
PHYSICAL REVIEW B 102, 174110 (2020)

Image charge interaction correction in charged-defect calculations

Zhao-Jun Suo,1,2 Jun-Wei Luo,1,2,3,* Shu-Shen Li,1,2,3 and Lin-Wang Wang 4,†

1State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

3Beijing Academy of Quantum Information Sciences, Beijing 100193, China
4Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

(Received 22 May 2020; accepted 5 November 2020; published 30 November 2020)

Charged-defect calculation using a periodic supercell is a significant class of problems in solid state physics.
However, the finite supercell size induces an undesirable long-range image charge Coulomb interaction. Al-
though a variety of methods have been proposed to eliminate such image Coulomb interaction, most of the
previous schemes are based on a rough approximation of the defect charge screening. In this work, we present
a rigorous derivation of the image charge interaction with a defect screening model where the use of a bulk
macroscopic dielectric constant can be avoided. We have verified this approach in comparison with a widely
used approach for 12 different defects. Our correction scheme offers a much faster convergence concerning
the supercell size for cases with considerable image charge interactions. In those cases, we also found that the
nonlinear dielectric screening might play an important role. Our proposed defect screening model will also shed
new light on understanding the defect screening properties and can be applied to other defect systems.
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I. INTRODUCTION

Defects in semiconductors play an essential role in con-
trolling the semiconductor properties [1–4]. There has been
a long history of calculating defect properties, including
structures, formation energies, and transition levels, using
density functional theory (DFT) methods [5,6]. Although
well-established defect computational procedures have been
developed, first-principles calculations of such defect prop-
erties remain challenges. Besides the fundamental problems
related to the DFT functional itself (e.g., the well-known
underestimation of the band gap), there are also practical
issues related to the utilization of a finite-size supercell [7–9].
Specifically, one can ideally calculate defect properties in
an infinite system, but, in practice, a finite-size supercell is
always used for saving computational cost. In scenarios such
as shallow donors or acceptors, the defect wave function is
very extended and spreads over a large space so that a large
supercell must be utilized [10,11], whereas, for a relatively
deep defect, the defect wave function is rather localized and
thus can be contained in a small supercell. As long as the su-
percell is larger than the spreading of the defect wave function
and is converged in elastic relaxation, the result of the finite
supercell approaches that of the infinite system very quickly
for charge-neutral defects where the total charge around the
defect site is zero. However, if the defect is charged, the con-
vergence is slow due to the long-range image-image charge
interaction resulting from the utilization of a finite supercell
in the periodic boundary condition. Here, the electrostatic
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potential is calculated, relying on a uniform (jellium) back-
ground charge that compensates the defect charge in the
system [12]. Due to the slow convergence of image charge
interaction, it is impractical to use an increasingly larger su-
percell to try to reach the converged value [13]. Then it is
necessary to provide an image charge correction to make the
convergence faster to the infinite supercell result or even a new
scheme beyond the jellium model. Although different formu-
las and methods [14–23] have been proposed, uncertainties
exist in the applications of these formulas. These uncertain-
ties result in scattered data presented in the literature for the
calculated formation energies and transition levels, leading to
controversies on defect calculations. For example, the forma-
tion energies of O vacancy in ZnO using different schemes and
procedures to account for local density approximation (LDA)
and generalized gradient approximation (GGA) deficiencies
and finite-size effects differed a lot [7]. Specifically, Wu et al.
claimed the +2/0 transition level of O vacancy is EV + 1.5 eV
[24]. Recently, however, Chen and Pasquarello [25] and Deng
and Wei [26] gave about 1 eV higher results and commented
that the work of Wu et al. might deal with image charge
interaction improperly. It is thus highly desired to have a
more rigorous and robust method to correct the image charge
interaction.

One of the early works on image charge interaction cor-
rection was done by the Makov and Payne (MP) method
[15]. They used a Madelung interaction for a point charge
in a lattice and a second moment of the defect charge to
capture the finite defect charge size to describe the image
interactions as 1/L and 1/L3 terms (L is the size of the su-
percell), respectively. Their formula has been carefully tested
and revised by Lany and Zunger (LZ) [7,8] to provide a better
convergence. Freysoldt, Neugebauer, and Van de Walle (FNV)
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[16,17] alternatively proposed a new approach by assuming
the shape of the defect charge as a spherical model with
model parameters obtained by fitting the defect wave func-
tions and comparing the calculated potential in the supercell.
The obtained explicit charge model is then used to correct the
image charge interaction. The FNV is currently widely used
as a standard approach for calculations of charged defects.
In order to treat defects in noncubic systems, Murphy and
Hine modified the charged-defect screening model by con-
sidering the anisotropic dielectric properties [19]. Similarly,
Kumagai and Oba extended the FNV approach to consider
the dielectric tensor for anisotropic materials [20]. All these
works have contributed significantly to this field, but the vari-
ations of approaches complicate the calculations and imply
uncertainties. Furthermore, all these methods use macroscopic
dielectric constants or properties to represent the screening of
the defect charge. However, the screening of the defect charge
could be quite different from the bulk macroscopic case due
to the small spread of the defect charge and local field effects,
as well as nonlinear screenings. Besides, because of the fi-
nite size of the supercell, a compensating jellium background
charge has been added for the polarization charge to make the
total response charge equal zero. All of these aspects make the
situation more complicated.

In this work, we derive a correction formula rigorously for
image charge interaction based on a defect screening model.
Unlike previous approaches, where analytical formulas with
adjustable parameters are used to describe the image charge
interaction or defect charge profile, we will base our correc-
tion directly on numerical results contained in calculations.
In other words, we carry out relatively cheap, but numeri-
cal postprocessing calculations to provide the image charge
corrections. We believe such a numerical approach provides
higher robustness, especially for cases with an elongated
(instead of spherical) defect charge, or for cases when non-
linear screening is important. We use the self-consistent field
(SCF) calculated charge density instead of the macroscopic
dielectric constant, considering it already contains the infor-
mation for the screening. This provides an alternative way
to consider the image charge correction problem compared
to the previous analytical formulas. It is demonstrated that
our method can provide much faster convergence than pre-
vious methods for cases where the image charge interaction is
considerable.

It is worth noting that the screening of the defect charge
comes from both electronic and ionic parts. This is also a
source of controversy in using analytical formulas presented
in previous correction methods. For example, Deák et al.
compared results of using ε∞ = 3.55 (the high-frequency di-
electric constant) or ε0 = 10 (the static dielectric constant) in
calculating the adiabatic charge transition levels in β-Ga2O3,
and got that using ε∞ could yield better agreement with
experimental data whereas using ε0 would underestimate by
1 eV [27]. They inferred that the actual screening in the
supercell should be described by a dielectric constant between
ε0 and ε∞ [27]. However, conceptually, either ε0 should be
used when the atomic positions are relaxed or ε∞ should be
applied when the atomic positions are held fixed (vertical ion-
ization) after ionization [8,27,28]. In this paper, we primarily
deal with the situation where only the electronic screening

effect (i.e., ε∞) is applied. Although the formula we derived
can also be applied to ionic screening, we leave it to future
studies to establish our defect screening model for the ionic
screening effect. The challenge is that one needs to fully relax
the atomic positions for different size supercell calculations,
rendering it more challenging than an SCF electronic structure
calculation.

