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Dirty bosons on the Cayley tree: Bose-Einstein condensation versus ergodicity breaking
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Building on large-scale quantum Monte Carlo simulations, we investigate the zero-temperature phase diagram
of hard-core bosons in a random potential on site-centered Cayley trees with branching number K = 2. In order
to follow how the Bose-Einstein condensate (BEC) is affected by the disorder, we focus on both the zero-
momentum density, probing the quantum coherence, and the one-body density matrix (1BDM) whose largest
eigenvalue monitors the off-diagonal long-range order. We further study its associated eigenstate which brings
useful information about the real-space properties of this leading eigenmode. Upon increasing randomness,
we find that the system undergoes a quantum phase transition at finite disorder strength between a long-range
ordered BEC state, fully ergodic at large scale, and a new disordered Bose glass regime showing conventional
localization for the coherence fraction while the 1BDM displays a nontrivial algebraic vanishing BEC density
together with a nonergodic occupation in real space. These peculiar properties can be analytically captured by
a simple phenomenological description on the Cayley tree which provides a physical picture of the Bose glass
regime.
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I. INTRODUCTION

The pioneer work of Anderson on the localization of nonin-
teracting electrons in a random potential [1–3] paved the way
for the study of disorder-induced phases of matter in quantum
systems. Beyond a critical amount of randomness, a system
can undergo drastic changes in its physical properties, generi-
cally from a delocalized quantum state to a localized one, such
as a metal-to-insulator transition for electrons, or a superfluid-
to-insulator transition for bosonic degrees of freedom [4].

In the absence of interaction, the fate of electrons in a disor-
dered environment has been, and is still, intensively studied.
If the transition is now well understood in finite dimension
[2,3], the case of graphs of infinite effective dimensionality,
such as the Cayley tree or random graphs, has recently aroused
great interest [5–33], due to the analogy between this problem
and many-body localization (MBL) which can occur at any
arbitrary energy [34–37].

At low-energy, the interplay of interaction and disorder
in bosonic systems has received a great deal of attention
following experiments on superfluid helium in porous media
[38,39] and the discovery of a novel localized phase of matter
at low temperature, the Bose glass state [40–44]. It can be
described as an inhomogeneous gapless compressible fluid
with short-ranged correlations preventing any global phase
coherence responsible of delocalization properties. Known as
the “dirty boson” problem, the localized Bose glass phase and
its transition from a delocalized superfluid have been theoreti-
cally and numerically studied from one to three dimensions in
various contexts [45–77], and also reported in several exper-
imental setups, from disordered superconductors [78–82] to
trapped ultracold atoms [83–86], as well as chemically doped
antiferromagnetic spin compounds [87–96].

In this paper we investigate the low-temperature proper-
ties of strongly interacting dirty bosons on the Cayley tree.
Together with an on-site random potential, the bosons have a
nearest-neighbor hopping amplitude and an infinite repulsive
contact interaction (hard-core constraint). This system can
be efficiently simulated by extensive quantum Monte Carlo
(QMC) simulations [97–99], an unbiased (“exact”) numerical
method, with more than a thousand particles on the lattice for
the largest system sizes accessible.

The first interest of the Cayley tree for this problem is the
effective infinite dimension (d = ∞) of the graph, while all
quantum Monte Carlo studies have focused on finite dimen-
sional systems d � 3 so far. As discussed by Fisher et al. in
their seminal work on the localization-delocalization transi-
tion for bosons [44], it is unclear what is the correct scenario
for the transition in high dimension (typically d > 4). It is
argued that there might be no finite upper critical dimension dc

beyond which conventional onset of mean-field theory usually
takes place, and that dc = ∞. Contrarily, based on the exact
treatment of an infinite-range hopping model [44], which is
effectively infinite dimensional, no localized phase is found,
raising the question on whether or not boson localization can
actually happen in high dimension. However, long-range hop-
ping might be pathological, since the physics in the presence
of disorder differs significantly from that of the short-range
problem [40]. Some of these questions resonate with the prob-
lem on the Cayley tree addressed in this paper.

The second interest lies in the search of nonergodic phases.
At strong disorder, the Bose glass phase should have, as its
name suggests, glassy nonergodic properties, however they
have only been little characterized (see, e.g., Refs. [100–103]).
The Cayley tree is one of the key models of glassy physics
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where the nonergodic properties of classical disordered sys-
tems are best understood [104,105]. Recently, the case of
quantum disordered systems on the Cayley tree has attracted
a strong interest. In particular, the Anderson transition on
the Cayley tree presents new remarkable nonergodic prop-
erties: The delocalized phase can be multifractal (where
the states lie in an algebraically small fraction of the sys-
tem) in a finite range of disorder [11–18], contrarily to the
finite-dimensional case where multifractality appears only at
criticality. Moreover, the localized and critical regimes inherit
a glassy nonergodicity where the eigenstates explore only few
branches [8,9,19,33].

Finally, we aim at comparing exact quantum Monte Carlo
results to an approximate cavity mean-field approach, com-
ing from glassy physics [106–110]. In particular, Feigel’man,
Ioffe, and Mézard [109,111] have described through this
method the disorder-driven superconducting-insulator transi-
tion considering the boundaryless counterpart of the Cayley
tree, the Bethe lattice. They have predicted the existence of
a nonergodic delocalized phase. Experimentally, the obser-
vation at strong disorder of large spatial fluctuations of the
local order parameter in strongly disordered superconducting
films [80,82] has been interpreted as the signature of a persis-
tence of glassy, nonergodic properties in the superconducting
phase. Although the distributions of the local order parameter
observed experimentally differ from the cavity mean-field pre-
dictions on the Cayley tree [82], these results have confirmed
the importance of nonergodic properties in this problem.

The rest of the paper is organized as follows. In Sec. II we
present the model, the numerical method, and briefly provide
details about the 1BDM. In Sec. III, first numerical evidences
for the disorder-induced BEC depletion are presented. We
then discuss microscopic aspects of the problem in Sec. IV,
where real-space properties of both off-diagonal correlations
and the leading orbital are analyzed. In Sec. V we look at the
critical properties of the transition by performing a careful
finite-size scaling, yielding estimates of the critical parame-
ters. We then discuss the peculiar properties of the localized
Bose glass regime, building on both numerical results and a
phenomenological description. We finally present our conclu-
sions and discuss some open questions in Sec. VI.

II. MODEL AND METHODS

A. Dirty hard-core bosons on Cayley trees

We consider hard-core bosons at half-filling on a site-
centered Cayley tree with N lattice sites, described by the
Hamiltonian

Ĥ = −
∑
〈i, j〉

(b̂†
i b̂ j + H.c.) +

N∑
i=1

μin̂i, (2.1)

where b̂†
i (b̂i) is the bosonic creation (annihilation) operator

on lattice site i, and n̂i = b̂†
i b̂i is the local density operator

with the constraint 〈n̂i〉 � 1 due to the hard-core nature of
the particles, resulting from the underlying infinite repulsive
interaction. The sum 〈i, j〉 restricts the tunneling to nearest-
neighbor sites, and the random chemical potential μi is drawn
from a uniform distribution μi ∈ [−μ, +μ] with μ character-
izing the disorder strength. The model Eq. (2.1) possesses a

FIG. 1. Site-centered Cayley tree with branching number K = 2
and G = 4 generations (generations from 0 to G = 4 are denoted by
g). The different colors of the vertices correspond to a given random
configuration of chemical potential μi in the Hamiltonian Eq. (2.1).

global continuous U(1) symmetry due to the conservation of
its total particle number, i.e., [Ĥ,

∑N
i=1 n̂i] = 0.

The site-centered Cayley tree is defined by its branching
number K > 1 (we consider the K = 2 case in the following)
and its total number of generations G. See Fig. 1 for an
example. The number of sites N scales exponentially with G
as N = 1 + (K + 1)(KG − 1)/(K − 1), which formally mim-
ics an infinite dimensional lattice: N has the dimension of a
volume and G ∼ ln N of a length. Moreover, the number of
lattice sites at the boundary is a finite fraction (1 − K−1 at
large size) of the total number of sites, which may lead to
macroscopic boundary effects to the Cayley tree, as compared
its boundaryless counterpart, the Bethe lattice.

