deviations for increasing a. For our largest a value the
deviation reaches ≈5%. Nevertheless, we can state that we
achieve the desired a values within a precision of ≈5%. A test
involving more realizations considerably improved the results
for the weak correlation cases but we wanted to stay with the
number of disorder realizations for which the Monte Carlo
simulations were performed later.

IV. FINITE-SIZE SCALING ANALYSIS

We will now discuss the extraction of the critical expo-
nent of the correlation length ν and the confluent correction
exponent ω. For the finite-size scaling analysis, we chose
the derivative with respect to the inverse temperature β =
1/(kBT ) of the logarithm of the magnetization ∂β (ln [〈|m|〉]).
It can be expressed in terms of expectation values as

∂β (ln [〈|m|〉]) =
∂
∂β

[〈|m|〉]
[〈|m|〉] = V

[〈|m|e〉] − [〈|m|〉〈e〉]
[〈|m|〉] , (20)

where 〈·〉 denotes the thermal average and [·] the disorder
average and e = E/V , m = M/V are the normalized energy
and magnetization, respectively. Note that we use the common
convention of taking the absolute value of m to avoid the
trivial averaging to zero in the low-temperature phase for
finite lattice sizes. For the sake of brevity, we will omit the
average brackets for the rest of this work and simply write
∂β (ln |m|) = ∂β (ln [〈|m|〉]). The derivative of the logarithm of
the magnetization ∂β (ln |m|) is known to diverge at the critical
temperature in the thermodynamic limit L → ∞. For finite
system sizes it hence develops a minimum. The finite-size
scaling behavior up to the first-order correction reads

∂β (ln |m|)min(L) = AL1/ν (1 + BL−ω ), (21)

where ∂β (ln |m|)min(L) is the (finite) minimum value of
∂β (ln |m|)(β ) for a given lattice size L. Fitting with this ansatz
is difficult as it is a nonlinear four-parameter fit. Therefore we
first determined the correction exponent ω separately and used
it as a fixed parameter in the final estimation of ν.

The whole finite-size scaling analysis can be split into three
main steps. In the first step, we derive the peaks of ∂β (ln |m|).
The second step is the extraction of the correction exponent ω

which is needed for the fits in the last step. The last step is the
fitting of ∂β (ln |m|)min(L) with fixed ω and the extraction of ν.

1 2 5 10 20
r

−10

−5

ln
C

η

(a) a = 2.0, pd = 0.2, L = 32.

1 2 5 10 20 50 100 200
r

−15

−10

−5

ln
C

η

(b) a = 2.0, pd = 0.2, L = 256.

1 2 5 10 20
r

−15

−10

−5

ln
C

η
(c) a = 3.5, pd = 0.2, L = 32.

1 2 5 10 20 50 100 200
r

−15

−10

−5

ln
C

η

(d) a = 3.5, pd = 0.2, L = 256.

Cη(r) −Cη(r) ln Cη(r) = −a ln r + B

FIG. 7. Fits of the correlation of defects to the ansatz ln Cη(r) =
−a ln r + B, Eq. (16), for different parameters. Due to finite statis-
tics, small negative values of the correlation function may occur
at large distances. We plot these values with a minus sign. Fits to
weaker correlations (larger a) use less points because the signal
gets noisy faster. This leads to larger errors compared to lower a
values. The blue regions show the regions between rmin and rmax. The
maximum distance on the x axis is the distance along the diagonal
with r = √

3L/2.

A. Peaks of observables

We start the analysis with the extraction of the peaks
of the derivative of the logarithm of the magnetization
∂β (ln |m|)min(L). Out of all simulated temperatures for each

1.5 2.0 2.5 3.0 3.5
a

0.00

−0.05

−0.10

a
−

a
a

FIG. 8. Relative deviation of the measured correlation exponents
a to the imposed values a. The shown errors of a are scaled to ε(a)/a.
A systematic small underestimation of a can be seen for each a. It
increases with increasing a.
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FIG. 9. The ratios of the differences between simulation temper-
atures βsim and the found temperatures of the minimum values βmin

with respect to the reweighting range �βrew. Smaller points represent
smaller lattice sizes L. The majority of the ratios is �1, which is
a verification of the reweighting technique validity. The maximum
values of ≈1.5 are still acceptable.

parameter tuple (a, pd , L) we chose three temperatures
β i

sim with i = 1, 2, 3 where the derivative of the loga-
rithm of the magnetization calculated at these temperatures
∂β (ln |m|)(β i

sim) was minimal. For these three β i
sim, we per-

formed a single histogram reweighting of ∂β (ln |m|) to find
the minimum values ∂β (ln |m|)i

min and the corresponding tem-
peratures β i

min. The final ∂β (ln |m|)min was chosen to be the
minimum of all three ∂β (ln |m|)i

min values. A more detailed
explanation of the reweighting and error estimation process
through resampling is presented in the Appendix.