This paper is organized as follows. In Sec. II, we describe
our correction scheme, including the generally applied forma-
tion energy formulas (Sec. II A), C-NS correction (correction
for no screening effect) in the non-SCF unscreened situation
and C-AP (correction using an approximation of macroscopic
dielectric constant) using ε∞ (Sec. II B), a defect state screen-
ing model obtained through SCF calculation of neutral and
charged systems (Sec. II C), a precise theory of image charge
correction C-SC (correction scheme with screened charge
density model) for the SCF screened situation (Sec. II D),
comparison with FNV (Sec. II E) and LZ (Sec. II F), and a
definition of the effective dielectric constant (Sec. II G). Then
we apply our method C-AP and C-SC to calculate the energies
for different defects and discuss the results in Sec. III. Finally,
we conclude our work in Sec. IV.

II. CHARGED-DEFECT ENERGY CORRECTION

A. Formation energy and the correction

In a supercell method, the formation energy of a charged
defect is often described as [6,20,28–30]

�Hf (α, q) = {E (α, q) + Ecorr (α, q)} − E (host)

−
∑

i

niμi + q(εF + εVBM + �v). (1)

Here E (α, q) is the total energy of a supercell contain-
ing a defect α with charge state q, and E (host) is the
total energy of pristine bulk crystal with the same super-
cell except for the defect. In order to form the defect, ni

atoms with chemical potential μi are added (ni > 0) to or
removed (ni < 0) from the supercell. The Fermi energy εF

is referenced to the energy of the valence band maximum
(VBM) εVBM of the host (e.g., εF = 0 when the Fermi en-
ergy is at the VBM). Both Ecorr (α, q) and q�v are charge
correction terms due to the usage of the finite-size super-
cell. They scale as the inverse of supercell size and the
inverse of the supercell volume, respectively. Thus, they tend
to zero as the supercell size tends toward infinity. Roughly
speaking, Ecorr (α, q) corresponds to an image charge inter-
action term, while q�v represents a potential alignment �v

(PA) term between the pristine bulk crystal and the charge-
neutral system at a place far away from the defect. While
the first term is proportional to q2, the second term is pro-
portional to q. Therefore, for a neutral defect, these terms are
zero. Together, we can call them the charged-defect energy
correction,

EC (α, q) = Ecorr (α, q) + q�v. (2)

This EC (α, q) is used to get the infinite system results
from finite supercell calculations. The PA correction term is
well understood, and there are several approaches to deal
with the image charge interaction term, Ecorr (α, q). Although
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derivations of Ecorr (α, q) are frequently based on non-self
-consistent field (non-SCF) approximations, there is no direct
derivation of the Ecorr (α, q) term for SCF calculations and
just an intuitive approximation through employing a dielec-
tric screening constant. Due to the lack of derivation, many
treatments are only guided by intuition, which can lead to
controversy.

To provide a rigorous derivation and an expression for
Ecorr (α, q), we propose a defect charge screening model,
which offers a way to treat the screening of the defect charge
from SCF calculations. This defect screening model is tested
and validated using our numerical calculations. Finally, our
Ecorr (α, q) expression is applied to actual defect calculations.
We find that, compared to previous models, our method can
provide faster convergence, especially for cases associated
with multiple charge states (q > 1), where the value of the
correction term is large, and the nonlinear screening effect
might exist.

In this paper, however, we only deal with the screening
effect due to wave function SCF treatment (i.e., the electronic
structure part), and ignore the ionic screening component. In
other words, from small supercell to large supercell, we will
fix the atomic positions as in the original small supercell,
while using the pristine crystal to fill the rest of the large
supercell. The atomic relaxation near the defect induced by
the change of defect charge has been included, although it is
just for the small supercell system. For a polar crystal, the
ionic displacement for atoms far away from the defect can
still provide further screening effect, which reduces the image
interaction. Our final formula is likely also applicable to ionic
screening as long as the nuclear charges are treated as part of
the total charge (e.g., using a Gaussian broadening to repre-
sent the nuclear charge). Nevertheless, the atomic relaxation
for a few hundred atoms is not an easy task, and the Gaussian
broadening presents some additional technical issues. The
defect charge screening model has to be tested separately for
the ionic screening. Thus, in the current calculations, we will
neglect the ionic screening effects and leave such effects in
future investigations.

B. Non-SCF unscreened situation

We start with the most straightforward situation in which
the change of electronic wave functions caused by the occu-
pation of defect state orbitals is ignored. Therefore, only the
electrostatic interaction is considered. We assume the defect
is in charge state −q (q is the number of electrons) with a
wave function ϕ′

d . To simplify the notation in the following
derivation, we will define ϕd = √|q|ϕ′

d , and assume the defect
charge density is ρd (r) (with its spatial integral being q). Then
we will have

ρd = ϕ2
d , (3)

E0 = 1

2

∫
[ρ0(r) + ρion(r)]

1

|r − r′|
× [ρ0(r′) + ρion(r′)]d3rd3r′, (4)

Eq = 1

2

∫
[ρd (r) + ρ0(r) + ρion(r)]

1

|r − r′|
× [ρd (r′) + ρ0(r′) + ρion(r′)]d3rd3r′, (5)

where E0 and Eq are the electrostatic energy of the supercell
with the neutral and charged defect, respectively. ρ0 is the total
electron density of the neutral charge system, and ρion is the
nuclear charge. Therefore, the electrostatic energy deviation
induced by the charged defect is

�EN = Eq − E0

= 1

2

∫
ρd (r)

1

|r − r′|ρd (r′)d3rd3r′

+
∫

ρd (r)
1

|r − r′| [ρ0(r′) + ρion(r′)]d3rd3r′

= 1

2

∫
ρd (r)

1

|r − r′|ρd (r′)d3rd3r′+
∫

ρd (r)Vtot (r)d3r.

(6)

This �EN will depend on the supercell size N due to the
Hartree interaction integral in a finite supercell. What we
intend to do is to provide a correction term so that we can
obtain �E∞ for the infinite system from the finite supercell
calculation of �EN . Because E0 does not need any correction,
and all the correction is for the q charged-defect formation
energy of Eqs. (1) and (2). Note, in the Hartree calculation for
the finite supercell, we have assumed a constant compensating
background charge. In other words, we have required that
Vtot (G = 0) = 0 with reciprocal vector G. As a result, even
for a neutral defect system, we have Vtot (r) = V ∞

tot (r) + �VN

(�VN will be the PA term at supercell size N). We then have

EN
C−NS = �E∞ − �EN

= 1

2

∫
∞

ρd (r)
1

|r − r′|ρd (r′)d3rd3r′

− 1

2

∫
P,N

ρd (r)
1

|r − r′|ρd (r′)d3rd3r′ − q�VN ,

(7)

where ∫P,N means the Coulomb integration within an N-sized
periodic supercell with a constant compensating background
charge (i.e., it can be done in reciprocal space by setting the
G = 0 component to zero), while ∫∞ denotes the integral in
an infinite supercell under an open boundary condition for
the Poisson equation (see Sec. 9 in the Supplemental Material
[31]). The C-NS (correction for no screening effect) method
is implemented for the non-self-consistent field (non-SCF)
calculated result of the charged-defect system, where all the
wave functions are from neutral state calculation but with
different electron occupations. In the non-SCF calculation for
a charged-defect system, the defect wave functions together
with its charge density are fixed, and there are no SCF itera-
tions. Therefore, the screening response to defect ionization is
not included in the non-SCF calculated result.

