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Diffusion of excitations and power-law localization in strongly disordered systems
with long-range coupling
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We investigate diffusion of excitation in one- and two-dimensional lattices with random onsite energies and
deterministic long-range couplings (hopping) inversely proportional to the distance. Three regimes of diffusion
are observed in strongly disordered systems: ballistic motion at short time, standard diffusion for intermediate
times, and a stationary phase (saturation) at long times. We propose an analytical solution valid in the strong-
coupling regime which explains the observed dynamics and relates the ballistic velocity, diffusion coefficient,
and asymptotic diffusion range to the system size and disorder strength via simple formulas. We show also that
in the long-time asymptotic limit of diffusion from a single site the occupations form a heavy-tailed power-law
distribution.
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I. INTRODUCTION

The seminal paper of Anderson [1] anticipated lack of dif-
fusion in particular random lattices in three dimensions (3D),
starting the topic of Anderson localization of (quasi)particles.
Although the original discussion concerned systems with
power-law couplings, much of the subsequent research dealt
with tight-binding-like models with nearest-neighbor cou-
pling and onsite disorder. Within that framework, Mott and
Twose [2] proved the lack of diffusion in one dimension
(1D). Later, Abrahams et al. [3] proposed single parameter
scaling hypothesis and proved the absence of diffusion in two
dimensions (2D), confirming at the same time localization
in one dimension and localization-delocalization phase tran-
sition in three dimensions with respect to the system size.
Nonetheless, the single parameter scaling hypothesis remains
an approximate result, demands finite range hopping, uncorre-
lated disorder and time-reversal symmetry. It still leaves space
for the possibility of diffusion in specific models, even for
dimension less or equal to two.

Beside the tight-binding model with onsite disorder and
nearest-neighbor inter-site coupling, other theoretical mod-
els were studied from the point of view of localization and
metal-insulator transition [4,5]. Among others, much inter-
est was devoted to models of uncorrelated diagonal disorder
with long-range hopping of the power-law character ∝ 1/rμ

[4,6]. Such a model represents several physical systems. For
instance, Levitov [7] analyzed delocalization of vibrational
modes in a 3D crystal with dipole interaction ∝ 1/r3. Sub-
sequently, the energy transfer in several systems has been
explored extensively within similar models. In biological
light-harvesting systems, energy transport to the reaction
center is mediated by dipole interactions ∝ 1/r3 [8–10].
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Furthermore, many-body systems of nuclear spins with the
same 1/r3 interaction have been studied in the context of lo-
calization [11]. A model with both the the short-range hopping
between adjacent sites and long-range dipole-dipole coupling
was used for describing energy transfer in self-assembled
nanorings [12]. The long-range coupling was shown to sta-
bilize the system against disorder. Moreover, energy transfer
has been observed experimentally in the planar quantum dot
(QD) ensembles [13]. It has been found that the transfer is
even better for low-density samples, i.e., of greater inter-dot
distances preventing carriers from tunneling between QDs.
Thus, a mechanism different from quantum tunneling must
be proposed for explaining the energy transfer, and a plau-
sible explanation seems to be the long-range dipole-dipole
coupling. In fact, an ensemble of QDs seems to be a cou-
pled system, as its radiation properties cannot be explained
as a sum of single emitters [14,15]. The fundamental cou-
pling between the emitters emerges here from their interaction
with a common electromagnetic reservoir, leading to the
dispersion-force coupling ∝ cos(kr)/(kr) + sin(kr)/(kr)2 +
cos(kr)/(kr)3 [16–18], where k is the resonant wave number,
which reduces to the usual 1/r3 dipole interaction on short
distances but is dominated by the 1/r term at distances larger
than the wave length resonant with the optical transition.

