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Recently, a layered ferroelectric CuInP2Se6 was shown to exhibit domain walls with locally enhanced
piezoresponse—a striking departure from the observations of nominally zero piezoresponse in most ferro-
electrics. Although it was proposed that such “bright” domain walls are phase boundaries between ferri- and
antiferroelectrically ordered regions of the materials, the physical mechanisms behind the existence and re-
sponse of these boundaries remain to be understood. Here, using Landau-Ginzburg-Devonshire phenomenology
combined with a four sublattices model, we describe quantitatively the bright-contrast and dark-contrast domain
boundaries between the antiferroelectric, ferroelectric, or ferrielectric long-range-ordered phases in a layered
ferroelectric-antiferroelectric ferroics, such as CuInP2(S1−ySey )6.
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I. INTRODUCTION

Multiferroics—solid-state ferroic materials with coupled
and ferromagnetic and antiferromagnetic, ferroelectric and
antiferroelectric, or other type long-range ordering [1,2]—
have been for many years explored from a fundamental
perspective [3–5], including recent studies of unusual polar-
ization switching in thin films [6], domain-wall conduction
[7], and atomic scale phenomena at surfaces and interfaces
[8–11]. These materials are also beginning to find potential
applications for applications, such as the concepts of fer-
roelectric tunneling barriers, light-assisted ferroic dynamics,
spin-driven effects, and ultrafast magnetoelectric switching
for memory [12–14].

Recently discovered multiferroics, Cu-based layered
chalcogenides, with a chemical formula CuInP2Q6 (Q is S
or Se) [15,16], are promising low-dimensional (e.g., single-
or few-layered) uniaxial ferroelectrics [17,18]. S- and Se-
based Cu-In compounds have a similar structure of individual
layers, with Cu+ and In3+ ions counterdisplaced within indi-
vidual layers, against the backbone of P2Q6 anions [19–21].
Despite the structural similarity, the ferroelectric properties
of CuInP2S6 and CuInP2Se6 are rather different [19–21].
The spontaneous polarization of the uniaxial ferrielectric
CuInP2S6 ranges from 0.05 to 0.12 C/m2 [22], and is about
0.025 C/m2 for the uniaxial ferrielectric CuInP2Se6 [23].
The values of the ferrielectric phase-transition temperatures
are ∼305 K for CuInP2S6 and ∼230 K for CuInP2Se6. At
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that CuInP2Se6 has an anomalously broad phase transition
region [19–21] originating from the coexistence of ferroelec-
tric (FE), or ferrielectric (FEI), and antiferroelectric (AFE)
ordering, and an incommensurate phase that precedes ferro-
electric ordering [20]. The properties of the intermixed S-Se
compound are even more interesting [24–26], possibly in-
volving a Lifshitz transition as well as polar glassy phases
and weak dipolar correlations in the lattice [27–29]. These
properties seem particularly important for prospective appli-
cation of these materials as functional components of van
der Waals heterostructures [30]. Indeed, recently, Song et al.
[23] proposed that ultrathin films of CuInP2Se6 develop an
antiferroelectric ground state, with the crossover ferrielectric-
antiferroelectric instability occurring at a thickness of ∼6-8
layers. The primary driving force for the crossover is the
depolarizing field that favors the antiferroelectric with net zero
polarization.