B. The one-body density matrix

A central target for this numerical study is the 1BDM,
known to be an insightful object for bosonic systems, at the
heart of the Penrose-Onsager criterion [112–114] for Bose-
Einstein condensation. It has also proven to be successful in
the study of the high-energy many-body localization transi-
tion [115–120] in one dimension. Moreover, there has been a
recent proposal to measure the 1BDM for hard-core bosons
in an optical lattice [121], making the quantity experimentally
relevant. The 1BDM C, defined by

Ci j = 〈b̂†
i b̂ j〉, (2.2)

is square, positive, real, and symmetric. Its diagonal elements
correspond to the local densities 〈n̂i〉, such that

tr(C) =
N∑

i=1

〈n̂i〉 = 〈N̂b〉 � N/2, (2.3)

with 〈N̂b〉 the total number of bosons in the system. The
right-hand side of Eq. (2.3) means that we work in the grand-
canonical ensemble where the particle number conservation
is not enforced and therefore not restricted to half-filling,
although half-filling is statistically achieved with disorder av-
erage [122]. The eigenvectors of the 1BDM Eq. (2.2) are the
natural orbitals,

C|φn〉 = λn|φn〉, (2.4)

and the eigenvalues λn � 0 are the occupation number of
these orbitals with

∑
n λn = 〈N̂b〉. Sorting the eigenpairs in
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FIG. 2. Disorder-averaged occupation numbers λn sorted in descending order, λ1 � λ2 � · · · � λN , for two disorder strengths: (a) and (b)
μ = 3 and (c) and (d) μ = 8. In (a) and (c) the average value is plotted versus the normalized index n/N for different system sizes N . The
symbols are here to highlight specific eiegenvalues, λ1, λ2, λ3, and λN/2. In (b) and (d) the average value is plotted versus the system size N
for n = 1, 2, 3 and n = N/2. According to the Onsager-Penrose criterion [112–114], Bose-Einstein condensation will occur in a system which
displays (at least) one occupation number of the order of N as N → +∞, which is what is observed for the largest occupation number λ1 at
μ = 3 in (b). The next occupation numbers λ2 and λ3 both have a sublinear scaling with the system size ∝ N0.3, while the middle one, λN/2,
is constant with N . At μ = 8, the first few occupation numbers, including the largest one, have a very weak sublinear scaling ∝ N0.1, and the
middle one is constant. Not all occupation numbers can scale with N , or the constraint

∑N
n=1 λn ∼ O(N ) of Eq. (2.3) would be violated.

descending order, i.e., λ1 � λ2 � · · · � λN , (at least) one of
the eigenvalues will be of the order of the number of par-
ticles for a Bose-Einstein condensed system. This condition
is known as the Onsager-Penrose criterion for Bose-Einstein
condensation [112–114]. The corresponding eigenmode |φ1〉
is called the leading orbital and takes the form

|φ1〉 =
N∑

i=1

ai|i〉, with
N∑

i=1

|ai|2 = 1, (2.5)

where i designates the lattice site index. The coefficients |ai|2
account for the distribution of this leading orbital in real space.

C. Numerical investigation

1. Quantum Monte Carlo

So far the few numerical studies addressing many-body
interacting problems on treelike geometries have resorted to
tensor network techniques [123–128], but in the context of
disorder-free models. Here we instead rely on the quantum
Monte Carlo method, using stochastic series expansion with
directed loop updates [97–99] to simulate the disordered
bosonic model Eq. (2.1). For this problem we can in practice
access finite-size systems up to G = 10 generations (corre-
sponding to N = 3070 lattice sites), with a sufficiently low
temperature such that the algorithm is probing ground state
properties. Additional information and data are provided in
Appendix A regarding the convergence of our results versus
the temperature. We compute the elements of the 1BDM [129]
by performing between 104 and 105 measurements after ther-
malization.

We note that the presence of “open boundary conditions”
on the Cayley tree makes inaccessible the computation of the
superfluid density [130,131], a very valuable quantity in the
study of disorder-induced phases for bosonic systems.

2. Disorder average

The disorder average is performed over a large number
of independent disordered samples, between Ns = 300 and
Ns = 2000, depending on the system size. The exact numbers

are provided in Appendix A, where we also discuss the con-
vergence of the main disorder-averaged quantities considered
in this paper versus Ns. For a physical quantity O, we note its
disorder-averaged value O and its typical value exp(ln O).

III. DISORDER-INDUCED BEC DEPLETION

A. Spectrum of the one-body density matrix

We start with an analysis of the eigenvalues of C. In
Fig. 2 the disorder-averaged occupation numbers λn with
λ1 � λ2 � · · · � λN is shown for various system sizes N
for two representative disorder strengths (μ = 3 and μ = 8)
[132]. At weak disorder, the first eigenvalue λ1 is singular,
while the next ones decay smoothly to zero as the index n
increases. More precisely, considering the first few occupa-
tion numbers (n = 1, 2, 3) and one in the middle (n = N/2)
versus the system size, one observes that λ1 ∝ N at large
N , signaling Bose-Einstein condensation, according to the
Onsager-Penrose criterion [112–114]. The next two eigenval-
ues λ2 and λ3 show a sublinear scaling ∝ N0.3 with the system
size (this exponent decreases with the disorder strength, data
not shown), and the middle one remains constant. For μ = 8,
the largest eigenvalue has a similar behavior to λ2 and λ3,
with a slow sublinear scaling ∝ N0.1 with the system size,
clearly showing that no Bose-Einstein condensation occurs
for this value of disorder. The middle occupation number λN/2

is constant versus N . Note that because of Eq. (2.3), not all
eigenvalues can scale with N , or the constraint

∑N
n=1 λn ∼

O(N ) would be violated.

B. Condensed and coherent densities

From the largest occupation number λ1 and its relation
to Bose-Einstein condensation, one can define the condensed
density of bosons,

ρcond = λ1/N. (3.1)

Having ρcond ∼ const. as N → +∞ is equivalent to the
existence of off-diagonal long-range order in the system, as-
sociated with a spontaneous breaking of the continuous U(1)
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FIG. 3. Left: The symbols are the disorder-averaged QMC data
for (a) the coherent density of Eq. (3.3) and (c) the condensed
density of Eq. (3.1), both displayed versus the system size for various
disorder strengths, as indicated on the plot. The bold lines are fits to
the form Eq. (3.4), taking into account all points with N � 46. These
estimates ρ∞(μ) are shown in (b) and (d), for four different fitting
windows. One can roughly locate a transition in the vicinity of μ ≈ 5
above which BEC has been destroyed.

symmetry [114]. Hence, Eq. (3.1) plays the role of the order
parameter. In homogeneous systems with a well-defined mo-
mentum k (this is not the case of the Cayley tree), a more
common (and convenient from both computational and exper-
imental purposes) definition of the order parameter is usually
based on the momentum distribution function,

ρ̃(k) = 1

N2

∑
ri j

e−ik·ri j 〈b̂†
i b̂ j〉, (3.2)

with ri j the distance between lattice sites i and j. In this
case, bosons generically condense into a single momentum
component, the k = 0 mode, meaning that ρ̃(0) serves as
definition for the order parameter. In systems that are not fully
translation invariant, the component with zero momentum is
known as the coherent density,

ρcoh = 1

N2

N∑
i=1

N∑
j=1

〈b̂†
i b̂ j〉. (3.3)

However, strictly speaking, this quantity does not account for
all the condensed bosons of the system Eq. (3.1) since what
is referred to as the “glassy component” with k �= 0 is left out
[133–136], and which results in the property that ρcoh � ρcond.
We note that the subtle links between these different quantities
as well as the superfluid density (not considered in this paper)
were initiated by Josephson [137], and are still under active
research, especially within the cold atom community (see
Ref. [136] for a recent paper with references therein). Finally,
although momentum is not defined on the Cayley tree, we still
consider the coherent density Eq. (3.3) in the following, which
we have found to provide relevant information on the nature
of the system.

Figure 3 shows the size and disorder dependence of both
coherent (top) and condensate (bottom) densities. We find

that, independently of the disorder strength μ, they both agree
with the following form:

ρ(N, μ) = ρ∞(μ) + a(μ)N−ζ (μ), (3.4)

with ρ∞(μ), a(μ), and ζ (μ) positive disorder-dependent
parameters. The precise finite-size correction form will be
discussed and analyzed in more details in Sec. V. Neverthe-
less, from this first simple analysis, one can already make
important observations. First, both coherent and condensate
densities display similar behaviors, and we always observe
ρcoh � ρcond. The extrapolated value of the coherent and con-
densed densities in the thermodynamic limit ρ∞(μ) clearly
show a transition in the regime μc ≈ 5. This indicates that
hard-core bosons on the Cayley tree display a long-range
ordered phases at small disorder, while beyond a critical dis-
order strength μc the system is driven to a disordered phase
where Bose-Einstein condensation has disappeared.