A renormalization group analysis by Rodríguez et al. [4],
proves the existence of extended states in the model of un-
correlated diagonal disorder and power-law hopping ∝ 1/rμ,
with an exponent μ greater than the dimension of the system.
Extended states appear in such a system in the thermodynamic
limit in the vicinity of the energy band edge, even in 1D and
2D. Such a model was also used for investigating the wave
packet propagation in 1D [19]. Time evolution of the wave
packet is described here by its mean square displacement and
the participation ratio. The localization-delocalization transi-
tion occurs as a function of the disorder magnitude for 1 <

μ < 3/2. For μ > 3/2 wave packet tends to localize because
of the short range of hopping decreasing while μ increases.
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FIG. 1. The system geometry for d = 2: sites forming a regular
lattice on a circular mesa. The initially excited site is marked by
colors.

The particular case of μ = 1, relevant to the disper-
sion forces at large distances and therefore corresponding
to extended dipole-coupled natural (e.g., photosynthetic) or
artificial (e.g., semiconductor) systems, shows interesting
properties already in the absence of disorder, showing a
combination of diffusive and super-diffusive transport [20].
However, in disordered systems this case has never been stud-
ied directly. Some of its features could only be inferred as a
limit of the systematically studied case of μ > 1. It is known,
in particular, that it shows certain criticality features, like the
divergence of the critical disorder strength needed to localize
the upper band edge [21].

In this paper we consider the dynamics of a single ex-
citation in arrays of two-level systems with exactly such
long-range 1/r hopping and strong diagonal disorder. We
show that a system of finite size in this limit shows three
consecutive phases of excitation transport: a ballistic one,
followed by normal diffusion, and finally saturation of the
mean-square diffusion range. We analyze also the average
distribution of the excitation in the asymptotic (saturation)
phase and demonstrate a heavy-tail power-law quasilocaliza-
tion around the initially excited site. We point out that in
the strong disorder limit the excitation transfer is dominated
by the direct coupling with the initial site, which allows us
to reduce the model to a simplified form, which is exactly
solvable in a certain range of parameters. In this way we
are able to relate the transport parameters (ballistic speed,
diffusion coefficient, and asymptotic diffusion range) to the
system size and disorder strength.

The organization of the paper is as follows. In Sec. II,
we describe the physical system and theoretical model. In
Sec. III we present the results of our numerical simulations.
The approximate analytical solution for strongly disordered
systems is presented in Sec. IV A, analyzed in Sec. IV B, and
discussed in Sec. IV C. Final conclusions are presented in
Sec. V.

II. THE SYSTEM AND THE MODEL

In this section, we describe the physical system under
study and introduce a theoretical model used for numerical
simulation.

We study a d-dimensional (d = 1, 2) system of N sites on
a regular lattice. The system occupies a disk of radius R for
d = 2 and a line segment of length 2R for d = 1 (Fig. 1 shows
the geometry for d = 2). The number of sites is related to

the dimensionless radius of the system (in units of the lattice
constant) by N = ζd Rd , where ζd is a number that depends on
the space dimensionality d .

The system is described by the Hamiltonian

H = J

(∑
α

εα|α〉〈α| +
∑
αβ

Vαβ |α〉〈β|
)

, (1)

where |α〉 represents a basis state localized at the site α, J sets
the overall energy scale, Jεα is the corresponding onsite en-
ergy, and JVαβ is the coupling between the site states α and β.
The dimensionless energies εα (in units of J) are uncorrelated
normally distributed random variables of zero expected value
and standard deviation σ . The coupling Vαβ has a long-range
character,

Vαβ =
⎧⎨
⎩

1

|rα − rβ | , for α �= β,

0, for α = β,

(2)

where rα is the dimensionless position of the site α (in units
of the lattice constant).

The central site is initially excited. The diffusion of the ex-
citation is described by its mean square displacement (MSD)
from the origin of the system

〈r2(t )〉 =
〈∑

α

|cα (t )|2r2
α

〉
, (3)

where 〈. . . 〉 denotes the average over disorder realizations,
cα (t ) are the coefficients of expansion of the system state in
the localized basis,

|�(t )〉 =
∑

α

cα (t )|α〉, (4)

and the central site corresponds to the r0 = 0.