An intriguing recent finding is unusual “bright” domain
boundaries in CuInP2Se6, which have enhanced local piezo-
electric response [31] as measured by piezoresponse force
microscopy (PFM). The effect was attributed to the coexis-
tence of piezoelectric (FE or FEI) and nonpiezoelectric (AFE)
phases in CuInP2Se6, and the structure of FE-AFE domain
boundaries was calculated from density-functional-theory
(DFT). However, while the existence of these boundaries
was considered plausible based on energy arguments, only
qualitative agreement was obtained between observable and
simulated properties (compare Figs. 1–3 with Fig. 5 in
Ref. [31]). Moreover, the detailed physical mechanism by
which these walls become piezoelectrically active, and other
relevant properties such as the emergence and mobility of
these boundaries, and the applicability of these arguments to
other ferroic materials have yet to be understood.
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FIG. 1. Atomic structures of CuInP2(S1−ySey )6, obtained by
DFT, where the small yellow and blue, small and bigger violet
balls are S (or Se) and Cu atoms, P, and In atoms, respectively.
The structure is recalculated using DFT data from Ref. [31], which
is Open Access under a Creative Commons Attribution 4.0 Inter-
national License [42]. Here the spatial structure is modified; red
and blue arrows inside the atomic groups illustrate the polarization
direction for different types of atomic displacements U (m) in the
quasihomogeneous ferroelectric (or ferrielectric) FE state (a), and
three types of antiferroelectric states: AFE1 (b), AFE2 (c), and AFE3
(d). The orientation of the crystallographic axes a, b, and c is shown
at the bottom of each plot.

Here, using Landau-Ginzburg-Devonshire (LGD) ap-
proach combined with the recently developed four sublattices
model (FSM) [32,33], we explain the emergence and behavior
of “bright,” “mixed,” or “dark” domain walls in a ferrielectric
with coexisting AFE and FE long-range ordering. Our theoret-
ical results are in a quantitative agreement with PFM results
[31] obtained for Cu-based layered chalcogenide ferrielectric
CuInP2(S1−ySey)6, where 0 � y � 1.

II. LGD-FSM APPROACH

LGD-FSM hybrid approach [33] provides a link between
“additional order parameters”—atomic displacements U of
polar-active atomic groups (shown schematically in Fig. 1),
and “intrinsic” long-range parameters, such as FE polariza-
tion P and AFE antipolar parameter A. In the framework of
FSM Landau expansion of the free energy for a ferrielectric
with a nonpolar parent phase contains quadratic and bilinear
contributions of the atomic displacements U(m) [33] and has
the form

GLandau = αi j
(
U(i), U(j)) + βi jkl

(
U(i), U(j))(U(k), U(l))

+ γi jklmn
(
U(i), U(j)

)(
U(k), U(l)

)(
U(m), U(n)). (1)

The superscript m = 1, 2, 3, 4 enumerates the FSM displace-
ment vectors U, which corresponds to one of the four

sublattices in the AFE-FE material. The round brackets
(U(ξ ), U(ζ ) ) = ∑

i U (ξ )
i U (ζ )

i designate the scalar product of the
corresponding vectors, where the subscript i = 1, 2, 3 enu-
merates components of the vectors U (m)

i in the m th sublattice.
The derivation of Eq. (1) and link between the coefficients
αi j , βi jkl , and γi jklmn with LGD-expansion coefficients can be
found in Appendix A of Ref. [33].

Next, using Dzyaloshinsky substitution [34], we relate the
electric polarization P and three antipolar order parameters
(A, B, and Ã) with the four atomic displacements U (m)

i of
polar-active groups in a ferroic structure as [33]

Pi = q

2

(
U (1)

i + U (2)
i + U (3)

i + U (4)
i

)
,

Ai = q

2

(
U (1)

i − U (2)
i − U (3)

i + U (4)
i

)
, (2a)

Bi = q

2

(
U (1)

i − U (2)
i + U (3)

i − U (4)
i

)
,

Ãi = q

2

(
U (1)

i + U (2)
i − U (3)

i − U (4)
i

)
. (2b)

Here q ∼= Q∗
V is a dimensionality factor, proportional to the

effective Born charge Q∗ divided by the unit-cell volume V .
In the most common cases two combinations of atomic

displacements out of four can be assumed to be zero,
e.g., Ãi = Bi = 0 (or Ai = Bi = 0). Corresponding displace-
ments U (m)

i can be expressed via nonzero polar parameter
Pi and antipolar parameter Ai (or Ãi) as U (1)

i = U (4)
i = Pi+Ai

2q

and U (2)
i = U (3)

i = Pi−Ai
2q . For any case U (1)

i = U (2)
i = U (3)

i =
U (4)