Figure 1 shows the reliability of C-NS in Eq. (7) under
non-SCF calculation results. For V +

C in different diamond
supercells, the non-SCF calculated energies vary significantly
with large amplitudes. After C-NS correction, the formation
energies get converged quickly. The vast energy differences
between non-SCF and C-NS indicate the strong image charge
Coulomb interaction in this unscreened case. On the other
hand, the interaction energy will decrease if the screening
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FIG. 1. C-NS correction on non-SCF calculated energies of V +
C

in diamond supercells. All the formation energies are referenced to
C-NS corrected formation energy (which is set to zero) at the largest
supercell (containing 1000 atoms). The numbers at the top of the
panel denote the numbers of atoms in different supercells. The gray
dashed lines are a guide for the eye.

effect is taken into consideration. Very often, to represent the
screening effect, a macroscopic dielectric constant ε is added
in front of the Coulomb interaction term. Then we get

EN
C−AP = 1

2ε

∫
∞

ρd (r)
1

|r − r′|ρd (r′)d3rd3r′

− 1

2ε

∫
P,N

ρd (r)
1

|r − r′|ρd (r′)d3rd3r′ − q�VN .

(8)

This is nevertheless only an approximation since the
macroscopic dielectric constant can only describe the screen-
ing effect of slowly varying perturbation potential, not the
defect charge, where rapidly varying local field effect is cru-
cial. Furthermore, as we will show later, there are examples
where the nonlinear screening effect is considerable, which
can make the effective dielectric constant charge dependent.

C. Screening model for the charged defect

The non-SCF unscreened situation is simple, and its finite-
size correction is straightforward, whereas the SCF situation
with screening is much more complicated. In order to yield
a useful formula, we first propose and test a defect charge
screening model. This screening model will be used in sub-
sequent derivations. We note that this model can include not
only linear screening but also nonlinear screening effects as
we do not assume the proportionality of the defect charge q.
We first define ρN

d,sc(r) as the SCF charge density difference
between the supercell with a charged defect ρN

q,sc(r) and the
supercell with a neutral defect ρN

0,sc(r),

ρN
d,sc(r) = ρN

q,sc(r) − ρN
0,sc(r). (9)

One can regard ρN
d,sc(r) as the screened defect charge of the

unscreened bare defect charge density ρd (r) plus all the pos-
sible background compensating charges. Note, in the above

FIG. 2. Supercell scaling of charge densities. In each supercell,
the screened defect charge density is separated into ρN,core

d,sc (r) and
CN (r). The core part ρN,core

d,sc (r) remains the same in both N and N2
supercells: ρN,core

d,sc (r) = ρN2,core
d,sc (r). The background part CN (r) in

yellow decreases in supercell N2 due to their inverse dependence on
supercell volume.

formula, to concern only the electronic screening effect and
neglect the ionic screening, we have used the same atomic po-
sitions for both charged and neutral defects, although atomic
positions may response to defect charging and be the charged-
defect positions (even for the neutral defect calculation) for
the atomic coordinates near the defect.

Here we propose a model to describe the behavior of
ρN

d,sc(r), which helps to explain how the bare defect charge is

screened. We first separate ρN
d,sc(r) into a core part ρN,core

d,sc (r)
and a background part CN (r) as schematically shown in Fig. 2.
We suppose that the core part remains almost the same in
different supercells as long as the supercell size N is large
enough to contain ρN,core

d,sc (r). One can consider ρN,core
d,sc (r) as

the screened ρd (r) in the infinite system. CN (r) is extended
throughout the finite supercell and is responsible for the zero
total polarization charge. The majority of the background
charge CN (r) away from the defect is a constant. Since the
total charge of this compensating charge is the same when
varying the supercell size, thus for two supercells with vol-
umes �N and �N2, we have (for r within the domain of the
smaller supercell)

�NCN (r) = �N2CN2(r). (10)

Since ρN,core
d,sc (r) is independent of supercell size N and can

be written as ρ∞,core
d,sc (r), hence,

ρN
d,sc(r) = ρ∞,core

d,sc (r) + CN (r). (11)

Through Eqs. (9)–(11), CN (r) can be acquired from
ρN

d,sc(r) and ρN2
d,sc(r) of two supercells N and N2:

CN (r) = �N2

�N2 − �N

[
ρN

d,sc(r) − ρN2
d,sc(r)

]|r∈�N . (12)

The CN (r) from Eq. (12) can also be used to obtain
ρN,core

d,sc (r) through

ρN,core
d,sc (r) = ρN

d,sc(r) − CN (r). (13)
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FIG. 3. Integral of defect charge density in supercells containing
64–1000 atoms. (a), (c) are core part ρN,core

d,sc (r) integrating along
the radial direction of V +

C and V 2+
C in different supercells. (b), (d)

are CN�N integration of V +
C and V 2+

C . The supercell volume �N is
replaced with the number of atoms in the supercell for simplicity. The
dashed lines in (b), (d) are the integrated results of uniform charge
densities with the total charges equaling those of CN�N . They show
that the CN can be well approximated as a uniform charge density.

This ρN,core
d,sc (r) can be used to check whether it is indeed

independent of supercell size N, as well as the N independence
of CN�N . The results are shown in Fig. 3 with their radial
integrations. As we can see, they are both N independent.
The flat tail in the integration of CN�N after r reaches the
supercell edge is the feature of the cubic supercell. However,
the collapsing of different curves into a single one indicates
they are the same before the supercell edge is reached. In
Figs. 3(b) and 3(d), we also compared the integration curve of
CN�N with that of a homogeneous charge density (of equal
total charges) for all the supercells. They are both very close,
indicating the background charge CN can be approximated as
a homogeneous charge (variation near the defect is unavoid-
able but does not account for the majority of its charge) as
we assumed in the derivation of Eq. (10). Subsequently, Fig. 3
validates our defect charge screening model. We find similar
situations for all other investigated defects. This model will
play an essential role in evaluating the electrostatic charge
of the defect state. Instead of using a macroscopic dielectric
constant, here we will use the SCF calculated charge density
ρN

d,sc(r) to figure out the dielectric screening. This is natural
since the dielectric screening effects (including small size
effect, local field effect, and nonlinear screening effect) have
already been captured in the SCF calculation. There is no
necessity for additional calculations.