III. SIMULATION RESULTS

In this section we present the results of numerical sim-
ulations for the model described in Sec. II in one and two
dimensions. The system evolution is found by exact numerical
diagonalization of the system Hamiltonian. We investigate the
character of the excitation diffusion as a function of the system
parameters, i.e., the number of sites and the magnitude of the
disorder characterized by its standard deviation σ . The MSD
of the excitation from the central site is shown in Fig. 2 for
different system sizes and disorder strengths. Three consecu-
tive regimes of the excitation transport can be seen. First, the
transport is ballistic with a certain velocity v,

〈r2(t )〉 = v2t2, for 0 < t < t0. (5)

The velocity depends on the system size, as can be seen in
Figs. 2(a) and 2(b), but not on the disorder [Figs. 2(c) and
2(d)]. At a certain cross-over time t0, the normal diffusion with
the diffusion coefficient D sets on

〈r2(t )〉 = Dt, for t0 < t < t1. (6)

As demonstrated by our simulation results in Fig. 2, the dif-
fusion coefficient D grows with the system size and decreases
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FIG. 2. The MSD of the excitation from the central site as a
function of time: (a), (b) for different sizes of the system but the
same disorder σ = 1000; (c), (d) for different disorder magnitudes
but the same system sizes, as shown. Panels (a), (c) and (b), (d) show
the results for d = 1 and d = 2, respectively. Dotted lines show the
results from the “central atom model” (Sec. IV). All the results are
averaged over 1000 repetitions.

as the disorder amplitude grows. From continuity requirement
at the crossover one gets

t0 = D/v2. (7)

Simulations show that this value is size-independent but
increases with the disorder strength. Finally, saturation is
reached at the second cross-over time t1,

〈r2(t )〉 = r2
sat, for t > t1. (8)

Obviously, the diffusion range must be limited in a finite sys-
tem. However, the values of r2

sat presented in Fig. 2, although
increasing with the number of nodes, are always considerably
lower than the system size and decrease as the disorder grows.
Again, the cross-over time is fixed by continuity,

t1 = r2
sat/D. (9)

To study the dependence of the dynamical characteristics v,
D, and r2

sat on the system size and disorder strength, we found
the system evolution for a range of values of N and σ , and
fitted the numerical solutions in the respective time intervals
with the appropriate power-law functions of time according
to Eqs. (5), (6), and (8). The dependence of all the dynamical
characteristics on the two system parameters turns out to be a
power law over at least a decade of parameter variation in each
case, with the power-law exponent very close to an integer or
a simple fraction.

The size dependence of the velocity and diffusion coeffi-
cient is depicted in Figs. 3(a) and 3(b). The velocity increases
with the number of atoms like N1/2, while the diffusion co-
efficient grows linearly with the number of sites both in 1D
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FIG. 3. Size dependence of the dynamical coefficients. (a), (b)
The ballistic velocity (green circles, right axis) and the diffusion
coefficient (red squares, left axis) as a function of the number of sites.
(c), (d) The ballistic-to-diffusive crossover time as a function of the
number of sites. Lines show the analytical results from the„central
atom model” [see Eqs. (24)–(26) in Sec. IV B].

and 2D. As a consequence [Eq. (7)], the first cross-over time
is size independent, see Figs. 3(c) and 3(d).

The dependence of the dynamical parameters on the dis-
order strength is shown in Figs. 4(a) and 4(b). While the
velocity remains σ -independent, as already concluded above,
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FIG. 4. Dependence of the dynamical coefficients on the disorder
strength. (a), (b) The ballistic velocity (red circles, left axis) and the
diffusion coefficient (blue squares, right axis) as a function of the
standard deviation of the onsite energies. (c), (d) The ballistic-to-
diffusive crossover time as a function of the standard deviation of the
onsite energies. Lines show the analytical results from the„central
atom model” [see Eqs. (24)–(26) in Sec. IV B].
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Sec. IV B]. Dotted line in (d) is the linear fit to to the further part of
the plot.

the diffusion coefficient is inversely proportional to σ for any
system dimension.