An important issue was to ensure that the histogram
reweighting results lay within the reweighting range. This is
an inevitable restriction coming from the limited statistics.
We used the reweighting range approximation as defined in
Ref. [33]

�βrew = 1√
[〈E2〉] − [〈E〉2]

. (22)

We looked at the ratios of the differences between the sim-
ulation temperatures βsim and the found temperatures of the
minimum values βmin with respect to the reweighting range
�βrew

|βsim − βmin|
�βrew

. (23)

As can be seen in Fig. 9, all obtained βmin were close enough
to the corresponding βsim to assume that the use of the
reweighting technique is valid.

B. Confluent correction exponent ω

The quotient method which we used for the determination
of the confluent correction exponent ω was successfully used
in other works, e.g., Refs. [2,34,35]. Starting from an observ-
able O, which has a peak at the critical temperature, we build
quotients of O at different lattice sizes L and sL

QO(sL) = O(sL, βc(sL))

O(L, βc(L))
, (24)

0.5

1.0

1.5

ω

∞ 3.5 3.0 2.5 2.0 1.5
a

1

2

χ
2 re

d

pmin
d

0.05 0.1 0.15

FIG. 10. Confluent correction exponents ω from the fits of the
quotients to the ansatz Q∂β (ln |m|)(L, pd ) = C + Apd L−ω for all a and
various pmin

d . The largest included concentration of defects is pmax
d =

0.4.

where the observables are taken at the critical temperatures
for the given lattice sizes L and sL, respectively, and s is an
arbitrary positive (integer) factor. For a dimensional observ-
able, e.g., ∂β (ln |m|), the finite-size scaling of QO in leading
order reads [35]

QO(L) = sxO/ν + AL−ω, (25)

where xO is the critical exponent of O.
We calculated the quotients defined through Eq. (24) for

O = ∂β (ln |m|) with xO = 1 and for s = 4. This allowed us
to have 8 independent Q values without using the same lattice
size twice. We used the peak values ∂β (ln |m|)min(L) and per-
formed a global fit to Q∂β (ln |m|)(L, pd ) according to Eq. (25)
but using all pd simultaneously

Q∂β (ln |m|)(L, pd ) = C + Apd L−ω, (26)

where we explicitly denote the dependence of the amplitudes
Apd on the concentrations of defects with the index pd and
relate the constant C to Eq. (25) with

C = sxO/ν . (27)

In Fig. 10, we present the ω results and the qualities of the
fits χ2

red for pmax
d = 0.4, Lmin = 20 and various pmin

d while in
Fig. 11 the fits are shown. pmin

d and pmax
d denote the minimum

and maximum concentrations of defects included in the fits,
respectively. We have checked the possibility of getting ω

from individual pd values but the ratio data suffer from large
error bars and the results were not representative. This fact
emphasizes the advantage of using a global fit by simulating
at many different concentrations pd . Looking into Fig. 10, we
see that all fits with pmin

d � 0.1 are in a good region of χ2
red ≈ 1

and therefore we took this value as the final values for all
correlated cases a 
= ∞. For the uncorrelated case, we chose
pmin

d = 0.05. The final ω results are summarized in Table III.
From Fig. 10, we can clearly see a distinction between the

uncorrelated and correlated cases. The correction exponent for
the uncorrelated case ω = 0.373(53) matches the prediction
ω = 0.37(6) made by Ballesteros et al. [2]. The correction
exponent ω = 1.047(90) for the case a = 2.0 is in good agree-
ment with the value ω = 1.01(13) obtained by Ballesteros and
Parisi [14]. A value around ω ≈ 0.95(10) is also found for
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FIG. 11. Fits of the quotients of Q∂β (ln |m|) at different lattice
sizes to the ansatz Q∂β (ln |m|)(L, pd ) = C + Apd L−ω for all a. The
included concentrations for all correlated cases are 0.1 � pd � 0.4
and 0.05 � pd � 0.4 for the uncorrelated case.