D. SCF screened defect and energy correction

Based on the above screening model for the screened de-
fect charge density, we can now give an expression for the
electrostatic interaction and its related energies and provide a
correction formula from calculations of a finite supercell to
obtain the infinity system results. However, unlike the case of
non-SCF calculations, where only the electrostatic interaction
energy related to the defect charge is presented in Eqs. (3)–(7)
(since the other energies, including the kinetic energy, nonlo-
cal potential energy, and the electrostatic interactions for the
rest of the charge, are fixed during a non-SCF calculation),
one has to include all the energy terms in the SCF calculation.
Let EN

0,scf be the total energy for the N-sized periodic supercell
with a neutral defect, and its total electron charge density is
ρN

0,sc(r). EN
0,scf includes kinetic energy T0, electron-electron

Coulomb energy, electron-ion Coulomb energy, the nonlo-
cal pseudopotential energy Enl , and the exchange-correlation
energy Exc:

EN
0,scf = T0 + 1

2

∫
ρN

0,sc(r)
1

|r − r′|ρ
N
0,sc(r′)d3rd3r′

+
∫

ρN
0,scVion(r)d3r + Enl +

∫
Exc(ρN

0,sc)d3r. (14)

When the defect is ionized with charge q, the initial (non-
SCF) charge density is ρN

0,sc + ρd , where ρd is given in Eq. (3).
After SCF iterations, the total electron charge density finally
converges to ρN

q,sc = ρN
0,sc + ρN

d,sc = ρN + ρd [the first part is
just Eq. (9); the second part is a definition of ρN ]. However,
from now on, ρd = ϕ2

d , but ϕd should be understood as the de-
fect state wave function from SCF calculations with q charge,
instead of neutral charge calculation (although, our later test
shows, the effect of this relaxation on ϕd is rather negligible as
far as the image correction term is concerned). We can further
define the polarization charge density (the charge responsible
for the screening) as

�ρN = ρN − ρN
0.sc = ρN

d.sc − ρd . (15)

Once again, ρN = ρN
q,sc − ρd is the electron density of the

charged-defect system minus the defect charge density ρd .
Now, we can write down the expression for the SCF total
energy EN

q . The SCF wave functions are {ϕN
i,scf , ϕd}, where

ϕd is the defect state wave function from SCF calculation as
discussed above and is independent of the supercell size N,
and then ρd = ϕ2

d and ρN = ∑
i |ϕN

i,scf |2. Plugging the SCF
solutions {ϕN

i,scf , ϕd} into a DFT total energy formula, after
some simple derivations, we have the SCF total energy of the q
charged-defect system as (keep the energy in the second-order
expansion of ρd )

EN
q = EN

tot

[
ρN

{
ϕN

i,scf

}] +
∫

ρdVtot (ρ
N
{
ϕN

i,scf

}
, r)d3r + (T + Enl )(ϕd ) + 1

2

∫
ρd (r)

1

|r − r′|ρd (r′)d3rd3r′

+ 1

2

∫
δ

δρ
Vxc[ρ]|

ρ=ρN

ρ2
d (r)d3r, (16)

EN
tot

[
ρN

{
ϕN

i,scf

}] = (T + Enl )
[
ϕN

i,scf

] + 1

2

∫
ρN (r)

1

|r − r′|ρ
N (r′)d3rd3r′ +

∫
ρNVion(r)d3r +

∫
Exc(ρN )d3r. (17)
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Note that EN
tot[ρ

N {ϕN
i,scf}] is just the total energy expression for the neutral system. If {ϕN

i, scf} are allowed to change
variationally, the minimum solution of EN

tot[ρ
N {ϕN

i }] is EN
0,scf corresponding to the SCF total energy of the neutral system. On the

other hand, the minimum solution of EN
q in Eq. (16) related to the variational change of {ϕN

i, scf} (i.e., the SCF solution) can be
considered as a response to EN

tot[ρ
N {ϕN

i,scf}] of the system under an external perturbation caused by the second term in Eq. (16).
In this regard, we can rewrite the last three terms of Eq. (16) as Efix[ρd ], which is a fixed energy term during {ϕN

i,scf} variation
and does not play any role. Following a DFT perturbation theory treatment [32], the second term in Eq. (16) can be further
approximated (to the second order) as

∫
δ

δρ(r′)
Vtot[ρ](r)

∣∣∣∣
ρ=ρN

0,sc

�ρN (r′)ρd (r)d3r′d3r +
∫

ρdVtot (ρ
N
0,sc)d3r. (18)

Here, �ρN = ρN − ρN
0,sc is defined in Eq. (15). Furthermore, the response of EN

tot[ρ
N {ϕN

i,scf}] can be expressed as EN
tot[ρ

N ] =
EN

0,scf + ∫�ρN (r)θ (r, r′)�ρN (r′)d3r′d3r, where θ (r, r′) is a density response kernel of the system. Note here we have taken
advantage of the fact that in DFT, the total energy is a function of the charge density alone, while for a given ρN , {ϕN

i } can be
solved through minimizing the total energy under the constraint of ρN = ∑

i |ϕN
i |2. Putting all these together,

EN
q = EN

0,scf +
∫

�ρN (r)θ (r, r′)�ρN (r′)d3r′d3r +
∫

δ

δρ(r′)
Vtot[ρ](r)

∣∣∣∣
ρ=ρN

0,sc

�ρN (r′)ρd (r)d3r′d3r

+
∫

ρdVtot (ρ
N
0,sc)d3r + Efix[ρd ]. (19)

The minimum solution of EN
q in Eq. (19) in response to �ρN is a linear equation derived from

δEN
q

δ�ρN (r′ ) = 0:

2
∫

θ (r′, r)�ρN (r)d3r+
∫

δ

δρ(r′)
Vtot[ρ]

∣∣∣∣
ρ=ρN

0,sc

ρd (r)d3r=0. (20)

Then the charging energy �EN
q = EN

q − EN
0,scf is

�EN
q = 1

2

∫
δ

δρ(r′)
Vtot[ρ]

∣∣∣∣
ρ=ρN

0,sc

�ρN (r′)ρd (r)d3r′d3r +
∫

ρdVtot
(
ρN

0,sc

)
d3r + Efix[ρd ] = 1

2

∫
�ρN (r′)

1

|r − r′|ρd (r)d3r′d3r

+ 1

2

∫
δ

δρ
Vxc[ρ]

∣∣∣∣
ρ=ρN

0,sc

�ρN (r)ρd (r)d3r +
∫

ρdVtot (ρ
N
0,sc)d3r + Efix[ρd ]. (21)

Here we have used Vtot[ρ, r] = ∫ ρ(r′ )
|r−r′ |d

3r′ + Vxc[ρ(r)] + Vion(r). The above formula is a rigorous result under the second-

order expansion of the total energy with regard to ρd (r) which is the charge density of the defect state wave function ρd = ϕ2
d

under the SCF solution. To proceed, we will now use our defect charge model described in Sec. II C.
According to Eqs. (9), (11), and (15), there is

�ρN = ρN
d,sc − ρd = ρ∞,core

d,sc − ρd + CN = �ρ∞,core
d,sc + CN . (22)

Plugging Eq. (22) into Eq. (21), we have

�EN
q = (T + Enl )[ϕd ] + 1

2

∫
δ

δρ
Vxc[ρ]

∣∣∣∣
ρ=ρ∞

0,sc

[
�ρ∞,core

d,sc (r) + ρd (r)
]
ρd (r)d3r +

∫
ρdVtot

(
ρ∞

0,sc

)
d3r

+ 1

2

∫
P,N

ρN
d,sc(r)

1

|r − r′|ρd (r′)d3rd3r′ + q�VN + 1

2

∫
δ

δρ
Vxc[ρ]

∣∣∣∣
ρ=ρ∞

0,sc

CN (r)ρd (r)d3r. (23)

Note, to derive Eq. (23), we have kept the energy to the second order of ρd and approximated: δ
δρ