Finally, in Figs. 5 and 6 we analyze the dependence of the
saturation level r2

sat on the system size and disorder strength,
respectively. In 1D, the value of r2

sat grows as N2 for large dis-
order [Fig. 5(a)], while for moderate disorder one observes an
approximately power-law dependence with a lower exponent
[Fig. 5(c)]. In 2D the dependence is r2

sat ∝ N3/2 for strongly
disordered systems [Fig. 5(b)] and for sufficiently short chains
at weaker disorder [Fig. 5(d)]. This kind of power-law depen-
dence in two dimensions means that the saturation level grows
faster than the system size, hence the excitation must reach
the border of the system for sufficiently large number of sites
(on the order of σ 2). From that point saturation level starts to
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FIG. 6. The dependence of the diffusion range on the standard
deviation of the onsite energies in one (a) and two (b) dimensions.
Solid lines show the analytical results from the “central atom model”
[see Eq. (27) in Sec. IV B]. Dotted lines represent the values corre-
sponding to uniform distribution over the system.
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FIG. 7. (a) The final (long-time asymptotic) occupation of the
initial site in a one-dimensional chain as a function of the chain
length for σ = 10. (b) The dependence of the asymptotic occupation
on the site index in a one-dimensional chain for the values of N and
σ as shown. The dashed line shows a logarithmic trend.

grow linearly with the system size as it is clear from Fig. 5(d).
In other words, the saturation level is bounded by the system
size. Both in 1D and 2D, the value of r2

sat turns out to be pro-
portional to 1/σ as long as σ � 1, while it starts to oscillate
and reaches a constant value as σ → 0. The latter property
simply reflects the uniform spreading of the excitation across
the system, characteristic of an unperturbed lattice, which
roughly sets the upper limit on the mean-square displacement.
The values corresponding to the uniform distribution are R2/3
and R2/2 for d = 1 and d = 2, respectively, and are marked
with horizontal dotted lines in Fig. 6. The crossover time t1
is then proportional to N and N1/2 in 1D and 2D respectively,
that is, to the linear size of the system in both cases, and is
independent of disorder, as follows from Eq. (9).

By a simple lowest-order “resonance counting” argument,
the number of sites resonant to the central (initially occupied)
one at a distance x is proportional to 1/x. For a 1D system,
as the chain gets longer, due to occupation spreading among
these resonant sites, the occupation of the distant sites would
then grow as ln N , the value of r2

sat would grow as N2, and the
long-time occupations would be distributed as 1/x. This pre-
diction for r2

sat agrees with the simulation results for very large
disorder but discrepancy is visible at σ = 10 [Fig. 5(c)]. The
growing occupation of the distant sites should suppress the fi-
nal occupation of the initial site |c0|2 (the survival probability)
as 1 − A ln N , until the survival probability is reduced enough
for the lowest order approach to break down. This is indeed
confirmed by simulation results presented in Fig. 7(a), where
the logarithmic dependence is represented by the dashed trend
line, although the narrow range of variability of |c0|2 may
be insufficient to rigorously prove the subtle logarithmic de-
pendence. The saturation at N � 104 appears at a rather high
value of the survival probability. The distribution of occupa-
tions at saturation (asymptotic long-time limit) indeed shows
a distinct power-law character over many orders of magnitude
of the chain length, with an exponent very close to 1 for
strong disorder [red squares in Fig. 7(b)]. This behavior is
characteristic of the strong disorder regime, corresponding to
the power-law dependence of r2

sat on σ [left asymptotics of
Fig. 6(a)]. It should be contrasted with the low-disorder limit
[right asymptotics in Fig. 6(a)], where the occupations are
equally spread all over the chain, as we have already inferred
from the asymptotic value [blue circles in Fig. 7(b)].
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FIG. 8. The dependence of the asymptotic occupation on the
distance from the initially occupied site in a two-dimensional system:
(a) for a fixed σ and two values of N as shown; (b) for a fixed N and
two values of σ as shown.