C. Gap ratio from the largest occupation numbers

Level statistics of the eigenvalues of disordered Hamiltoni-
ans is well known to be a powerful way to detect localization-
delocalization transitions at high energy [138–140]. Here,
despite the fact that we work at zero temperature, one can
study level statistics of the 1BDM of Eq. (2.2). More pre-
cisely, looking at the statistics of the three largest occupation
numbers λ1, λ2, and λ3 provides insightful information. We
define the adjacent gap ratio,

r = min(δ1, δ2)

max(δ1, δ2)
, (3.5)

with δn = λn − λn+1 the local gap between two consecutive
occupation numbers. In a BEC phase, λ1 ∝ N as N → +∞,
while the next occupation numbers have a sublinear scaling
with N , as discussed in Fig. 2. In this case, the denominator
of Eq. (3.5) will always scale faster with N than the numer-
ator, resulting in r → 0 in the thermodynamic limit. On the
contrary, in a localized phase, one should get r → 2 ln 2 −
1 � 0.386 if the λn follow a Poisson distribution [140]. In
Fig. 4(a) these two limiting behaviors are clearly observed
at small and strong disorder, respectively. In agreement with
our previous analysis for the order parameters, here again
one can roughly locate a transition around μc ≈ 5. However,
the strong size dependence of the gap ratio makes difficult a
precise determination. Note that similar drifts of the gap ratio
with the system size are also observed in the context of the
many-body localization transition at high energy [140–142]
and the Anderson transition on random graphs [9,17,33].

Here the absence of finite-size crossing signals that there is
presumably no intermediate statistics at the transition, in con-
trast with the Anderson localization case on regular lattices
[138,143,144]. Nevertheless, Fig. 4(a) confirms the existence
of a spectral transition for the largest occupation numbers,
from a BEC regime with r = 0, to a disordered phase with
Poisson statistics. This is also clear form the distribution P(r)
shown in Fig. 4(b) for strong disorder (μ = 8), where a very
good agreement is found with a Poisson distribution P(r) =
2/(1 + r)2.

Despite the fact that spectral properties of the leading
eigenvalues of the 1BDM unambiguously shows a Poisson
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FIG. 4. (a) Disorder-average adjacent gap ratio r Eq. (3.5) plot-
ted against the disorder strength μ for different system sizes N .
The transition from the delocalized BEC phase to the disordered
regime is visible around μc ≈ 5–6, with clear change from r → 0 at
weak disorder to the Poisson value r → 2 ln 2 − 1 � 0.386 at large
disorder strength. There is a strong size dependence, except for the
largest disorder strengths, where all system sizes converge onto the
Poisson value. (b) Adjacent gap ratio distribution P(r) in the dis-
ordered phase, at disorder strength μ = 8 for system sizes N � 46.
The Poisson distribution P(r) = 2/(1 + r)2, usually expected for a
localized system, is in very good agreement with the numerical data.

behavior, it does not necessarily mean that the associated
eigenmodes are strictly localized. Indeed, a multifractal be-
havior is also possible, as recently found for the MBL phase of
the random-field Heisenberg chain at high energy [145] (see
also [9,33] for the Anderson transition on random graphs). In
the following section we will address this question in a quanti-
tative way by directly studying the localization and ergodicity
properties of the leading orbital in real space.

IV. REAL SPACE AND ERGODICITY PROPERTIES

A. Local density of bosons

We start this analysis by looking at the local densities 〈n̂i〉,
which correspond to the diagonal entries of the 1BDM, see
Eq. (2.3). We show in Fig. 5 its probability distribution for
two representative disorder strengths, μ = 2 (Bose-Einstein
condensed phase) and μ = 8 (disordered regime). The sites i
are sorted according to the generation g to which they belong.
Because of the reduced connectivity of the boundary sites
(K + 1 in the bulk, and only K − 1 at the boundary), for g = G
one observes a strong deviation from the occupations 〈n̂i〉 in
the bulk. This is true for both phases: The probability distribu-
tions have larger weights around the extreme values 0 and 1,
meaning that boundary sites are more localized, as naturally
expected from the reduced connectivity. However, this is not
a mere finite-size effect since about half of the sites belong
to the boundary on the Cayley tree with branching number
K = 2. More generally, the double-peak U-shape structure
observed in Fig. 5(b) in the disordered phase is also observed
in the context of many-body localization at high energy, and
is a fingerprint of ergodicity breaking [146–150].

In Fig. 6 we provide a real-space picture for these oc-
cupations, focusing on two representative finite-size (G = 7,
N = 382) samples for both regimes: The BEC phase at μ = 2

FIG. 5. Probability distribution of the local density 〈n̂i〉 versus
the generation g to which a site i belongs: g = 0 is the center site
and g = 7 is the boundary, see Fig. 1. A system size with G = 7
generations (N = 382) is considered for (a) μ = 2 and (b) μ = 8.
Only the densities at the boundary of the Cayley tree (g ≡ G) display
a strong deviation from those in the bulk. They are more easily
localized by having larger probabilities around the extreme values
0 and 1. (c) and (d) The absence of finite-size effect for the boundary
sites i ∈ G.

(left column), and the disordered state at μ = 8 (right col-
umn). The top row displays the deviations from complete
localization δi = min(〈n̂i〉, 1 − 〈n̂i〉), from which we clearly
observe that spatial inhomogeneities develop with increas-
ing randomness. In particular, at strong disorder an apparent
nonergodic behavior settles in, with only a finite number of
branches in the Cayley tree which host particle fluctuations,
while a large fraction of the graph displays almost frozen sites
with δi  1.

B. Off-diagonal correlations

The second row of Fig. 6 shows a snapshot of the off-
diagonal correlation function measured from the root of the
tree

C0i ≡ 〈b̂†
0b̂i〉, (4.1)

here again for two representative samples from both phases at
μ = 2 and μ = 8. The spatial structure observed for the den-
sity (top row of Fig. 6) is also clearly visible in the correlators,
as shown by Figs. 6(c) and 6(d). Note the logarithmic scale.

1. Average and typical correlations

Disorder averaging has also been performed for the two-
point correlation, as displayed in Fig. 7 as a function of
the distance. While the BEC phase is characterized by a
slow decay at large distance towards a constant, signaling
off-diagonal long-range order, the disordered regime shows
short-ranged correlations with an exponential decay of the
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FIG. 6. Real space representation of various physical quanti-
ties for a given random sample of size N = 382 lattice sites,
at small (μ = 2, left column) and strong (μ = 8, right column)
disorder strengths. The scales on the panels are independent.
(a) and (b) Deviation from perfect (non)occupation of the lattice
sites measured by δi = min(〈n̂i〉, 1 − 〈n̂i〉). The radius of the cir-
cles is proportional to [δi − min(δi )]/[max(δi ) − min(δi )]. (c) and
(d) Two-point correlation C0i = 〈b̂†

0b̂i〉 from the center site, in
log-scale, with the radius of the circles proportional to [ln C0i −
min(ln C0i )]/[max(ln C0i ) − min(ln C0i )]. (e) and (f) Leading or-
bital |φ1〉 = ∑N

i=1 ai|i〉 of Eq. (2.5). The radius of the circles is in
log-scale and proportional to [ln |ai| − min(ln |ai|)]/[max(ln |ai|) −
min(ln |ai|)]. This figure is discussed throughout Sec. IV.

form

C0i ∝ exp(−g/ξ ), (4.2)

where g measures the distance between the root and site i.
This exponential decay is clearly visible for μ = 8 in Fig. 7(b)
where both average and typical correlators are plotted. Here
two remarks are in order: (i) Finite-size effects are essentially
absent in the disordered phase, in contrast with the BEC
regime shown in Fig. 7(a), and (ii) while at weak disorder
average and typical values are very similar (except at the
boundary), in the disordered phase they decay with two differ-
ent characteristic lengths ξavg/typ. Such a difference between
average and typical correlations is a qualitative sign of noner-
godicity (see, e.g., [21,33,151,152]).