Vxc[ρ]|ρ=ρN =
δ
δρ

Vxc[ρ]|ρ=ρN
0,sc

= δ
δρ

Vxc[ρ]|ρ=ρ∞
0,sc

. Moreover, Vtot (ρN
0,sc) = Vtot (ρ∞

0,sc) + �VN and the �VN is a constant. This is a good approxi-
mation since the long-range Coulomb effect vanishes for the charge-neutral system. Then the finite system potential approaches
the infinite system potential quickly up to a constant [due to the Vtot (G = 0) = 0 requirement for the electrostatic part]. The �VN

can be obtained by comparing the Vtot (ρN
0,sc, r) (at r far away from the defect) with bulk potential Vhost (r) of the host crystal

(without defect) at the corresponding point r. Because, for the infinite system, the Vtot (ρ∞
0,sc, r) at a position far away from the

defect should be equal to Vhost (r). It is a common trick used for defect calculations. Also note that, in Eqs. (1)–(21), all the
Coulomb double integrations are done with a constant charge background to avoid the divergence as in the standard treatment of
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a plane wave code. In other words, in the reciprocal lattice, the reciprocal vector G = 0 component of the electrostatic potential
has been set to zero. Starting from Eq. (23), we have used the symbol ∫P,N to emphasize this point, as a Coulomb double integral
carried out in supercell size N with periodic boundary condition, hence with a uniform background charge compensation. This
is to be distinguished from the symbol ∫∞ to be used later, which is the Coulomb integration when N is infinity. This ∫∞ is
also equivalent to carrying out the Coulomb integration in finite supercell N with an open boundary condition without uniform
background charge compensation.

Now, to present our charge correction procedure, what we like to do is to deduce the charging energy for an infinite (thus
converged) supercell �E∞

q from the finite supercell charging energy �EN
q . Note, in Eq. (23), the first line is independent of

supercell size N (we can safely assume ϕd and ρd = ϕ2
d are N independent as soon as the supercell is larger than the defect wave

function). As a result, in EN
C = �E∞

q − �EN
q , the first line in Eq. (23) will be canceled out; then we have

EN
C = − q�VN + 1

2

∫
∞

ρ∞,core
d,sc (r)

1

|r − r′|ρd (r′)d3rd3r′ − 1

2

∫
P,N

ρN,core
d,sc (r)

1

|r − r′|ρd (r′)d3rd3r′

− 1

2

∫
δ

δρ
Vxc[r]

∣∣∣∣
ρ=ρ∞

0,sc

CN (r)ρd (r)d3r. (24)

In deriving Eq. (24), we have assumed
∫P,NCN (r) 1

|r−r′ |ρ(r′)d3rd3r′ = 0 by taking the advantage

that CN (r) is more or less a constant, which has been verified
above in Fig. 3. The symbol ∫∞ indicates that the integration
is conducted in an infinite supercell, not in the periodic finite
supercell with size N. In the actual calculation, this integration
can be realized by solving the Poisson equation in an open
boundary condition. We have used a technique of applying a
double-size supercell and truncate the Coulomb interaction
range beyond the original supercell size. Moreover, we apply
fast Fourier transform (FFT) to calculate the Poisson equation
in the open boundary condition. This technique has been
implemented in the plane-wave material simulations (PWMAT)
code [33] (see Sec. 9 in the Supplemental Material [31]).
Tests show that the last term in Eq. (24) is rather small, so
we also can ignore it. We finally have our image charge
correction formula as

EN
C−SC = − q�VN + 1

2

∫
∞

ρ∞,core
d,sc (r)

1

|r − r′|ρd (r′)d3rd3r′

− 1

2

∫
P,N

ρ∞,core
d,sc (r)

1

|r − r′|ρd (r′)d3rd3r′. (25)

In our scheme, the procedure of the image charge cor-
rection contains three steps after the conventional defect
calculation at supercell size N: First, get the potential align-
ment (PA) between the local potential of the supercell with
the neutral defect and the pristine crystal bulk potential, i.e.,
�VN = Vtot (ρN

0,sc, r) − Vhost (r) at r far away from the defect.
Second, use Eq. (13) to calculate ρN,core

d,sc (r) as an approxima-
tion of ρ∞,core

d,sc (r) to be used in Eq. (25). Third, utilize the
q charged-defect SCF result to get the defect wave function
ϕd and the charge density ρd = ϕ2

d to be used in Eq. (25).
After these three steps, Eq. (25) is ready to gain EN

C−SC. The
most significant point of our scheme is the use of ρ∞,core

d,sc (r)
which corresponds to a screened charge density of ρd . In a
sense, Eq. (8) is likely to approximate ρ∞,core

d,sc (r) as ρd (r)/ε.
However, applying bulk dielectric constant ε might be inap-
propriate due to the small defect size, local field effect, or
even nonlinear response near the defect. On the other hand,
as we show here, the information for dielectric response is

already included in the SCF calculation and the resulting
ρ∞,core

d,sc (r). One drawback of our method is that, in order to
use Eqs. (11)–(13) to obtain ρ∞,core

d,sc (r), we have to carry
out calculations with at least two supercells with different
sizes.

In our derivation above, we have expanded the energy
up to the second order of ρd . Strictly speaking, this is only
valid for linear response theory, and thus cannot be used for
cases where the nonlinear screening effect exists. However,
our defect screening model is general and is not restricted to
the linear screening case. There is a subtle difference between
the screening close to the defect versus the screening far away
from the defect. We expect any nonlinear screening effect
will only happen near the defect [where the electric field is
strong, e.g., represented by the total charge of ρN,core

d,sc (r)],
which can be captured by the actual SCF calculation and the
defect screening model. On the other hand, our final image
correction energy (which is an energy deviation between the
finite supercell and the infinite-size supercell) only concerns
the screening far away from the defect (which is always lin-
ear); the nonlinear screening energy near the defect should be
canceled out between the finite supercell and infinite super-
cell energies. This might validate Eq. (25) to be used even
for nonlinear screening cases (since the inaccurate part of
the second-order expansion in its derivation near the defect
should nevertheless be canceled out between the finite super-
cell expression and infinite supercell expression). On the other
hand, the nonlinear screening effects [e.g., the total charge of
ρN,core

d,sc (r)] can be described by the SCF calculation and the
defect screening model, and then be used in Eq. (25).

It is also worth discussing the ionic screening effect here.
It is likely that Eq. (25) is also valid, even including ionic
screening. First, Eq. (16) is still correct, although in Eq. (17)
we should include the ion-ion Ewald interaction term. The
perturbation induced by the interaction between ρd and the
ionic charge can still be written down as a dot product between
ρd and the ionic displacement [or, say, the ionic screening
charge as in Eq. (18)]. The total energy cost by ionic displace-
ment will also have a second-order harmonic oscillator form
of the ionic displacement, much like in EN

tot[ρ
N ] = EN

0,scf +
∫ �ρN (r)θ (r, r′)�ρN (r′)d3r′d3r. For the minimum solution,
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this cost will still be equal to −1/2 of the linear interaction
term in Eq. (20). Thus, the whole derivation can still go
through. We will have the same Eq. (25) if the screening
model also holds for ionic screening, but the ρ∞,core

d,sc should
include the charge response from the ionic displacement. Nev-
ertheless, it needs to be tested in the future whether the ionic
screening also follows our defect charge screening model. We
will defer the investigation for the ionic screening effect in
future study. In the following discussions, we will restrain
ourselves in cases where the ionic screening effect is small, or
we deliberately ignore the ionic screening contribution. Corre-
spondingly, for the models where the bulk dielectric constant ε
has to be used in FNV and C-AP schemes, we always use ε∞.
To simplify the comparison, we also use the neutral charge
atomic positions for the charged-defect calculation.