TABLE III. Final confluent correction exponents ω and constants
C from the fits of the quotients to the ansatz Q∂β (ln |m|)(L, pd ) = C +
Apd L−ω for all a. The maximum included concentration of defects is
pmax

d = 0.4. As a cross-check we have listed the critical exponents ν

which follow from the relation in Eq. (27) with s = 4. They coincide
with the final estimates listed in Table IV within the errors.

a ω C ν = ln s
ln C pmin

d χ 2
red

∞ 0.373(53) 7.506(59) 0.688(3) 0.05 1.095
3.5 0.965(80) 6.498(40) 0.741(3) 0.1 0.892
3.0 1.008(79) 5.790(35) 0.789(3) 0.1 0.901
2.5 0.891(79) 4.648(32) 0.902(4) 0.1 1.026
2.0 1.047(90) 3.425(33) 1.126(9) 0.1 0.656
1.5 0.808(97) 2.12(11) 1.8(2) 0.1 0.529
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ln
(−

∂
β
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| ))

(a) a = ∞, Lmin = 20.

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
ln L
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6

7

8

ln
(−

∂
β
(l
n
|m

| ))

(b) a = 2.0, Lmin = 32.

pd

0.05

0.1

0.15

0.2

0.25

0.3

0.35
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FIG. 12. Global fits (solid lines) to the first-order corrected
ansatz ∂β (ln |m|)(L, pd ) = Apd L1/ν (1 + Bpd L−ω ), Eq. (28), for two
different a values. For the uncorrelated disorder case we used pmin

d =
0.05 and for the correlated cases we used pmin

d = 0.1.

all other a parameters. As the errors ε(ω) are quite large for
all correlated cases, a 
= ∞, chances are that the correction
exponent ω does not depend on a and has a value of roughly
ω ≈ 1. Visually it can be verified in Fig. 10.

C. Critical exponent ν

While the amplitudes A and B in Eq. (21) generally depend
on a and pd , ν and ω are universal across all pd and only show
possible dependence on a. This allows us to perform a global
fit for each a including all of the pd values simultaneously

∂β (ln |m|)min(L, pd ) = Apd L1/ν
(
1 + Bpd L−ω

)
, (28)

where we explicitly denoted the dependence of Apd and Bpd on
pd . We performed least squares fits to Eq. (28) with Apd , Bpd

and 1/ν as parameters and used fixed correction exponents
ω(a) listed in Table III. Examples of the resulting fits are
shown in Fig. 12.

We performed the fits for various minimal lattice sizes
20 � Lmin � 64. We also varied the smallest concentration
pmin

d and the largest concentration pmax
d included into the

global fit. The variation of pmax
d turned out to be neglectable

and we finally chose pmax
d = 0.4. The dependency of the

resulting critical exponent ν on Lmin and pmin
d is shown in
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FIG. 13. Critical exponents ν from fits to the first-order cor-
rected ansatz ∂β (ln |m|)(L, pd ) = Apd L1/ν (1 + Bpd L−ω ), Eq. (28),
with pmax

d = 0.4 and varying pmin
d and Lmin. The corresponding χ 2

red

are shown as a second plot for each a. For a � 2.5, one sees a
dependence on Lmin and pmin

d . For larger a the errors usually overlap
for each pmin

d and also the dependence on Lmin is mainly covered by
the error sizes which become larger for larger Lmin.