FIG. 7. Disorder-averaged and typical two-point correlations be-
tween the site at the center (generation g = 0) and the sites at the
generation g for different system sizes N at two representative values
of the disorder strength: (a) μ = 2 and (b) μ = 8. Exponential fits to
the form Eq. (4.2) at μ = 8 yield ξavg ≈ 1.15 and ξtyp ≈ 0.85.

2. Distributions

In order to better explore microscopic properties and the
spatial features of the off-diagonal correlations, we show
different types of distributions in Fig. 8, again for weak
(μ = 2) and strong (μ = 8) disorder. This quantity is indeed
central in studies of nonergodicity on this type of graphs
[20,33,109,152,154]. We have considered the distribution of
the correlator C0i over all sites i for different system sizes
[Figs. 8(a) and 8(b)], C0g over all sites at generation g for a
fixed large system size [Figs. 8(c) and 8(d)], and C0G/2 for dif-
ferent values of the total number of generations G [Figs. 8(e)
and 8(f)].

In the Bose-Einstein condensed phase at weak disorder
μ = 2, the different correlators allow us to clearly identify
the localizing effect of the boundary (also seen in Fig. 5).
Similarly to Fig. 7 for the disorder averaged correlator C0g

which decreases much faster close to the boundary than in the
bulk of the tree, one observes in Fig. 8(c) a sharp broadening
of the distribution of C0g close to the boundary. A similar
localizing effect of the boundary arises also in the Anderson
localization problem on the Cayley tree [13]. On the contrary,
in Fig. 8(e), the distribution of C0G/2 in the bulk of the tree
reaches a stationary distribution, characteristic of long-range
order. In Fig. 8(a), the correlator C0i over all sites i is clearly
dominated by the boundary sites, which represent half of the
total number of sites.

In the disordered phase at μ = 8, one clearly observes
in Figs. 8(b) and 8(d) a traveling wave regime where the
distribution of the correlator drifts towards lower value of
C0g by always keeping the same shape at a constant speed
1/ξtyp, where ln C0g = −g/ξtyp. Moreover, the distribution
P(ln C) develops at large g or N a right tail close to exponen-
tial decrease P(ln C) ∼ exp(−B ln C) which translates into a
power-law tail for P(C) ∼ C−(1+B) with an exponent B ≈ 0.5.
This large right tail is responsible of the different decay of the
averaged and typical correlator, see Fig. 7(b). Such a behavior
is characteristic of a nonergodic phase and is often related to
the characteristic directed polymer physics on the Cayley tree
[8,105,109,153]. In this context, an exponent B < 1 signals
replica symmetry breaking, a characteristic glassy property
[104]. The disordered regime can therefore be seen as a Bose
glass.
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FIG. 8. Distribution of different types of correlators in the Bose-
Einstein condensed phase (left panels, μ = 2) and in the disordered
phase (right panels, μ = 8): The correlator C0i over all sites i for dif-
ferent system sizes [(a) and (b)], C0g over all sites at generation g for
a fixed large system size [ (c) and (d)], and C0G/2 for different values
of the total number of generations G [(e) and (f)]. In the BEC phase
(left panels), a clear localizing effect of the boundary is observed in
(c) with a sharp broadening of the distribution for g close to G = 10.
In the bulk of the tree shown in (e), the distribution is stationary
at sufficiently large system size, indicating long-range order. In the
disordered phase, the distribution follows a traveling wave regime,
i.e., drifts towards lower values of ln C at constant speed 1/ξtyp with
a fixed shape and a right tail close to power-law P(C) ∼ C−(1+B) with
B ≈ 0.5 shown by the blue dashed lines in (b) and (d) (see text). Such
a behavior is characteristic of a nonergodic phase [8,105,109,153].

C. Ergodicity properties of the leading orbital

The leading orbital |φ1〉 = ∑N
i=1 ai|i〉, associated with the

largest eigenvalue of the 1BDM, is the most delocalized one,
corresponding to the condensed mode in the BEC regime. In
the last row of Fig. 6 we represent the weights |ai| in real space
for the same samples as in the above rows of the same figure
with μ = 2 (left) and μ = 8 (right). It is quite remarkable that
the same spatial structure observed for the correlators in the
middle panels also emerges for this leading orbital.

In order to be more quantitative, we study the participation
entropy Sq [155], derived from the qth moments of the eigen-
mode |φ1〉. This quantity informs us on its (de)localization

FIG. 9. (a) Disorder-averaged participation entropy Sq=2 of the
leading orbital versus the system size N for various disorder strengths
μ, see definition of Eq. (4.3). (b) Local slope of the disorder-averaged
participation entropy Eq. (4.4) versus the system size is displayed,
and should saturate to D2(μ) in the limit N → +∞. At small dis-
order we observe a nonmonotonous behavior characterized by a
minimum before getting D2 � 1 as the system size is increased. At
stronger disorder, D2 seems to saturate to a finite value smaller than
one, signaling nonergodicity. (c) Local slope of the disorder-averaged
participation entropy of index q (q = 0.5, q = 1 and q = 2) versus
the system size N for μ = 3 and μ = 6. No q dependence is observed
at small disorder as N → +∞, while Dq(N ) saturates to slightly
different values depending on q, suggesting multifractality. (d) Same
data as (b) for a fixed system size N at μ = 3 and μ = 6, versus the
index q. Multifractality is confirmed at strong disorder, with Dq being
q dependent.

properties in real space. It is defined by

Sq = 1

1 − q
ln

( N∑
i=1

|ai|2q

)
. (4.3)

In the thermodynamic limit, one gets Sq = ln N for a per-
fectly delocalized mode, whereas Sq = const. if the mode
is localized. In an intermediate situation, Sq ∝ ln(NDq ) ∝
Dq ln N with 0 < Dq < 1 called the (possibly q-dependent)
(multi)fractal dimension. In this case, the mode is delocalized
(the participation entropy still grows with N) but nonergodic
(the scaling is slower than in the perfectly delocalized case,
meaning that it does not occupy uniformly the whole space).
The extreme cases Dq = 1 and Dq = 0 correspond to perfect
delocalization and localization, respectively. In the follow-
ing we mainly focus on the q = 2 case, which recovers the
usual inverse participation ratio (IPR) with S2 = − ln(IPR)
[156]. We show in Fig. 9(a) the disorder-averaged participa-
tion entropy S2 of the leading mode versus the system size
N for various disorder strengths μ. As expected, we observe
a logarithmic increase ln N , with a prefactor which seems
to gradually change with increasing randomness. While the
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multifractal dimension is defined in the thermodynamic limit,
it is instructive to consider its finite-size version at fixed N to
then try to extract its N → +∞ value,

Dq(N ) = dSq
(
N

)
d ln N

with Dq ≡ Dq(N → ∞). (4.4)

This local slope is displayed in Fig. 9(b) as a function of
system size N . In the absence of disorder, the leading or-
bital is perfectly delocalized with D2(N ) = 1 for all system
sizes. When introducing disorder in the system, the local
slope becomes nonmonotonous by developing a minimum
at N = N∗(μ) before increasing towards D2(N ) → 1 with
system size. Such a behavior was also observed in the IPR on
random regular graphs for the Anderson localization transition
[17–19]. This gives rise to an additive correction to the scaling
of the participation entropy at large N , Sq = ln N + bq, with
bq < 0. This negative constant correction can be physically
related to a finite nonergodicity volume �Sq = exp(−bq), as
argued later. The position N∗(μ) of the minimum increases
with the disorder, resulting in the nonergodicity volume also
increasing with μ. A detailed scaling analysis will be per-
formed below, in Sec. V.

At stronger disorder, in the regime where the BEC order
parameter was found to vanish, we clearly observe a different
behavior for the prefactor D2, with an apparent saturation at a
value D2 < 1, thus signaling that the leading orbital associated
with the most delocalized mode is no longer ergodic on the
Cayley tree, but rather (multi)fractal. Figure 9(c) shows such
a difference between the two regimes, for three values of the
Rényi parameter q = 0.5, 1, 2. For μ = 3 (BEC phase) full
ergodicty of the leading orbital is recovered for large enough
system size with Dq → 1. Instead, in the disordered regime
at μ = 6, Dq clearly saturates to a nonergodic value, with
additional signs of multifracatality as a nontrivial q depen-
dence is found. This is better visible in Fig. 9 where one also
sees strong multifractality at small q (as also observed for
the Anderson transition in infinite dimension [13,33], or for
gapped ground states of spin chains [157]), followed by an
almost q-independent regime.