We note that the image correction in Eq. (25) is similar
to the FNV method where the interaction between the bare
defect charge and the screened potential is used to describe
the image correction term. The difference is that, in the FNV,
an analytical model, more specifically a dielectric constant,
is used to yield the screened potential from the bare charge,
and in our current method, the screened potential is obtained
from the screened charge, which is obtained directly from
DFT supercell defect calculation; thus no dielectric constant
approximation is necessary.

E. Comparison with the FNV method

In the FNV scheme, the defect-induced potential is divided
into short-range and long-range potentials. The long-range
potential is produced by a defect charge model qmodel and
results in −E lat[qmodel], and the short-range potential induces
energy q�v. A general analytical model is used to describe
ρd (r) in Eq. (8) and has a spherical symmetric form,

ρd (r) = qxNγ e−r/γ + q(1 − x)Nβe−x2/β2
. (26)

Nγ and Nβ denote the normalization constants for the ex-
ponential and the Gaussian terms, β determines the width
of Gaussian charge, and the decay constant γ and the tail
weight x are obtained by fitting the defect wave functions
[17]. After getting the qmodel and the long-range potential, the
defect-induced potential (from DFT calculations of neutral
and q charged-defect states) subtracting the long-range part
is the short-range part. If the qmodel is appropriate, the short-
range potential will reach a plateau value of −�v at r far
away from the defect. The plateau gives rise to the short-range
correction q�v. Then the total correction to the energy is
−E lat[qmodel] + q�v. Here, q is the defect charge state, not
the number of ionized electrons as in our scheme.

This qmodel fitting can be complicated, especially when the
defect wave function is anisotropic. One can imagine that
for more complex defects, e.g., a two-atom center codoping
defect, the ρd (r) can be nonspherical, which causes some
uncertainty in using Eq. (26). One uncertainty of the FNV
scheme is the plateau value −�v. The plateau might depend
on the orientation of the planar-averaged potential. For exam-
ple, the planar-averaged electrostatic potential along different
lattice vector directions in relaxed β-Ga2O3 supercells is ap-
parently different, as shown in Fig. S15 (see Sec. 8 in the
Supplemental Material [31]). β-Ga2O3 has C2/m symmetry,

FIG. 4. Defect charge distribution for V +
C in a cubic 512-atom

diamond supercell (supercell length is a = 14.13 Å). (a) shows the
screened defect charge density ρN

d,sc, (b) core defect charge density
ρN,core

d,sc , (c) unscreened defect charge density ρd , and (d) ρd/ε∞ (ε∞ =
5.62). All plots view normal to the (001) plane with an isosurface
value of ±0.002 (e/bohr3). The V +

C defect is located at the center of
the supercell. The black box indicates the boundary of the 512-atom
supercell.

and the potential along the lattice vector a (the lattice vec-
tor with the longest lattice constant) fluctuates significantly,
showing no plateau, presented in Fig. S15(a). We found this
increases the uncertainty when calculating the correction en-
ergy in our implementation with FNV.

Actually FNV and C-AP are equivalent except for the
origin of the defect charge model. FNV needs a q model while
C-AP formulated in Eq. (8) with a further model approxi-
mation for the defect charge density ρd (r). In the following
tests, FNV correction energy calculated using the code SXDE-
FECTALIGN [34] provided by C. Freysoldt is compared with
the C-AP method formulated in Eq. (8) using the same ε∞
but with explicit ρd calculated from Eq. (3). For most cases,
the correction energies provided by FNV and C-AP are very
close. Only for a few defects such as V 2+

C in diamond and V 2+
O

in MgO, a small deviation (about 0.2 eV) arises due to the use
of the analytical charge model in the FNV method.

As for C-SC in Eq. (25), the defect charge ρN,core
d,sc is even

more different. The ρN
d,sc, ρN,core

d,sc , ρd (r), ρd (r)/ε∞ for a V +
C

defect in a 512-atom diamond supercell are shown in Fig. 4.
Figure 4(a) shows that the charge difference ρN

d,sc is a little dis-
persive due to the existence of the background charge CN (r),
while the core part ρN,core

d,sc in Fig. 4(b) is more localized when
the background part is removed. Compared with ρN

d,sc and

ρN,core
d,sc , the unscreened defect charge density ρd is confined

near the defect center. After screening with ε∞ = 5.62 (as cal-
culated by DFT using the same pseudopotential, etc.), the total
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FIG. 5. Charge integrations along radial direction for defect
charge distributions of V +

C in 512-atom diamond supercell. Lines
A–D are integrations of charge density (a) ρN

d,sc, (b) ρN,core
d,sc , (c) ρd ,

and (d) ρd/ε∞ (ε∞ = 5.62) in Fig. 4, respectively. In this case, the
ρN,core

d,sc and ρd/ε∞ have been integrated into the same total charge.
Nevertheless, this is just accidental, and not always true, as illustrated
in other defect cases.

charge reduces to q = 0.176 and the isosurface is confined in
the range of r ≈ 2 Å [shown in Fig. 4(d)] when the isosur-
face value of ±0.002 (e/bohr3) is used. In this respect, the
macroscopic dielectric constant overestimates the screening
response. We integrated the defect charge density shown in
Fig. 4 along the radial direction, and the corresponding results
are shown in Fig. 5. We find that the screening effect reduces
the core charge by 82.4%. Surprisingly, ∫ ρN,core

d,sc 4πr2dr (line
B in Fig. 5) and ∫ ρd/ε∞4πr2dr (line D in Fig. 5) seem
to reach the same limit; i.e., their total amount of screening
charges are the same. However, this is just a coincidence, and
it is not true for other defect systems. Furthermore, Figs. 4(b)
and 4(d) show that the charge distributions of the core de-
fect charge density ρN,core

d,sc and ρd/ε∞ in the supercell are
entirely different. This substantial difference will influence
their Coulomb interaction with the defect charge ρd .

In both simplified schemes formulated in Eq. (8) and the
FNV method, the most significant approximation might come
from the use of the bulk macroscopic dielectric constant to
describe the screening effect. As a result, as will be shown in a
later section, there can be substantial differences in correction
energies between the FNV scheme and our final scheme in
Eq. (25). This is particularly true for the +2 charge-state
defect where the image charge correction term becomes very
large.

F. Comparison with MP and LZ corrections

Makov and Payne (MP) [15] proposed an image interaction
correction based on approximating the defect charge density
as a sum of a pointlike charge density and a more extended
part ρe(r) [where the net charge of ρe(r) is zero]. The point
charge to point charge interaction results in a 1/L term, while
the point charge to ρe(r) interaction results in the 1/L3 term.
Thus, we have

�EC = q2αM

2εL
+ 2πqQr

3εL3
. (27)

Here, αM is a structure factor of the Madelung energy for a
respective supercell geometry, ε is the macroscopic dielectric
constant, and Qr is the second radial moment of ρe(r):

Qr =
∫

�

d3rρer2. (28)

This formula has been carefully tested by Lany and Zunger
[8] and found to work reasonably well. Nevertheless, there are
some conceptual issues. For example, in contrast to what MP
stated in their original paper, where ρe(r) should be obtained
from the unscreened charge density [e.g., in our case, the
ρd (r) minus the delta point charge, which does not contribute
to the second radial moment of Eq. (28)], it is found that
the SCF charge (which already includes the screening effect)
needs to be used for ρe(r). However, that presents a concep-
tual problem for Eq. (27), since the screening effect should
already be included by the dielectric constant ε. If ρe(r), i.e.,
Qr also includes the screening effect, then there will be double
counting of that effect in Eq. (27).