A similar power-law localization of the asymptotic state is
observed in a 2D system, as shown in Fig. 8, where we plot the
average occupation of a site as a function of its distance from
the central site. As can be seen in Fig. 8(a) (full symbols), for
a moderate disorder strength, the exponent of this power-law
dependence increases by magnitude as the system size grows.
The values from fitting to the power-law part of the data ob-
tained from simulations range from −1.0 for N = 197 to −1.7
for N = 32017 (fitting was performed using the central part of
the data points, showing the clear power-law dependence and
may be slightly affected by the choice of the cutoffs). All these
values are above −2 and therefore correspond to heavy tail
distributions in two dimensions that would have a divergent
norm if extrapolated to infinite size. The values seem to be
roughly proportional to ln N over the range of system sizes
available for numerical simulations and we were not able to
reliably determine the asymptotic value of the exponent as
N → ∞.

A different situation is observed for strongly disordered
systems [empty symbols in Fig. 8(a)]. Here the slope of the
power-law dependence is apparently constant and indeed, the
exponents obtained from fitting oscillate (due to inherent ran-
domness and fitting uncertainty) very close to the value of −1,
which precisely corresponds to the r2

sat ∝ N3/2 dependence
in Fig. 5(b). This means that in this range of system sizes,
the asymptotic diffusion range grows with the system size by
extending the ∝ 1/r dependence of occupation to larger and
larger distances at the cost of the central site occupation, until
the ∝ N3/2 dependence breaks down, similar to the situation in
Fig. 5(d) but far beyond the range of system sizes accessible
in simulations. When comparing the power-law dependence
at the two disorder strengths one arrives at the somewhat
unexpected conclusion that, from the formal point of view
focused merely on the power-law exponent, localization in
moderately disordered systems is stronger (the absolute value
of the exponent is larger) than in heavily disordered ones.
This is obviously not true in terms of the actual values of the
occupations that decrease as the disorder grows, which simply
means that the survival probability at the initial site grows
with disorder, as expected. Interestingly, the occupations of
the most remote sites are similar for the two different disorder
regimes shown in Fig. 8(a).

The trend in the dependence of the average asymptotic dis-
tribution of occupations on the disorder strength demonstrated
above cannot remain valid toward weaker disorder strengths,
as the occupation should spread across all the system in the
limit of unperturbed chain. Indeed, as shown in Fig. 8(b), for a
very weak disorder, the system tends to a uniform distribution
but, rather surprisingly, even for σ = 0.01 a weak localization
effect is still visible.

In addition to the simulations of the full model discussed
so far, we have also studied the dynamics of a “central atom
model” in which the central (initially excited) site is coupled
to all the other sites in the system as in the full model, but
the other sites are not coupled with one another, i.e., Vαβ =
0 if α �= 0 and β �= 0. The results are shown in Fig. 2 with
dotted lines. One can see that the system evolution is nearly
the same in both models in this parameter range, which means
that the dynamics in the strongly disordered case is dominated
by direct jumps to remote places, which is possible due to the
long-range coupling.

In the next section we show that the dynamical parameters
can be related to the system size and disorder strength and the
analytical relation between the power-law exponents and the
system dimension can be found as long as the “central atom
model” is valid.

IV. APPROXIMATE ANALYTICAL SOLUTION

In this section we present an approximate analytic ap-
proach to the considered problem, which becomes possible
within the simplified “central atom model” in the limit of
strong disorder.

A. Solution of the equation of motion

The equation of motion for the coefficients of the expan-
sion defined in Eq. (4) has the form

iċα (t ) = εαcα (t ) +
∑

β

Vαβcβ (t ), cα (0) = δα0. (10)

We define the Laplace transform fα (s) of an amplitude
cα (t ),

fα (s) =
∫ ∞

0
e−st cα (t )dt, (11)

where s is a complex variable. Equation (10) in terms of the
Laplace transform is

fα (s) = iδ0α

is − εα

+
∑
β �=α

Vαβ

is − εα

fβ (s). (12)

Equation (12) can be iteratively expanded in series depending
only on the central-site term f0,

fα (s) = Vα0

is − εα

f0(s)

+
∑

β �=α,β �=0

Vαβ

is − εβ

Vβ0

is − εβ

f0(s) + . . . , α �= 0

(13)
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and

f0(s) = 1

is − ε0
+

[∑
β �=0

V0βVβ0

(is − ε0)(is − εβ )

+
∑

γ �=β,γ �=0

V0βVβγVγ 0

(is − ε0)(is − εβ )(is − εγ )
+ . . .