V. QUANTUM CRITICAL PROPERTIES

A. Scaling analysis across the transition

We established in the previous sections that a transition
takes place in the system around μc ≈ 5–6 between a Bose-
Einstein condensate at small disorder and a disordered phase
at stronger disorder. We now turn our attention to a finite-size
scaling analysis of the various quantities across the transition
in order to characterize it. We will focus on the long-range
ordered phase side of the phase diagram with μ � μc. In the
disordered phase at μ > μc, the numerical simulations are
limited in size and strength of the disorder so that we could
not perform a conclusive finite-size scaling analysis.

The finite-size scaling analysis of localization transitions in
graphs of effective infinite dimensionality such as the Cayley
tree is particularly subtle. This was illustrated recently in
the Anderson transition on random graphs [19,20,33], in the
MBL transition [145,150] and in certain classes of random
matrices [32,158,159]. The difficulty comes from the fact that

the volume of the system N (the number of sites) varies expo-
nentially with the linear size of the system, i.e., the number of
generations G in the Cayley tree. This implies that a volumic
scaling law F (N/�) depending on the ratio of volume N
by a characteristic volume � (e.g., a correlation volume) is
distinct from a linear scaling F (G/ξ ) depending on the ratio
of the size G over the characteristic length ξ . These different
types of scaling have important implications for the nature
of the transition and of the different phases. In particular, a
linear scaling can imply (depending on the critical behavior)
a nonergodic delocalized phase, see Refs. [19,33,145,150].

We carried out a detailed scaling analysis of the behavior
of S2, ρcond, and ρcoh according to the size of the system, and
tested these various scaling assumptions (linear and volumic).
The results show a quantitative agreement of the data with a
volumic scaling assumption, attesting to the ergodic character
of the delocalized phase, with compatible values of μc and
critical exponent for S2, ρcond, and ρcoh. We detail this analysis
in this section. The approach we have used is very similar to
what has been done in the context of Anderson localization
on random graphs and the MBL transition [19,33,145,150].
We assume some value of μc which belongs to the set of
μ’s that we have simulated. We then consider the scaling ob-
servable O ≡ ρ(N, μ)/ρ(N, μc) for ρcond and ρcoh and O ≡
S2(N, μ) − S2(N, μc) for S2 (the substraction instead of the
division by the critical behavior comes from the fact that S2

is an entropy) and test the validity of the volumic or linear
scaling assumptions:

O = Fvol
O (N/�) or O = F lin

O (G/ξ ). (5.1)

To do this, we perform a Taylor expansion of the scaling
functions around μ ≡ μc [160,161]:

F (	N 1/ν ) =
n∑

j=0

a j (	N 1/ν ) j, (5.2)

with N = N the volume or N = G the depth of the tree and

	 = (μ − μc) +
m∑

j=2

b j (μ − μc) j, (5.3)

The orders of expansion have been set to n = 5 and m =
3. Therefore, Ndof = n + m + 1 parameters are to be fitted
(including the critical exponent ν). The goodness of fit (calcu-
lated from the chi-squared statistic divided by the number of
degrees of freedom) should be of order one for an acceptable
fit.

A systematic test of different choices of μc and volumic
and linear scaling hypotheses is represented in Fig. 16 in the
Appendix. It gives a clear indication that the data in the con-
densed phase μ < μc are compatible with a volumic scaling
with μc ≈ 5.5(5). The critical behavior at μ = 5.5 ≈ μc is
well described by

ρ(N, μc) ∼ N−ζc (5.4)

and

S2(N, μc) ∼ Dc
2 ln N + bc

2, (5.5)

with ζ cond
c ≈ 0.80(5), ζ coh

c ≈ 0.95(3), and a fractal dimension
Dc

2 ≈ 0.38(6). The error bars are estimated by considering
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FIG. 10. Finite-size scaling analysis of the disorder-averaged (a) condensed density ρcond, (b) coherent density ρcoh, and (c) participation
entropy of the leading orbital S2 in the regime μ � μc. The best scaling of the data is obtained for a volumic scaling Eq. (5.1) at μc ≈ 5.5.
The green curve shows the scaling function F (N/�) of Eq. (5.2) fitted to the data, with a quantity-dependent and disorder-dependent scaling
parameter �(μ). The divergence of the nonergodicity volume � at criticality is shown in Fig. 11. The dashed lines correspond to the behavior
of the scaling function for the three quantities for N � �, according to Eqs. (5.6) and (5.7).

different μc within the range μc = 5 and μc = 6. The volumic
scaling behavior, represented in Fig. 10, together with the
ergodic behavior at small μ, ρcond ≈ ρ∞

cond and ρcoh ≈ ρ∞
coh

and S2 = ln N + b2 predicts an ergodic condensed phase for
N � �. Indeed, the scaling function F behave as

Fρ (x) ∼ xζc for x � 1, (5.6)

for the condensed and coherent densities, and as

FS2 (x) ∼ (
1 − Dc

2

)
ln(x) for x � 1, (5.7)

for the participation entropy of the leading orbital, as shown
by the dashed lines in Fig. 10.

B. Critical exponents

1. Correlation volumes

The divergence of the correlation volumes � is shown in
Fig. 11. It is difficult to conclude whether the scaling volume

FIG. 11. Divergence of the characteristic scaling volumes � of
the three disorder-averaged observables ρcond, ρcoh, and S2 obtained
from Fig. 10. (a) Test of an algebraic divergence of �: Power-law
fit � ∼ (μc − μ)−ν close to μc. The extracted critical exponents are
given with the corresponding error bar, estimated from the change of
ν with the choice of μc between μc = 5 and μc = 6. (b) Similar to
the other panel with a test of an exponential divergence of �, where
ln � is fitted to ln � ∼ (μc − μ)−ν′

.

diverges exponentially or algebraically at the transition. On
the one hand, our approach presupposes an algebraic diver-
gence, see Eq. (5.2), but we considered nonlinear corrections
so that it can describe also an exponential divergence. On the
other hand, volumes vary exponentially with lengths on the
Cayley tree, and if the divergence of � is to be associated
with an algebraic divergence of a characteristic length, then �

must diverge exponentially. In Fig. 11(a) algebraic fits of the
three �s as a function of (μc − μ) give exponents ν ≈ 2.6 for
ρcond and S2 and ν ≈ 3.3 for ρcoh. These values are quite large
and may suggest an exponential divergence, which is shown
in Fig. 11(b). There ln � versus (μc − μ) are fitted by a power
law with a common exponent ν ′ ≈ 0.25 for all three observ-
ables ρcond, ρcoh, and S2. This scaling analysis confirms the
ergodic nature of the condensed phase at small μ < μc when
the system volume N � �, with � a characteristic volume
diverging at a critical value of the disorder μc ≈ 5.5(5).

2. Order parameter

The order parameter usually vanishes at criticality as

ρ ∼ |μ − μc|2β, (5.8)

which defines the critical exponent β. Assuming that the char-
acteristic volume diverges as

� ∼ |μ − μc|−ν, (5.9)

we expect

ρ ∼ �−2β/ν. (5.10)

Therefore, at criticality, for finite-size N � �, we have

ρ ∼ N−2β/ν, (5.11)

thus leading to the simple identification

ζ = 2β/ν. (5.12)

If instead of a power law, the correlation volume diverges
exponentially, see Fig. 11(b), following

ln � ∼ |μ − μc|−ν ′
, (5.13)
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FIG. 12. (a) Finite-size decay of the disorder-averaged coher-
ent (circles) and condensate (diamonds) densities in the disordered
regime μ > 5.5. Lines are power-law fits. (b) Decay exponents
ζcoh/cond, estimated from fits to the form Eq. (5.15), are plotted against
disorder strength μ. Results for different fitting windows show that
ζcoh → 1 is expected for large enough system sizes, and ζcond(μ) < 1
for the considered values of disorder strength.

that would imply an exponential vanishing of the order param-
eter

ln ρ ∼ |μ − μc|β ′
, (5.14)

in order to verify the observed critical algebraic decay
Eq. (5.11).

From our numerics, a direct estimate of the order parameter
exponent is very difficult, as seen in Fig. 3 (right panels).
However, it is also clear that the vanishing of the order param-
eter is very fast, suggesting a large value of β, in agreement
with the large value of ν (Fig. 11). QMC data would also be
compatible with an exponential decay Eq. (5.14).