i = Pi
2q in the homogeneous FE phase, while the dis-

placements can be not equal, but of the same sign in a
ferrielectric (FI) phase, which can be spatially modulated
[32,33]. The displacements U (1)

i = −U (2)
i = −U (3)

i = U (4)
i =

Ai
2q , or U (1)

i = U (2)
i = −U (3)

i = −U (4)
i = Ãi

2q , or U (1)
i = U (3)

i =
−U (2)

i = −U (4)
i = Ai

2q , as well as other combinations of the
alternating signs “+” and “−,” corresponds to different in
AFE1, AFE2, and AFE3 phases, predicted by DFT [31] (see
Fig. 1). The case Ãi = Bi = 0, considered hereinafter, al-
lows us to make elementary algebraic transformation listed in
Refs. [32,33], and to reduce Eq. (1) to a conventional Landau
formalism, which is used below. The case Ai = Bi = 0 can be
considered in a very similar way.

A LGD functional of a AFE-FE ferrielectric utilizes
Landau-type power expansion, GLandau, that includes the con-
tributions of FE polarization and AFE order components Pi

and Ai, as well their gradient energy Ggrad, elastic and elec-
trostriction coupling energy Gels. The functional density GLGD

is [33]

GLGD = GLandau + Ggrad + Gels. (3)

Electrostatic, elastic, and electrostriction and flexoelectric
contributions are neglected in this work, since we considered
that uncharged domain walls is a stress-free ferrielectric. The
role of electrostriction and flexoelectric coupling was studied
earlier [32,33].
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FIG. 2. The free energy (9) as a function of order-parameter components p1 and p2 for different values of the AFE-FE coupling constant
χ : (a) χ = −0.4, (b) χ = 0, (c) χ = 0.4, (d) χ = 1, and (e) χ = 4. Curie temperatures change parameter ε = −0.5 for the top line, ε = 0
for the middle line, and ε = +0.5 for the bottom line. Red color denotes zero energy, while violet color is its minimal value in relative units.
Capital letters O and Ta,p denote orthorhombic and tetragonal spatially homogeneous phases, respectively.

The Landau energy GLandau includes FE and AFE energies,
and the energy of biquadratic coupling between these order
parameters:

GLandau = GP + GA + GPA, (4)

where the FE and AFE energies are

GP = ai(T )P2
i + ai jP

2
i P2

j + ai jkP2
i P2

j P2
k , (5a)

GA = ci(T )A2
i + ci jA

2
i A2

j + ci jkA2
i A2

jA
2
k . (5b)

The summation is employed over repeated indexes. The
coefficients ai and ci are temperature dependent, ai =
aT (T − TC ), ci = cT (T − TA), where TC and TA are the
temperatures of FE and AFE phases’ absolute instability,
respectively. Material parameters of LGD functional corre-
sponding to CuInP2S6 are relatively well known and can be
found, e.g., in Table I in Ref. [35] and references therein.
LGD parameters of CuInP2Se6 are more uncertain (see, e.g.,
Refs. [24–29]).

Following Kittel-type models, we assume that the temper-
atures TC and TA can be different and coordinate-dependent

FIG. 3. Color map of order parameters a (a) and p (b) in coordinates χ and ϵ. Color bar on the right represents the color code for the both
order parameters.

174108-3



ANNA N. MOROZOVSKA et al. PHYSICAL REVIEW B 102, 174108 (2020)

[33], and that the morphotropic phase boundary (MPB) be-
tween FE and AFE phases corresponds to TA = TC = T0.
Since the energy difference between AFE and FE phases is
small in CuInP2Se6 [31], below we can consider the linear
deviations of the FE and AFE temperatures from T0, TC =
T0[1 − δεC (r)] and TA = T0[1 + δεA(r)], where |δεA,C (r)| �
1. Since the AFE transition takes place in the compound
CuInP2(S1−ySey)6 with Se content increase at fixed temper-
ature and all other conditions [24–26], we can assume the
equalities of the functions δεC = δεA = δε; at that the as-
sumption is in complete agreement with Kittel-type models.
The assumption allows us to express “Curie-type” tempera-
tures TA,C as r-dependent functions in terms of dimensionless
parameter ε, and correspondingly express the coefficient ai