Fig. 13 for all a. The deviation of the fit results for pmin
d = 0.05

from all other cases with pmin
d > 0.05 was significant for all

correlated cases. Additionally the goodness of the fits χ2
red

was poor in these cases. When the pd = 0.05 data sets were
excluded, the fits showed good behavior. We chose pmin

d = 0.1
for final estimates for the correlated disorder cases and left
pmin

d = 0.05 for the uncorrelated case. However, in order to
further take into account the deviations of the results for
different pmin

d , we took the smallest Lmin parameter where the
errors of the fits for different pmin

d mostly overlapped for the

TABLE IV. Final results of the critical exponents ν. The cho-
sen concentration limits were pmin

d = 0.1 for the correlated cases
and pmin

d = 0.05 for the uncorrelated case and pmax
d = 0.4. Expected

values ν = 2/a according to the prediction of the extended Harris
criterion are shown for comparison for all a � d where the extended
Harris criterion is assumed to be valid. For completeness the correc-
tion exponents ω from Table III are listed once again.

a ν̄ 2/ā χ 2
red Lmin ω̄

∞ 0.6852(24) – 0.933 20 0.373(53)
3.5 0.7331(31) – 0.825 32 0.965(80)
3.0 0.7801(38) 0.687(23) 0.935 32 1.008(79)
2.5 0.8820(61) 0.8159(86) 0.956 32 0.891(79)
2.0 1.1023(99) 1.0105(89) 0.644 32 1.047(90)
1.5 1.479(66) 1.333(26) 0.502 56 0.808(97)

first time. The final Lmin parameters and the corresponding
χ2

red as well as the final estimated critical exponents ν are listed
in Table IV. Additionally, the ν values are shown in Fig. 14.

The obtained value for the uncorrelated case ν =
0.6852(24) is in very good agreement with the results from
other groups listed in Table I. Please note that in most works,
the ν exponent was concentration dependent in contrast to
the present work. Therefore the comparison must be done
with care. Altogether we can conclude that our extraction
method and, in particular, the global fit ansatz work well for
the uncorrelated case which can be seen as a good verification.

For the correlated disorder cases, we first compare our
results to the prediction of the extended Harris criterion. All
obtained values lie about 10% above the prediction of ν =
2/a. Nevertheless we see the right tendency of the ν values in
being proportional to 1/a and in approaching the uncorrelated

FIG. 14. Final results of the critical exponents ν plotted over 1/a.
The chosen concentration limits were pmin

d = 0.1 for the correlated
disorder cases and pmin

d = 0.05 for the uncorrelated disorder case
and pmax

d = 0.4. Horizontal errors are errors of measured a listed in
Table II and scaled to 1/a. The uncorrelated disorder case critical
exponent was set to ν∞ = 0.683 as an average value from other
works listed in Table I. Expected values ν = 2/a according to the
prediction of the extended Harris criterion are shown for comparison
for all a � d where the extended Harris criterion is assumed to be
valid.
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case somewhere around a ≈ 3.0. The crossover region around
a ≈ 3.0 shows the largest deviations from the extended Harris
criterion estimate as well as from the uncorrelated case. This
behavior is expected for finite systems. The estimate for a =
1.5 has a huge error and therefore is not very representative.
Probably more realizations are needed to get a better result for
such strongly correlated case.

Considering the ν values for the correlated case with a =
2.0 we see a discrepancy between our results and results
from other groups listed in Table I (see also the summary
plot in Fig. 17). There are several possible reasons for such
deviations. Comparing to the work of Ballesteros and Parisi
[14] and Ivaneyko et al. [16], we used much finer lattice
size steppings; 18 lattice sizes in the range of 8 � L � 256
versus five sizes in the range of 8 � L � 128. The number
of realizations in our case was smaller by a factor of 10 but
we measured 10 times longer time series on each realiza-
tion. Further, we used the derivative of the logarithm of the
magnetization ∂β (ln |m|) as our primary observable whereas
in the other works the derivatives of Binder cumulants ∂βU2

and ∂βU4 were used. Additionally, the concrete methods of
generating the correlated disorder and extracting the critical
exponent ν were very different. Finally, but probably most
importantly, the method used in this work included all pd

values in the critical exponent ν estimation. Comparing our ν

exponents to the results of Prudnikov et al. [15,21] we do not
see any agreement. The reason for this remains unclear to us.