C. Strong disorder regime

1. QMC results

In the ordered phase both coherent and BEC densities take
finite values of comparable magnitude. However, in the disor-
dered regime, for μ > μc the two order parameters vanish in
the thermodynamic limit as power-laws

ρcoh/cond ∝ N−ζcoh/cond , (5.15)

with different decay exponents ζcoh �= ζcond. This is clear from
Fig. 12 where the decay of ρcoh(N ) is compatible with a con-
ventional 1/N behavior while the condensate density shows a
slower decay with ζcond < 1.

2. Phenomenological description for the Bose glass phase

We want to build a phenomenological description which
captures all relevant features of the disordered regime. Build-
ing on our QMC results, in particular the real-space properties
shown in Fig. 6 and Refs. [19,33], we propose a simple
two-parameter ansatz which describes both the pair-wise cor-
relations Ci j and the coefficients ai of the leading orbital
|φ1〉 = ∑N

i=1 ai|i〉 associated with the largest eigenvalue λ1.
We first model the inhomogeneity, clearly visible in the right

FIG. 13. Sketch for the phenomenological description inspired
from the QMC results shown in Fig. 6. The Cayley tree is divided
into two subsets: the ergodic part E where the weights (of both the
correlations and the leading orbital) are finite and of comparable
magnitude, and the localized subset L where instead Ci j and the
coefficients ai are very small, exponentially localized, see Eqs. (5.25)
and (5.17).

panels of Fig. 6, by dividing the Cayley tree into two sub-
sets, as sketched in Fig. 13: An ergodic region E where all
the weights are finite and of comparable magnitude, and a
localized subset L where instead Ci j and the coefficients ai

are very small and decay exponentially.
This behavior is modeled by the following ansätze:

|ai| ∼
{

exp(−gi/ξ ) if i ∈ L,

const. if i ∈ E,
(5.16)

where gi is the distance across the tree generations from the
localization center, and

Ci j ∼
{

exp(−gi j/ξ ) if i, j ∈ L,

const. if i, j ∈ E,
(5.17)

where gi j is the distance between two sites. If i and j belong
to different subsets, we will also assume an exponential decay.
In addition to the length scale ξ , which controls the localized
part (and which should depend on the disorder strength), we
introduce a second disorder-dependent parameter α in order
to describe the size of the ergodic support

NE ∝ Nα, (5.18)

with 0 � α < 1 in the disordered phase. The size of the local-
ized part L has a dominant scaling NL ∼ N (with subleading
corrections).

a. Coherent density: In order to estimate the coherent
density Eq. (3.3), we have to perform a summation over all
possible pairs of correlators. Using the ansatz Eq. (5.17) we
arrive at

ρcoh ≈ 1

2N
+ c1eG(ln K−2/ξ )

N
+ c2

N2(1−α)
, (5.19)

where c1 and c2 are constants. The first term accounts for par-
ticle density (half-filling) contribution, the second one comes
from the localized support, and the third one from the ergodic

174205-10



DIRTY BOSONS ON THE CAYLEY TREE: … PHYSICAL REVIEW B 102, 174205 (2020)

TABLE I. Summary of some properties of the disordered phase of dirty bosons on a Cayley tree with branching number K . QMC estimates
are shown, together with analytical results obtained from a two-parameter phenomenological description (see Sec. V C 2). The decay exponents
ζcoh/cond of both coherent and condensate densities are displayed, together with the (multi)fractal dimension Dq governing the ergodicity
properties of the leading orbital of the 1BDM. The threshold Rényi index q∗ is given in Eq. (5.26).

Coherent density Condensed density Participation entropies
ρcoh ∝ N−ζcoh ρcond ∝ N−ζcond Sq ≈ Dq ln N

QMC ζcoh ≈ 1 (Fig. 12) ζcond < 1 (Fig. 12) 0 < Dq < 1 (Fig. 9)

Phenomenological ζcoh = 1 ζcond = 1 − α

2

description if ξ < 2
ln K and α < 1/2 if ξ < 2

ln K Dq ≈
{

1−q(α+ 2
ξ ln K )

1−q if q < q∗

α if q > q∗

part. Using the fact that G = ln N/ ln K , we get a decay expo-
nent governing ρcoh ∼ N−ζcoh ,

ζcoh = min

[
1,

2

ξ ln K
, 2(1 − α)

]
. (5.20)

Our QMC results, see Fig. 12, strongly suggest that ζcoh = 1,
which constraints ξ � 2/ ln K and α � 1/2.

b. BEC density: Then, one can also get an estimate for the
largest eigenvalue λ1 of the 1BDM

C|φ1〉 = λ1|φ1〉. (5.21)

We have to solve

a0C00 + a1C01 + · · · + aN−1C0N−1 = λ1a0, (5.22)

which, using Eqs. (5.16) and (5.17), the fact that ξ < 2/ ln K ,
and after a proper normalization of the leading orbital (see
below), yields for the dominant term

λ1 ∝ Nα/2. (5.23)

This gives a BEC density ρcond = λ1/N ∝ N−1+α/2, and there-
fore a decay exponent

ζcond = 1 − α

2
. (5.24)

c. Participation entropies: The third quantity which can be
estimated from our phenomenological description is the par-
ticipation entropy of the leading orbital, as previously defined
in Eq. (4.3). Using the fact that ξ < 2/ ln K , the normalization
of the ansatz wave-function Eq. (5.25) yields

|ai| ∝ N−α/2

{
exp(−gi/ξ ) if i ∈ L,

const. if i ∈ E .
(5.25)

The q-Rényi entropies will depend on a threshold index

q∗ = ξ ln K

2
(1 − α) < 1, (5.26)

such that

Sq ≈
{

1−q(α+ 2
ξ ln K )

1−q ln N if q < q∗,

α ln N if q > q∗,
(5.27)

d. Consequences and comparison with QMC: From QMC
simulations, see Fig. 12, we expect for the disordered regime
that ζcoh = 1 and ζcond < 1, a behavior perfectly reproduced
by our phenomenological description, see Eqs. (5.20) and
(5.24), provided that the characteristic length scale ξ <

2/ ln K , and the parameter α < 1/2. Moreover, the leading

orbital |φ1〉 was found to be delocalized and nonergodic (see
Fig. 9) with a multifractal behavior at small q, followed by a
simpler fractal behavior at larger q with a constant Dq < 1.
Here our phenomenological description is also able to capture
such a behavior, see Eq. (5.27), with a threshold Rényi pa-
rameter q∗ < 1, in agreement with QMC results. The physical
interpretation of such (multi)fractal properties is fairly sim-
ple: large values of q probe the larger components of |φ1〉,
thus essentially exploring the ergodic subset E (see Fig. 13)
of size Nα . Conversely, at small q, the localized component
cannot be ignored, and will also contributes to the multifractal
dimension. In Table I we give a summary of these findings,
and a comparison between the phenomenological description
and QMC results.

It is also worth mentioning that a simple geometric in-
terpretation of the exponent α can be done, in terms of an
effective branching number Keff . Indeed, instead of having all
branches of the tree equally contributing, we allow a reduced
branching parameter Keff = pK with 1/K < p � 1 [162]. The
parameter p can be interpreted as the probability to follow a
branch. Then we have the simple relation α = 1 + ln p/ ln K .

Finally, this phenomenological description provides a nice
physical picture for the anomalous power-law scaling λ1 ∼
N1−ζcond (with ζcond < 1) which is a direct consequence of the
fractal behavior of the associated orbital. At large enough q,
where all fractal dimensions are the same Dq ≡ D, we have
the very simple result

1 − ζcond = D/2. (5.28)

A direct comparison of the phenomenological description
results with QMC simulations gives a surprisingly accurate
agreement with Eq. (5.28). For instance, at the strongest
disordered strength that we have considered (μ = 8), the
QMC estimate for 1 − ζcond = 0.10(1) perfectly agrees with
D2/2 = 0.10(1). Even more interestingly, the agreement re-
mains quantitative up to criticality (where the quantitative
character of the phenomenological description could become
questionable), with a QMC estimate at μc = 5.5 of 1 −
ζ cond

c = 0.20(5) which nicely compares with Dc
2/2 = 0.19(3).

This observation strongly suggests that the critical point itself
is nonergodic.