Some more careful considerations are provided by Lany
and Zunger [7,8] to analyze the screening effect and the
screening charge, leading them to present the following for-
mula for the image correction:

EC = [1 + csh(1 − ε−1)]
q2αM

2εL
. (29)

Here csh is a shape factor depending on Qr . Note that this
formula contains a 1/ε2 term, which usually does not exist in
a screening model.

Much like in FNV, one advantage of these methods is that
one supercell calculation should be enough to get the image
correction. In contrast, in our method, we need at least two
calculations with different supercell sizes in order to yield
ρN,core

d,sc . Nevertheless, the use of bulk dielectric constant ε

makes the above methods potentially less accurate.

G. Effective dielectric constant for the defect screening

To test the effect of defect dielectric screening, and com-
pare that to the macroscopic bulk dielectric constant, we can
define an effective dielectric constant (or defect dielectric
constant, εN

d ) for defect screening. There could be many ways
to define that. For us, we can define it by calculating the
total screening charge. In a macroscopic picture, the screening
charge for a charge q will be qN

sc = (1 − 1
ε

)q. In our case, this
screening charge is just the sum of CN (r). Thus, we have

qN
sc =

∫
CN (r)d3r, (30)

and then

εN
d = q

q − qN
sc

. (31)

The calculated effective dielectric constants for V +
O and

V 2+
O in MgO at different supercell sizes are listed in Table I.

In comparison with the PBE calculated host bulk dielectric
constants of ε∞ = 3.14 (we have used a long slab method
to calculate these bulk dielectric constants for all the host
materials, which agree well with literature results) for MgO,
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TABLE I. Effective dielectric constant εN
d of V +

O and V 2+
O de-

fects in MgO with different supercell size N calculated according
to Eq. (31). For comparison, the PBE calculated bulk macroscopic
dielectric constants ε∞ of host MgO are presented together.

Supercell

Defects 64 216 512 1000 ε∞

V +
O 3.31 3.38 3.39 3.42 3.14

V 2+
O 4.10 4.88 6.23 7.18

the effective dielectric constants in the table are all remarkably
larger than bulk ε∞. For supercells with V 2+

O , εN
d has the

largest value as 7.18 for MgO, respectively, which means the
screening is much stronger and nonlinear (as the dielectric
constant increases with the defect charge).

III. APPLICATIONS TO DEFECTS

A. Calculation details

We have calculated the formation energy of different de-
fects in various host materials having relatively wide band
gaps, including oxides for which image charge correction can
be very considerable. These defects include V +

O and V 2+
O in

MgO; V +
C , V 2+

C , NV − [35,36], and SiV − [37] in diamond; V 3−
Ga

in GaAs; and a complex defect (VGa − O−
N) in GaN [38]; as

well as V −
Ga and V 2−

Ga in β-Ga2O3 and V +
O and V 2+

O in ZnO.
Here we summarize the computational details. All the

calculations are performed with the PWMAT [33] package us-
ing the SG15 collection of the optimized norm-conserving
Vanderbilt pseudopotentials (ONCV) [39]. We adopt local
density approximation (LDA) for diamond and GaAs as in
Refs. [20,28] and the Perdew-Burke-Ernzerhof functional
of the generalized gradient approximation (GGA-PBE) for
MgO, ZnO, GaN, and β-Ga2O3. To assist with the conver-
gence comparison, we have used an equivalent Monkhorst-

TABLE II. Calculated and experimental lattice constants and
ion-clamped dielectric constants (electronic dielectric constant, ε∞)
of pristine bulk. (The bold numbers are used as ε∞ in FNV/C-AP).
The space groups for MgO, diamond, GaAs, GaN, β-Ga2O3, and
ZnO are Fm3̄m, Fd3m, F 4̄3m, P63mc, C2/m, and P63mc, respec-
tively. The values in the rows of Theory and Expt. are taken from the
literature for comparison. The first row values for each material are
calculated in this work.

Host Lattice constant (Å) ε∞ Functional

MgO 4.22 3.14 GGA PBE
Theorya 4.25 3.16
Expt.b 4.207 3.0
Diamond 3.53 5.62 LDA
Theoryb 3.536 5.76
Expt.c 3.567 5.7
GaAs 5.59 12.78 LDA
Theoryb 5.627 13.7
Expt.d 5.642 11.1
GaN 3.23/5.26 6.10(ε‖) GGA PBE
Theorye 3.22/5.22 5.60(ε‖) 5.54(ε⊥)
Expt.f 3.198/5.182 5.37(ε̄∞)
β-Ga2O3 12.37/3.06/5.68 3.92(ε‖) GGA PBE
Theoryg 12.446/3.083/5.876 3.55(ε̄∞)
Expt.h 12.214/3.037/5.798 3.57(ε̄∞)
ZnO 3.24/5.21 5.38(ε‖) GGA PBE
Theoryi 3.286/5.299 5.20 (ε‖) 5.22 (ε⊥)
Expt.j 3.250/5.207 3.70(ε‖) 3.78(ε⊥)

aReference [20].
bReference [28].
cReference [40].
dReference [41].
eReferences [42,43].
fReferences [44,45].
gReferences [46,47].
hReferences [48,49].
iReferences [20,50].
jReferences [51,52].

FIG. 6. Corrected formation energies of (a) V +
O and (b) V 2+

O defects in MgO with corrections based on NC, FNV, C-AP, and C-SC schemes.
ε∞ = 3.14 are used for MgO, in FNV and C-AP corrections. All corrected formation energies are referenced to the C-SC corrected formation
energy (which is set to zero) at the largest calculated supercell. The numbers at the top of the panels indicate the numbers of atoms contained
in the supercell. The left edge of the box corresponds to the position when N is infinity.
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Pack k-point mesh for different supercell sizes. They are
all equivalent to 3 × 3 × 3 k-points for a 512-atom supercell
(thus smaller supercell will have more k-points). The primitive
cell is well optimized, as shown in Table II.

B. Convergence of C-SC, C-AP, and FNV corrected
formation energies

Four different methods are used to provide the image
charge corrections: NC denoting no image charge correction,
FNV formulated in Eq. (26), C-AP (correction using an ap-
proximation of macroscopic dielectric constant) in Eq. (8),
and C-SC (correction scheme with screened charge density
model) in Eq. (25). According to the correction effects, we
separate these 12 types of defects into two groups. One group
includes V +

O and V 2+
O in MgO. The other includes the rest of

the defects.