D. Critical temperature

Once we have derived the peaks of ∂β (ln |m|) in Sec. IV A,
we also had the corresponding temperatures βmin. This al-
lowed us to study the critical temperatures for all correlation
exponents a and concentrations of defects pd . Note, that un-
like for the critical exponent ν we need to attend each pd

separately and cannot perform a global fit as the critical tem-
perature depends on it. To obtain the critical temperatures βc

for all a and pd values we used the finite-size scaling relation
in the leading order

βmin(L) = βc + AL−1/ν, (29)

where βmin(L) are the temperatures corresponding to the min-
imal values of the derivative of the logarithm of magnetization
∂β (ln |m|)min at different L and βc is the desired critical tem-
perature at L → ∞. We performed the fits to the ansatz given
in Eq. (29) by using the extracted exponents ν for the corre-
sponding a values listed in Table IV. The quality of the fits
was moderate and varied for different pd and a significantly.
Therefore we set Lmin = 32 for all parameter tuples. Finally,
to incorporate the uncertainties in the ν estimates we per-
formed the fits in a bootstrapped way by randomly choosing a
νi = Normal(ν, ε(ν)) according to a normal distribution and
performing 10 000 fits [36]. All final quantities were averages
over these bootstrapped fits. The resulting temperatures and
the qualities of the fits are presented in Fig. 15 and Table V.
Examples of the fits for different a and pd can be found in
Fig. 16.

The qualitative behavior of the temperature curves is in
strong agreement with the expectations. When the concentra-
tion of defects vanishes, pd → 0, the critical temperature goes

0.3

0.4

β

0.0 0.1 0.2 0.3 0.4
pd

0

20

χ
2 re

d

a

∞
3.5

3.0

2.5

2.0

1.5

βpure
c

FIG. 15. Critical temperatures βc obtained from fits to the ansatz
βmin(L) = βc + AL−1/ν , Eq. (29), for all simulated correlation expo-
nents a and concentrations of defects pd . The dashed lines are shown
to guide the eyes. For the extension to pd = 0, we extrapolated the
lines connecting the points at pd = 0.05 and pd = 0.1. This was done
for a visual control of how the curves approximately approach the
pure case limit. The critical temperature for the pure case was set to
βpure

c = 0.221 654 628(2) from Ref. [37].

to the pure Ising model case with βc = 0.221 654 628(2) [37].
On the other hand, when the concentration approaches the
percolation threshold concentration, pd → p̂d (a), Ref. [27],
the inverse temperature becomes infinity, βc → ∞. In con-
trast to the minimal values ∂β (ln |m|)min which were obtained
with a high accuracy, it was not possible to get such precise
temperatures βmin. The main difficulty was the large width of
the peaks of ∂β (ln |m|)(β ) for stronger correlations. Moreover,
in some cases, the reweighting range was not large enough to
cover the temperature of the peak sufficiently. Nevertheless,

TABLE V. Critical temperatures βc obtained from fits to the
ansatz βmin(L) = βc + AL−1/ν , Eq. (29), for all simulated correlation
exponents a and concentrations of defects pd . The corresponding χ 2

red

values are shown in Fig. 15.

pd a = ∞ a = 3.5 a = 3.0

0.05 0.234 598(2) 0.232 412(2) 0.231 737(2)
0.1 0.249 289(2) 0.243 087(3) 0.241 352(4)
0.15 0.266 155(2) 0.254 596(4) 0.251 635(6)
0.2 0.285 755(3) 0.267 326(6) 0.263 032(9)
0.25 0.308 812(4) 0.281 649(9) 0.275 71(2)
0.3 0.336 423(5) 0.298 18(2) 0.290 25(2)
0.35 0.370 154(7) 0.317 64(2) 0.307 29(4)
0.4 0.412 487(9) 0.340 87(3) 0.326 92(3)

pd a = 2.5 a = 2.0 a = 1.5

0.05 0.230 755(4) 0.229 190(9) 0.227 07(3)
0.1 0.239 077(9) 0.235 92(3) 0.231 85(4)
0.15 0.247 90(2) 0.243 03(3) 0.236 65(7)
0.2 0.257 53(2) 0.250 80(4) 0.242 15(6)
0.25 0.268 35(3) 0.259 17(6) 0.247 62(8)
0.3 0.280 74(4) 0.269 31(9) 0.2544(3)
0.35 0.295 08(6) 0.280 28(9) 0.2607(1)
0.4 0.311 58(5) 0.292 22(6) 0.2688(2)
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FIG. 16. Fits of βmin(L) corresponding to the minima of
∂β (ln |m|) to the ansatz βmin(L) = βc + AL−1/ν , Eq. (29), for two
different correlation exponents a and pd = 0.25. The correlation
length critical exponents ν = ν are taken from Table IV.

the estimates provide a consistent picture and serve as a good
starting point for later analyses.