At very strong disorder, where QMC simulations become
practically impossible to perform because of prohibitively
long simulation times, we expect a fully localized phase with
D → 0 and ζcond → 1. However, it is not clear whether or not
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a second transition towards such a fully localized phase will
take place at a larger but finite disorder strength, or perhaps
more likely only in the limit of infinite randomness.

VI. DISCUSSIONS AND CONCLUSION

A. Summary of our results

In this paper, building on large-scale quantum Monte Carlo
simulations, we have investigated the zero-temperature phase
diagram of hard-core bosons in a random potential on site-
centered Cayley trees with branching number K = 2. We find
that the system undergoes a disorder-induced quantum phase
transition at finite disorder strength μc ≈ 5.5(5) between a
long-range ordered Bose-Einstein condensed state at weak
disorder and a disordered Bose glass regime at stronger dis-
order.

We characterize the two different phases and the critical
properties of the transition using several physical quantities:
The gap ratio from the largest occupation numbers of the
one-body density matrix, the local densities of bosons, the
off-diagonal correlations, the coherent density ρcoh, the con-
densed density ρcond, as well as the leading orbital and its
participation entropy. We have performed a careful scaling
analysis on the last three quantities as the transition is ap-
proached from the weak disorder side μ < μc. In the strong
disorder side μ > μc, we have described the physics using a
phenomenological description.

All the observations and analyzes agree on the same
physical image of the transition. At low disorder, there is
a characteristic volume � beyond which the system shows
off-diagonal long-range order: The long-distance correlator is
constant; its distribution is stationary; the coherent density is
finite ρcoh > 0 as well as the condensed density ρcond > 0; the
leading orbital (i.e., the condensed mode) is ergodic with a
multifractal dimension D2 = 1. In the strong disorder regime,
we observe clear signatures of a nonergodic Bose glass phase:
the typical and average correlators decrease exponentially
with different localization lengths, their distribution has a trav-
eling wave regime and a large power-law tail P(C) ∼ C−(1+B)

with an exponent B < 1, a signature of replica symmetry
breaking, a crucial glassy property. The coherent density de-
creases as ρcoh ∼ 1/N while the condensed density decreases
with a nontrivial power-law ρcond ∼ N−ζcond . Moreover, the
leading orbital of the one-body density matrix is multifractal
(Dq < 1).

These observations can be precisely accounted for by
a simple phenomenological description for the disordered
regime where the Cayley tree is divided into two subsets: A
pruned tree (with Nα sites) along which the correlator shows
long-range order and the leading orbital is delocalized, while
the remaining sites show a strong exponential localization. In
our picture, the Bose glass phase is similar to the nonergodic
delocalized phase of the Anderson transition on the Cayley
tree, where similar multifractal properties have been predicted
in a broad range of disorder [11–18]. The two characteristic
scales ξtyp and α characterizing the Bose glass phase are
also reminiscent of the two localization lengths that govern
the localized phase of the Anderson transition on random
graphs [33]. In particular, different observables are governed
by different characteristic scales. While ρcoh is controlled by

the bulk localization properties, i.e., ξtyp, ρcond and the leading
orbital are dominated by the rare delocalized pruned tree, thus
by the scale α.

The comparison of our results with the predictions of the
cavity mean field [109] clearly indicates a new condensed
ergodic phase at low disorder which is absent in the cavity
approach. It remains to be studied if the Bose glass phase
that we observe, which is a nonergodic delocalized phase,
corresponds to that predicted by cavity approach and if a
second transition to a completely localized phase occurs at
stronger disorder. Another possibility is that the cavity mean
field describes different physics, because of the approximation
made when dealing with the Ising model, which is clearly
different from our U(1) symmetric bosonic system.

Finally, the nontrivial scaling laws that we found suggest
that there is no finite upper critical dimension dc beyond which
conventional onset of mean-field theory would take place.

B. Open questions

This work is the first of its kind, studying by an unbiased
numerical method the dirty boson problem on an effectively
infinite-dimensional lattice. While we address several fun-
damental points such as the existence of a quantum phase
transition at finite disorder strength and the nature of some
of its critical properties, several questions remain open.

A first one concerns the critical properties of the transi-
tion when approached from the localized phase μ > μc. For
instance, different scaling laws on both sides of the transition
were found for the Anderson localization transition on random
graphs (which are also effectively infinite dimensional) [19]:
a volumic scaling on the delocalized side and a scaling with
the linear size of the system on the localized side. Would
the same phenomenology apply for boson localization? How-
ever, accessing strong disorder with quantum Monte Carlo is
computationally challenging and expensive, which is why we
limited our scaling analysis to the ordered phase.

Another interesting question concerns the possible uni-
versal properties of the delocalization-localization transition
in infinite dimension. The Cayley tree that we studied in
this paper is one example of such effectively infinite dimen-
sional lattice, but other graphs meet the requirements, such
as random graphs or small-world networks. In particular, by
studying the dirty boson problem on one of these lattices
would allow us to quantify the effect of geometrical loops,
absent on the Cayley tree, and to quantify the effect of the
extensive number of boundary lattice sites, specific to the
Cayley tree.

A peculiar property of the superfluid-Bose glass transition
is the predicted [44] hyperscaling relation z = d , between the
dimension of the system d , and the dynamical exponent z,
numerically verified in for d � 3 [60,72,74,75,93,96]. The
exponent z is not readily available from the quantities we con-
sidered in this work, as it is usually inferred from the scaling
of the superfluid density or the imaginary-time off-diagonal
correlation function. Yet, accessing it would be interesting
in order to complete the critical properties description of the
transition in infinite dimension, and check on the validity of
the hyperscaling relation z = d in infinite dimension, in the
absence of a finite upper critical dimension.
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TABLE II. Inverse temperature β = 1/T used in the quantum
Monte Carlo algorithm depending on the system size (number of
generations G, total number of lattice sites N). The number of in-
dependent disordered samples Ns computed to perform the disorder
average is also reported.

G N β Ns

2 10 32 > 2000
3 22 32 > 2000
4 46 64 > 2000
5 94 64 > 2000
6 190 128 > 2000
7 382 128 > 2000
8 766 256 > 1000
9 1534 256 > 500

10 3070 512 > 300

Regarding the critical exponent ζ , we have identified the
hyperscaling relation ζ = 2β/ν, which in principle is valid
for both coherent and BEC densities. However, the fact that at
criticality we observed ζ c

coh �= ζ c
cond may imply two different

order parameter exponents βcoh �= βcond.
Finally, our results could suggest an avalanche scenario

for the delocalization transition when μ → μc is approached
from the Bose glass regime, a process shown rigorously for
the Anderson transition on the Cayley tree [151,163] and
crucially important in the many-body localization transition
[164]. In our case, it may occur when the exponential bulk

FIG. 14. Convergence of the disorder-averaged condensed den-
sity ρcond, the disorder-averaged coherent density ρcoh, and the
disorder-averaged participation entropy S2 versus the inverse tem-
perature β = 1/T . Three system sizes are displayed N = 46 (Ns =
2000), N = 382 (Ns = 2000), and N = 3070 (Ns = 360) at disorder
strength μ = 4. Note the logarithmic scale of the x axis. The data
displayed in the main text are those at the largest inverse temperature,
see Table II.

FIG. 15. Convergence of the disorder-averaged condensed den-
sity ρcond, the disorder-averaged coherent density ρcoh, and the
disorder-averaged participation entropy S2 versus the number of
independent samples Ns considered to perform the average. Three
system sizes are displayed N = 46, N = 382, and N = 3070 at dis-
order strength μ = 4. See Table II.

localization does not compensate the exponential increase of
the number of sites with the distance, i.e., when ξtyp > ξ c

typ
with ξ c

typ a critical value which depends only on the branching
number.
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FIG. 16. Chi-squared statistic χ 2 per degree of freedom Ndof for
the best volumic and linear fits of the data (μ < μc) obtained fol-
lowing a scaling of the form of Eq. (5.2) versus the critical disorder
strength μc for (a) the condensed density, (b) the coherent density,
and (c) the participation entropy of the leading eigenmode. The
volumic scaling is systematically better, with a minimum around
μc ≈ 5.5 ± 0.5. Refer to discussion of Sec. V in the main text.

APPENDIX A: ADDITIONAL INFORMATION ON THE
QUANTUM MONTE CARLO SIMULATIONS

The quantum Monte Carlo data displayed in the main text
is computed at the inverse temperature β = 1/T reported in
Table II. The number of disorder samples Ns for each system
size is also reported.