]
f0(s).

(14)

The series have the number of terms of the order of NN and
the resulting system of equations cannot be solved in a simple
manner. The problem simplifies considerably in the “central
atom approximation.” Then, only the first term in Eq. (13)
remains, while in Eq. (14) only the first term and the first sum
survive. After these simplifications, one can write fα (s) as

fα (s) = iVβ0
∏

β �=0,β �=α (is − εβ )∏
β (is − εβ ) − ∑

β �=0

∏
γ �=β,γ �=0 V0βVβ0(is − εγ )

.

(15)

Next, we transform back to the time domain, by means of
the Mellin’s formula

cα (t ) = 1

2π i
lim

T →∞

∫ γ+iT

γ−iT
est fα (s)ds. (16)

To perform the integral we employ residue theorem and obtain

cα (t ) =
∑

n

b(α)
n e−iznt , (17)

where zn = isn and sn are the poles of the analytic function
given by Eq. (15). All zn must be real. In addition,

b(α)
n = 2π iReszn fα (z) = Vα0

∏
β �=0,β �=α (zn − εβ )∏
β �=n(zn − zβ )

, (18)

where Reszn fα (z) denotes the residue of fα (z) at zn.
As long as the coupling is small in comparison to σ/N , the

roots of the denominator of Eq. (15) lie in close vicinity to
bare energies εα , as compared to the typical distance between
these roots. Hence, one can associate each pole with the near-
est bare energy, align the numbering and assume zn−εβ

zn−zβ
≈ 1,

whenever n �= β. With this approximation, one finds

b(α)
n ≈

⎧⎪⎨
⎪⎩

Vα0
z0−zα

, n = 0, n �= α,
Vα0

zn−z0
, n = α �= 0,

0, otherwise.

The amplitudes cα (t ) then take the form

cα (t ) = b(α)
0 e−iz0t + b(α)

α e−izαt

= e−iz0t Vα0

z0 − zα

[
1 − e−i(z0−zα )t

]
and the occupation of the site α becomes

|cα (t )|2 = |Vα0|2 sin2 (δzαt/2)

(δzα/2)2 , (19)

where δzα = z0 − zα . Upon inserting this result to the Eq. (3)
we obtain

〈r2(t )〉 =
〈∑

r

r2|Vr |2
nr∑

k=1

sin2(δzk (r)t/2)

[δzk (r)/2]2

〉
, (20)

where we decomposed the sum over all the sites into subsets
of nr sites lying at a distance r from the origin. All the sites
at a given distance have the same coupling to the central dot
Vr = 1/r. δzk (r) are the values of δzk for sites lying at distance
r from the origin. δz(r) can be considered random variables
with a certain probability density fr (δz). In the continuum
approximation one then obtains

〈r2(t )〉 =
∫ R

0
ζd drd−1dr

∫ ∞

−∞
fr (u)

sin2(ut/2)

(u/2)2
du, (21)

where ζd rd is the number of sites lying inside a d-dimensional
sphere.