V. CONCLUSIONS

We applied Monte Carlo simulation techniques to the
three-dimensional Ising model on a lattice with long-ranged
correlated site disorder. The correlation of the disorder was
assumed to be proportional to a power law r−a with a correla-
tion exponent a. We provided a decent analysis of the disorder
correlation in our disorder ensembles verifying the correlation
exponent a numerically.

We determined the critical exponents of the correlation
length ν and the confluent correction exponents ω as well as
the critical temperatures βc of the system for various correla-
tion exponents 1.5 � a � 3.5 as well as for the uncorrelated
case a = ∞. Contrarily to other works we performed a global
fit for the exponents where we included different disorder
concentrations into one simultaneous fit. Such a study was not
possible before because all known works only considered one
particular correlation exponent choice a = 2.0 and only one
or two different concentrations pd whereas in this work we
used a wide range of a and pd values.

In Fig. 17, we give a visual comparison of the criti-
cal exponents ν obtained in this work, results known from
other works and predictions by the extended Harris criterion.
We obtain a value ν = 0.6852(24) for the uncorrelated case
which matches the results from other groups listed in Ta-
ble I and plotted in Fig. 17. Also the correction exponent
ω = 0.373(53) coincides with Refs. [2,7].

The estimated ν values for the correlated disorder cases
show the 1/a behavior predicted by the extended Harris crite-
rion qualitatively but are approximately 10% higher than the
prediction 2/a. On the other hand, we strongly disagree with
the renormalization group predictions made by Prudnikov
et al. [21] and their Monte Carlo simulation result for a = 2.0
in Ref. [15]. The correction exponent ω = 1.047(90) for the
case a = 2.0 is in good agreement with Ballesteros and Parisi
[14]. For all correlated cases we measure a value which is
compatible with ω = 0.95(10) ≈ 1.

Our estimation of the critical temperatures βc for different
a and pd parameters provides a comprehensive picture of

FIG. 17. Final results of the critical exponent ν compared to the
known results from the literature and the prediction of the extended
Harris criterion ν = 2/a. (1) Ballesteros et al. [2], (2) Calabrese et al.
[4], (3) Hasenbusch et al. [7], (4) Ballesteros and Parisi [14], (5)
Ivaneyko et al. [16], (6) Prudnikov et al. [21], and (7) Prudnikov
et al. [15]. The uncorrelated disorder case critical exponent was
set to ν∞ = 0.683 as an average value from other works listed in
Table I. The inset shows a close up of the uncorrelated case a = ∞.
The results of this work lie about 10% above the prediction of the
extended Harris criterion ν = 2/a. On the other hand, they also do
not coincide with other works. The main reason for this discrepancy
is probably the global fit ansatz of the present work which combines
all pd into one single fit.

the system and can serve as a good starting point for further
analyses and simulations.

We restricted our analysis to the derivative of the logarithm
of the magnetization and the extraction of the critical exponent
ν because the finite size critical temperatures for other observ-
ables [e.g., derivatives of Binder cumulants ∂βU2 and ∂βU4,
second-moment correlation length ξ2nd, susceptibility χ , and
derivative of the magnetization ∂β (|m|)] lay mostly outside
the simulated temperature ranges and therefore the extraction
of their peaks was not possible. By performing additional
simulations for wider temperature ranges in upcoming studies
we will consider other critical exponents like β, γ , and η, and
hopefully tackle down the problem even more.
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APPENDIX: ESTIMATION OF PEAKS
OF OBSERVABLES

Suppose we performed simulations on Nc disorder realiza-
tions and did N measurements at a simulation temperature
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βsim on each of them. We are equipped with two-dimensional
arrays of total energy Ec

i and total magnetization Mc
i for

i = 1, . . . , N and c = 1, . . . , Nc. Using these arrays we can
calculate observables of the from

Oc
i = (

Ec
i

)k(
Mc

i

)l
, (A1)

where k and l are arbitrary powers. We introduce the notation
Oc for an average over Oc

i for one particular disorder realiza-
tion c

Oc = 〈O〉 = 1

N

N∑
i=1

Oc
i . (A2)

The average over the disorder realizations is denoted by [·]
and the final estimate O reads