1. Energy convergence for defects in MgO

Figure 6 shows formation energies of V +
O and V 2+

O defects
in MgO corrected by NC, FNV, C-AP, and C-SC schemes. For
V +

O and V 2+
O in MgO supercells, the image charge correction

is quite significant with more than 0.2–0.5 eV for V +
O and

0.5–1.5 eV for V 2+
O (the range corresponds to different super-

cell sizes: The ampler supercell causes a smaller correction
as expected). The formation energies corrected by the C-SC
scheme are converged the fastest concerning supercell size
for the defects in this group. However, the FNV/C-AP and
C-SC schemes give distinct results. FNV and C-AP always
overestimate the image correction. As expected, the correction
energies for +2 defect charge states are about four times
the correction energies for the +1 defect charge state. As
discussed in Sec. II E, it is inaccurate to describe the screening
effect with a bulk macroscopic dielectric constant from the
host material. The effective dielectric constants εN

d of vari-
ous MgO supercells with V +

O and V 2+
O defects calculated by

Eq. (31) are listed in Table I. They are all larger than the
electronic dielectric constants ε∞ of bulk, 3.14 for MgO. With
the increasing supercells, εN

d of MgO for V +
O , the V 2+

O defect
is increasing. For a 1000-atom supercell, suprisingly, εN

d is al-
most twice the bulk value of 3.14. That explains why the FNV
and C-AP schemes, which utilize bulk macroscopic dielectric
constant for screening effect, provide an overestimation of
the correction energy. Note that these values contain no ionic
contribution since the atomic positions are deliberately fixed
at their atom positions of neutral charge state. It is unlikely
the enhanced εN

d value is attributed to the finite supercell size
(large reciprocal space vector q) effect or local field effect
since they usually lead to smaller effective screening. The
fact that the +2 defect has a much larger dielectric constant
than the +1 defect leads us to believe that the nonlinear
screening effect plays an important role. Considering the large
additional charge density at the defect and the strong electric
field for a charged defect, it is not surprising that the dielectric
screening is nonlinear. Such a nonlinear screening effect can
be challenging to model analytically, pointing to a potential
challenge in using the analytical models.

FIG. 7. Corrected formation energies of (a) V +
C , (b) V 2+

C , (c)
SiV −, and (d) NV − defects in diamond, (e) V 3−

Ga in GaAs, (f) VGa −
O−

N in GaN, (g) V −
Ga and (h) V 2−

Ga in β-Ga2O3, (i) V +
O , and (j) V 2+

O in
ZnO with corrections based on NC, FNV, C-AP, and C-SC schemes.
Related ε∞ used in FNV and C-AP schemes are listed in Table II
(the bold numbers) and Table III. All corrected formation energies
are referenced to the C-SC corrected formation energy (which is
set to zero) at the largest calculated supercell for each material.
The numbers at the top of the panels indicate the number of atoms
contained in the supercell. The left edge of the box corresponds to
the position when N is infinity.

2. Energy convergence of other defects

Figure 7 shows formation energy convergence of dia-
mond supercells containing V +

C , V 2+
C , NV −, and SiV − defects,

respectively; GaAs supercells having a V 3−
Ga ; GaN supercells
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TABLE III. Defect dielectric constants εN
d [Eq. (31)] of different

defects compared with the macroscopic dielectric constants ε∞ of
pristine bulk. For different defects, εN

d is from the supercell with the
largest size. Note, ε∞ is not εN=∞

d , instead it is a bulk macroscopic
dielectric constant. Due to local field effect and finite length effect
(finite reciprocal vector q in the screening dielectric constant), as well
as possible nonlinear effect, near the defect, the εN=∞

d can be different
from ε∞.

Host Defect εN
d ε∞

MgO V +
O 3.42 3.14

V 2+
O 7.18

Diamond V +
C 5.60 5.62

V 2+
C 6.54

NV − 6.25

SiV − 6.64

GaAs V 3−
Ga 12.91 12.78

GaN VGa − O−
N 5.69 6.10

β-Ga2O3 V −
Ga 3.37 3.92

V 2−
Ga 3.74

ZnO V +
O 4.90 5.38

V 2+
O 5.65

with a VGa − O−
N complex defect; β-Ga2O3 with a V −

Ga or V 2−
Ga

defect; and ZnO with a V +
O or V 2+

O . From Fig. 7, we can see
that the FNV, C-SC, and C-AP schemes work equally well,
and they all converge quickly even for the highly charged
defect V −3

Ga . One of the reasons for their similarity is the fact
that their effective defect dielectric constants εN

d are quite
close to the bulk dielectric constant ε∞. Table III lists the
calculated effective defect dielectric constants from Eq. (31)
using the largest supercell, and compares these results with
the bulk macroscopic dielectric constants calculated using the
same pseudopotential and exchange-correlation functional.
As shown in Table III, the εN

d for the V +
C , V 2+

C , NV −, and
SiV − defects in diamond is 5.60, 6.54, 6.25, and 6.64, re-
spectively. They are all close to the bulk diamond dielectric
constant of ε∞ = 5.62. It is interesting to note that there is
no sizable nonlinear effect in this case, as the εN

d of V +
C and

V 2+
C only changes from 5.60 to 6.54. The situations for GaAs,

GaN, β-Ga2O3, and ZnO are also similar. Their ε∞ are 12.78,
6.10, 3.92, and 5.38, respectively, all close to their defect
effective εN

d . At this stage, we have found no prior way to
guess which system will have a sizable nonlinear screening
effect, and which system will have no such effect. As a result,
the direct numerical calculation is the only reliable way to find
this out.

IV. CONCLUSIONS

In summary, we provide a rigorous derivation for the im-
age interaction correction formula based on a defect charge

screening model. This charge screening model is tested via
numerical calculations. In this model, the screened charge of
the defect is separated into a screened core charge ρN,core

d,sc (r)
and a close to constant (especially when away from the de-
fect) background compensation charge CN (r). While the core
charge approaches ρ∞,core

d,sc (r) quickly, the background charge
CN (r) is inversely proportional to the supercell volume. An
image interaction correction is provided by the difference of
the Coulomb interaction energies between ρ∞,core

d,sc (r) and the
bare defect charge ρd (r), calculated in periodic supercell and
infinite system, respectively [Eq. (25)]. We believe Eq. (25)
is also valid when ionic screening is also included, though
we have excluded the ionic screening contribution in our
tests currently. We also argue that Eq. (25) can be applied to
the cases where the nonlinear screening effect is important.
Such a nonlinear screening effect can be captured by the SCF
calculations and represented by the defect screening model
as exemplified by the total charge of ρ∞,core

d,sc (r). Using the
screening charge from CN (r), it is possible to define an effec-
tive dielectric constant for the defect [Eq. (31)]. We found that,
in the cases of MgO, the defect dielectric constant is much
larger than the macroscopic dielectric constant. We attribute
this to the nonlinear screening effect. We also found that, in
such case, our image interaction correction results are very
different from the results of the previous method such as the
FNV method. There are, however, also other cases where the
defect dielectric constant is close to the macroscopic dielectric
constant. In those cases, especially for single charged defect
and high-symmetry defects, our image interaction correction
results are similar to previous method results. Our approach
is different from previous methods in that it uses additional
numerical calculations to figure out the image interaction
correction term, instead of using simplified analytical models.
There is no need to use the macroscopic dielectric constant, as
the SCF calculation has already captured the screening effect.
In particular, our method can be used to calculate the vertical
transition energy which has been studied with different meth-
ods [53,54] very recently. For vertical transition, the atoms
are fixed during the ionization of the defect so there is no
ionic screening. This can be studied within our derivation and
discussed in the future.
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