At large δz, the poles are shifted negligibly from the bare
energies, hence the distribution function is close to the onsite
energy difference distribution f∞(δε) (here ∞ refers to in-
finite distance, hence vanishing coupling, and δε is the bare
energy difference), which is a Gaussian distribution with the
standard deviation

√
2σ . However, at δz ∼ Vr the pole prob-

ability distribution must reflect the level repulsion. Its form
can be found by noting that a pair of sites with a bare energy
difference δε > 0 coupled with a coupling strength V gives
rise to a pair of poles separated by δz =

√
(δε)2 + 4V 2. From

this, the cumulative distribution function for δz follows in the
form

P(0 < δzk (r) < u) =
∫ √

u2−4V 2
r

0
f∞(x)dx, |u| > 2Vr, (22)

and the corresponding probability density is

fr (u) =
{

f∞
(√

u2 − 4V 2
r

) |u|√
u2−4V 2

r

, |u| > 2Vr,

0, |u| � 2Vr .
(23)

The above distribution corresponds to the normal distribution
of standard deviation σu = √

2σ having a gap around zero
of width 4Vr . The total distribution for a system of radius R
including all possible distances r has a gap of width 4VR.

B. Regimes of propagation

Equations (21) and (23) allow us to explain the three time
phases in the excitation evolution.

For very short times, t � 1/σ , the function h(u) =
sin2(ut/2)/(u/2)2 is slowly varying in u and can be approx-
imated by h(u) ≈ t2 over the whole width of the distribution
fr (u), as schematically shown in Fig. 9(a). Equation (21) then
immediately yields 〈r2(t )〉 = v2t2, that is, ballistic propaga-
tion with the constant velocity

v2 =
∫ R

0
ζd drd−1dr

∫
f∞(u)du = ζd Rd = N. (24)

This dependence is shown as dashed lines in Figs. 3(a) and
3(b), which perfectly follows the numerical data.

In the intermediate time range, 1/σ < t < 1/VR, the func-
tion h(u) probes the central part of the distribution but is still
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FIG. 9. Schematic plots of the probability density fr (red, the
same for three cases) and the function h(u) (blue) corresponding to
three phases of propagation: (a) ballistic, (b) diffusive, (c) saturation.

insensitive to the narrow central gap [Fig. 9(b)]. Then the
integral over u in Eq. (21) can be approximated by∫ ∞

−∞
fr (u)

sin2(ut/2)

(u/2)2
du

≈
∫ ∞

−∞
f∞(u)2πtδ(u)du = 2πt f∞(0),

from which one finds the diffusive transport 〈r2(t )〉 = Dt ,
with

D =
∫ R

0
drζd drd−12πt f∞(0) =

√
πN

σ
. (25)

Again, this dependence on N and σ is shown as dashed lines in
Figs. 3(a) and 3(b) and in Figs. 4(a) and 4(b). The agreement
with the numerical data is excellent.

Using Eq. (7), the crossover time between ballistic and
diffusive phases is obtained as

t0 = √
π/σ, (26)

which agrees with our simulation results, as shown in
Figs. 4(c) and 4(d), for sufficiently large values of σ . The
range of the ballistic transport is therefore 〈r2(t0)〉 = v2t2

0 =
N

√
π/σ . In 1D it is always much smaller than the system size

if the disorder is strong.
Finally, at t ≈ 1/VR, the function h(u) becomes as nar-

row as the the gap in the density function, hence its central
part does not contribute, while its oscillating tails are av-
eraged to h̃(u) = (1/2)/u2 (see Fig. 9). There is no time
dependence in this limit, which results in the saturation of
〈r2〉. The saturation level is then estimated from Eq. (21)
as 2

∫ ∞
Vr

fr (u)h̃(u)du =
√

πr
2σ

exp[1/(σ 2r2)]erfc[1/(σ r)]. The
resulting saturation value is

r2
sat = 〈r2(t )〉 =

∫ R

0
ζd drd

√
π

2σ
exp

(
1

σ 2r2

)
erfc

(
1

σ r

)
dr

≈
√

πζd

2σ

d

d + 1
Rd+1, (27)

where we took into account that VR/σ = 1/Rσ � 1 in the
high disorder energy regime, so the last two terms in the inte-
gral tends to unity (in the zeroth order of Taylor expansion).

The dependence from Eq. (27) is marked by dashed lines
in Figs. 5 and 6 and agrees very well with the simulation result
as long as the size is not too large and the disorder is strong.