O = [〈O〉] = [Oc] = 1

Nc

Nc∑
c=1

Oc. (A3)

For variables of the type of Eq. (A1) a histogram reweight-
ing technique can be used to reweight the observable from the
simulated temperature βsim to a different temperature β. We
used the form given in Ref. [33]:

Rew(O)c(β ) =
∑N

i=1 Oc
i e−(β−βsim )Ec

i∑N
i=1 e−(β−βsim )Ec

i

, (A4)

where the reweighting is performed separately for each disor-
der realization c and the final estimate at the temperature β is
the disorder average

Rew(O)(β ) = [Rew(O)c]. (A5)

Not every observable of interest, in particular the derivative
of the logarithm of the magnetization ∂β (ln |m|) has the form
of Eq. (A1). Let P denote a composite observable of the
following form:

P = f (O(1),O(2), . . . ), (A6)

where each of O(k) fulfills the form of Eq. (A1). For this kind
of composed observables, we define the reweighting proce-
dure by reweighting each component separately

Rew(P )(β ) = f (Rew(O(1) )(β ), Rew(O(2) )(β ), . . . ). (A7)

Let us summarize what we have achieved so far. Starting with
the arrays of raw observables E and M we are able to use
the histogram reweighting technique to obtain practically any
observable calculable from E and M as a function of β.

Let us now assume that the finite-size scaling analysis of
P (β ) predicts a minimum P̌ at a certain temperature β̌.
Without loss of generality we assume a minimum of P (β ),
otherwise we transform P → −P . In the thermodynamic
limit L → ∞, we expect β̌ → βc. We can apply an optimiza-
tion routine by plugging in Rew(P )(β ) as the target function
and obtain P̌ and β̌,

P̌ = min
β

(Rew(P )(β )). (A8)

However, we will not be able to estimate the errors ε(P̌ )
and ε(β̌ ) as only one final value is calculated through Eq. (A8)
from all simulated data. In order to overcome this problem, we
can use a resampling technique. We have chosen the jackknife
resampling technique which is described, e.g., in Ref. [36]
in full length. We will only sketch the main steps applied
in this work. As our measurements were two-dimensional
arrays consisting of time series i = 1, . . . , N and disorder
realizations c = 1, . . . , Nc, we apply the resampling in both
directions separately and combine the estimates at the end. For
each jackknife resampling step j in the time series direction
we leave out a block J j ⊂ {1, . . . , N} of measurements for
each disorder realization c so that the thermal average defined
through Eq. (A2) becomes

(Oc) j = 1

N − |J j |
N∑

i = 1
i /∈ J j

Oc
i , (A9)

where |J j | is the number of left-out samples. Analogously, for
each resampling step k in the disorder direction we leave out
a block Jk ⊂ {1, . . . , Nc} of disorder realizations so that the
disorder average defined through Eq. (A3) becomes

(O)k = 1

Nc − |Jk|
Nc∑

c = 1
c /∈ Jk

Oc. (A10)

where |Jk| is the number of left-out realizations.
Starting from the modified thermal averages (Oc) j and

disorder averages (O)k respectively, all steps in the following
analysis remain the same. Let A be a final estimate coming
from a certain analysis, e.g., minimum search as in Eq. (A8).
By repeating the analysis for Nj different jackknife blocks in
the time direction and Nk blocks in the disorder direction we
are given two arrays of estimates (A) j and (A)k , respectively.

We calculate two jackknife means A j
and Ak

Aa = 1

Na

Na∑
a=1

(A)a with a = j, k, (A11)

and two corresponding jackknife errors ε(A) j and ε(A)k

ε(A)a = Na − 1

Na

Na∑
a=1

((A)a − Aa
)2 with a = j, k. (A12)

As the last step, we combine the two means and errors in a
standard (uncorrelated) manner

A = 1
2 (A j + Ak

), (A13)

ε(A) =
√

(ε(A) j )2 + (ε(A)k )2. (A14)

The mean A and the corresponding error ε(A) are the final re-
sults for a given analysis after applying jackknife resampling.
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Correction: The numerical entries in Table IV contained
errors and have now been replaced. Previously published Fig-
ures 14 and 17 contained minor plotting errors and corrected
replacements have been posted. The values of ν in the third
paragraphs of Secs. IV C and V contained errors and have
been fixed.
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