1. Convergence with temperature

The stochastic series expansion quantum Monte Carlo is a
finite temperature method. Therefore, it is important to per-
form calculations at sufficiently low temperatures to capture
ground state properties. For three representative system sizes
N = 46, N = 382, and N = 3070 at disorder strength μ = 4,
we show in Fig. 14 the convergence of the disorder-averaged
condensed density ρ and the disorder-averaged participation
entropy S2 versus the inverse temperature β = 1/T . The data
displayed in the main text are those at the largest inverse
temperature, as indicated in Table II. We have found that these
temperatures are low enough to reliably probe the ground state
in the quantum Monte Carlo simulations.

2. Convergence with number of samples

The convergence with the number of disorder samples is
checked by performing averages including an increasing num-
ber of samples Ns. We show in Fig. 15 that convergence is
quickly achieved (with a few tens of samples) by consider-
ing three representative system sizes are displayed N = 46,
N = 382, and N = 3070 at disorder strength μ = 4. Even
at stronger disorder, a few hundred of samples is sufficient
to obtain reliable average estimates. We consider in general
> 2000 samples, except for the largest system sizes due to the
numerical cost of simulating them, see Table II.

APPENDIX B: FINITE-SIZE SCALING ANALYSIS

To determine the value of the critical disorder strength μc

and the critical properties of the transition for μ < μc, we
perform a finite-size scaling analysis, as detailed in Sec. V.
For the condensed density, the coherent density and the par-
ticipation entropy of the leading orbital, both a linear and
volumic scaling hypothesis are tested. Their quality is mea-
sured by the chi-squared statistic χ2 per degree of freedom
Ndof of fitting the numerical data to the corresponding scaling
function, which also depends on the choice of critical disorder
strength μc considered. Hence, by plotting χ2/Ndof versus
μc, we are able to estimate the best scaling hypothesis and
locate the transition. As shown in Fig. 16, the volumic scaling
is systematically better compared to the linear one, with a
minimum observed for all quantities around μc ≈ 5.5 ± 0.5.
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[49] M. Makivić, N. Trivedi, and S. Ullah, Disordered Bosons:
Critical Phenomena and Evidence For New Low Energy Exci-
tations, Phys. Rev. Lett. 71, 2307 (1993).

174205-15

https://doi.org/10.1088/1751-8113/44/14/145001
https://doi.org/10.1209/0295-5075/115/47003
https://doi.org/10.1103/PhysRevB.96.214204
https://doi.org/10.1088/1751-8121/ab56e8
https://doi.org/10.1016/j.aop.2017.12.009
https://doi.org/10.1103/PhysRevB.100.094201
https://doi.org/10.1103/PhysRevB.94.220203
http://arxiv.org/abs/arXiv:1810.07545
https://doi.org/10.1103/PhysRevLett.118.166801
https://doi.org/10.1103/PhysRevB.99.024202
https://doi.org/10.1103/PhysRevB.99.214202
https://doi.org/10.1088/1367-2630/17/12/122002
https://doi.org/10.1103/PhysRevLett.117.156601
https://doi.org/10.1088/1742-5468/2016/09/093304
https://doi.org/10.21468/SciPostPhys.6.1.014
https://doi.org/10.1103/PhysRevB.98.134205
https://doi.org/10.1103/PhysRevB.96.201114
https://doi.org/10.1103/PhysRevB.96.064202
https://doi.org/10.1103/PhysRevE.90.052109
https://doi.org/10.1103/PhysRevB.95.104206
https://doi.org/10.1103/PhysRevLett.117.104101
https://doi.org/10.1088/1751-8121/ab4b76
https://doi.org/10.1103/PhysRevResearch.2.012020
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1002/andp.201700169
https://doi.org/10.1016/j.crhy.2018.03.003
https://doi.org/10.1103/RevModPhys.91.021001
https://doi.org/10.1103/PhysRevLett.61.1954
https://doi.org/10.1007/BF00114905
https://doi.org/10.1103/PhysRevB.34.3136
https://doi.org/10.1209/0295-5075/3/12/007
https://doi.org/10.1103/PhysRevB.37.325
https://doi.org/10.1103/PhysRevLett.61.1847
https://doi.org/10.1103/PhysRevB.40.546
https://doi.org/10.1103/PhysRevLett.67.2307
https://doi.org/10.1103/PhysRevLett.66.3144
https://doi.org/10.1103/PhysRevB.46.3002
https://doi.org/10.1103/PhysRevLett.69.828
https://doi.org/10.1103/PhysRevLett.71.2307


DUPONT, LAFLORENCIE, AND LEMARIÉ PHYSICAL REVIEW B 102, 174205 (2020)

[50] P. B. Weichman, Comment on Disordered Bosons: Critical
Phenomena and Evidence for New Low Energy Excitations,
Phys. Rev. Lett. 74, 1038 (1995).

[51] S. Zhang, N. Kawashima, J. Carlson, and J. E. Gubernatis,
Quantum Simulations of the Superfluid-Insulator Transition
for Two-Dimensional, Disordered, Hard-Core Bosons, Phys.
Rev. Lett. 74, 1500 (1995).

[52] R. V. Pai, R. Pandit, H. R. Krishnamurthy, and S. Ramasesha,
One-Dimensional Disordered Bosonic Hubbard Model: A
Density-Matrix Renormalization Group Study, Phys. Rev.
Lett. 76, 2937 (1996).

[53] I. F. Herbut, Dual Superfluid-Bose-Glass Critical Point in Two
Dimensions and the Universal Conductivity, Phys. Rev. Lett.
79, 3502 (1997).

[54] J. Kisker and H. Rieger, Bose-glass and Mott-insulator phase
in the disordered boson Hubbard model, Phys. Rev. B 55,
R11981(R) (1997).

[55] S. Rapsch, U. Schollwöck, and W. Zwerger, Density matrix
renormalization group for disordered bosons in one dimen-
sion, Europhys. Lett. 46, 559 (1999).

[56] F. Alet and E. S. Sørensen, Cluster Monte Carlo algorithm for
the quantum rotor model, Phys. Rev. E 67, 015701(R) (2003).

[57] N. Prokof’ev and B. Svistunov, Superfluid-Insulator Transi-
tion in Commensurate Disordered Bosonic Systems: Large-
Scale Worm Algorithm Simulations, Phys. Rev. Lett. 92,
015703 (2004).

[58] T. Giamarchi, Quantum Physics in One Dimension (Clarendon,
Oxford, UK, 2004).

[59] A. Priyadarshee, S. Chandrasekharan, J.-W. Lee, and H. U.
Baranger, Quantum Phase Transitions of Hard-Core Bosons
in Background Potentials, Phys. Rev. Lett. 97, 115703 (2006).

[60] P. Hitchcock and E. S. Sørensen, Bose-glass to superfluid tran-
sition in the three-dimensional Bose-Hubbard model, Phys.
Rev. B 73, 174523 (2006).

[61] P. B. Weichman and R. Mukhopadhyay, Critical Dynamics of
the Dirty Boson Problem: Revisiting the Equality z = d , Phys.
Rev. Lett. 98, 245701 (2007).

[62] G. Roux, T. Barthel, I. P. McCulloch, C. Kollath, U.
Schollwöck, and T. Giamarchi, Quasiperiodic Bose-Hubbard
model and localization in one-dimensional cold atomic gases,
Phys. Rev. A 78, 023628 (2008).

[63] V. Gurarie, L. Pollet, N. V. Prokof’ev, B. V. Svistunov, and M.
Troyer, Phase diagram of the disordered Bose-Hubbard model,
Phys. Rev. B 80, 214519 (2009).

[64] J. Carrasquilla, F. Becca, A. Trombettoni, and M. Fabrizio,
Characterization of the Bose-glass phase in low-dimensional
lattices, Phys. Rev. B 81, 195129 (2010).

[65] E. Altman, Y. Kafri, A. Polkovnikov, and G. Refael,
Superfluid-insulator transition of disordered bosons in one
dimension, Phys. Rev. B 81, 174528 (2010).

[66] F. Lin, E. S. Sørensen, and D. M. Ceperley, Superfluid-
insulator transition in the disordered two-dimensional Bose-
Hubbard model, Phys. Rev. B 84, 094507 (2011).
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