The onset of saturation is determined by the continuity of
〈r2〉, Dt1 = r2

sat. Combining Eqs. (27) with (25), one obtains

t1 = 1

πVR
, (28)

in agreement with the simulations.
Within the “central atom model,” the asymptotic occupa-

tion of a site at a distance r from the origin is

〈|cr |2〉sat = 2

r2

∫ ∞

2Vr

fr (u)
2

u2
du

=
√

π

2σ r
exp

(
1

σ 2r2

)
erfc

(
1

σ r

)
≈

√
π

2σ r
. (29)

This ∝ 1/r trend obtained from our approximate analytical
solution agrees with the numerical data in 1D, shown in Fig. 7
and corresponds to the survival probability 1 − A ln N in the
strong disorder regime, which is consistent with the simu-
lation data in Fig. 7(a). In 2D, as we have seen in Fig. 8,
the same dependence is obtained for very strongly disordered
systems.

C. Discussion

As we have seen, the analytical formulas agree very well
with the simulation results only within a certain limits of sys-
tem size and disorder strength. One discrepancy appears when
the disorder becomes weak (see Fig. 6). This is obvious, as our
“central atom model” is essentially based on the assumption
that coupling is a perturbation to the onsite energies, which
requires a strong disorder. The second discrepancy appears
for long chains in Fig. 5. For d � 2, r2

sat ∼ Rd+1, Eq. (27)
predicts that the asymptotic diffusion range grows faster than
the system size. This cannot be true for an arbitrary system
size and, indeed, the trend in simulations changes at a certain
system size Fig. 5(d), which is not captured by the “central
atom” approximation. We note that the limit of validity of our
approximation is σ/N ∼ VR = 1/R or, using N ∼ Rd , Rd−1 ∼
σ . At this limit, 〈r2

sat〉 ∼ R2, which assures consistency of our
conclusions. However, for a one-dimensional chain, r2

sat ∼ R2,
hence the asymptotic range grows linearly with the system
size. Eq. (27) is valid for σ � 1, hence r2

sat � R2 and the
excitation is effectively trapped around the original site in the
chain.

V. CONCLUSIONS

We have studied the diffusion of an initially localized ex-
citation in finite lattices with a strong onsite disorder and a
long-range coupling (hopping) inversely proportional to the
distance. We have shown that the diffusion in such a system
takes place in three dynamical stages: ballistic transport is
followed by normal diffusion and then by saturation. The
numerical findings can be understood with the help of an ap-
proximate model which is valid in the strong disorder regime
and allows an analytical solution, which relates the dynam-
ical properties to the system parameters (size and disorder
strength).

We have proposed two complementary descriptions of
localization. The first one emerges from the dynamics and
consists in analyzing the asymptotic range of diffusion. The
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other one consists in studying the spatial distribution of the
average occupations of lattice sites in the long-time limit and
is more directly related to the structure of energy eigenstates
of the disordered system. We have shown, both numerically
and analytically, that the diffusion range grows proportionally
to the system size and is always much smaller than the latter
in 1D hence, from this point of view, the excitation remains
effectively localized around the initial site. In contrast, in 2D
systems, the range of diffusion initially grows faster than the
system size as the latter increases, until at a certain system
size the growth slows down so that, in sufficiently strongly
disordered systems the range again remains much smaller
than the system size. While tracing the asymptotic diffusion
range provides only a single number characterizing the degree
of localization or spreading of the excitation, inspection of
the average profile of occupations offers a more complete
spatial picture of the localization. We have found out that

after a sufficiently long time the occupations stabilize into a
heavy-tailed power-law distribution both in 1D and 2D that
not only does not have a second moment but would even have
a divergent norm when extrapolated to infinite system size.
Therefore, even if the excitation remains localized in the sense
of showing the diffusion range much smaller than the system
size, it does not have any intrinsic localization length and
the diffusion reaches (on the average) an arbitrary site of the
lattice according to the power-law distribution as a function of
the distance.
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