and ci through it as follows [33]:

ai = a0[1 − ε(r)], ci = a0[1 + ε(r)], (6)

where a0 = aT (T0 − T ) and ε(r) = T0
T0−T δε(r). Since the AFE

transition takes place in CuInP2(S1−ySey)6 with “y” increase
at the fixed other conditions, we can regard the higher coef-
ficients in Eqs. (5a) and (5b) are ε-independent and equal,
i.e., ai j = ci j and ai jk = ci jk . Since a0 < 0 at T0 < T , the
condition ε(r) < 0 supports the stability of the FE phase, and
the condition ε(r) > 0 supports the AFE phase stability. The
MPB between FE and AFE phases corresponds to ε = 0.

Note that the parameter ε(r) plays a central role in all
further theoretical analysis, and basically it is a way to control
the temperatures of FE and AFE phases’ absolute instability,
and “biasing” the system toward the desired state. In a definite
sense the parameter ε(r) can be associated with the spatial
changes of TA and TC , being a close analog to a “random
temperature” model for the Curie temperature variation in
disordered (e.g., relaxor) ferroelectrics. It is worth noting that
the off-stoichiometry δy(r) of y content in CuInP2(S1−ySey)6

[24–29] can be a way to realize the parameter ε(r) in practice.
Another way may be a surface chemistry.

Biquadratic coupling energy between FE and AFE orders
has the form [33]

GPA = ti jkl PiPjAkAl . (7)

In Eq. (7) we included only the biquadratic coupling between
FE and AFE orders, whose strength is proportional to the ten-
sor ti jkl , assuming that the lower-order coupling of Pi, Ai, and
their gradients is absent due to the symmetry of the nonpolar
parent phase.

The gradient (Ggrad) energy is

Ggrad = gi jkl

(
∂Pi

∂xk

∂Pj

∂xl
+ ∂Ai

∂xk

∂Aj

∂xl

)
, (8)

where gi jkl is the gradient tensor, which is the same for FE
and AFE long-range order parameters due to the sublattice
symmetry.

All calculations below use a continuum media LGD-FSM
approach (1)–(8), whose applicability has several limita-
tions. The main criteria for the quantitative validity of the
LGD-FSM approach are the scales of continuous calcula-
tions, which are equal to the correlation lengths of the polar

and antipolar order parameters, which are equal to Lpi =√|g44/(2ai )| and Lai = √|g44/(2ci )| for the second-order
phase transitions. These lengths must be more that several lat-
tice constants for semiquantitative validity of the LGD-FSM
approach [36]. When they well exceed ten lattice constants
numerical results become quantitatively valid. Since Lpi and
Lai are minimal at T = 0 K and diverge at T → T0, their min-
imal values ∼ √

g44/aT T0 define the ranges of LGD approach
validity far from T0. The values aT T0 are tabulated for most
inorganic ferroics, but the values of the gradient coefficient
g44 demonstrate a wide discrepancy (up to several orders of
magnitude) from different experiments, such as HR STEM
and PFM measurements of the uncharged domain-wall width
in ferroelectrics and ferrielectrics grown in the form of single
crystals, or thin films. Moreover, the values of gi jkl calculated
from the density functional theory (DFT) can strongly vary
in sign and magnitude. Hence the discrepancy of Lpi and
Lai are rather strong, and should be compared with a lattice
constant for any concrete case. Another limitation is the in-
clusion of random electric fields created by defects, which
is hardly possible within the proposed type of LGD-FSM
approach, where only the “random” temperature-type defects
can be included via the random variation of ε(r). Comple-
mentary to the LGD-FSM approach, the random crystal fields
can be considered in the frame of the Blume-Capel (BC)
model, which is a simplification of Blume-Emery-Griffiths
(BEG) model (see, e.g., Ref. [37]). However, the consider-
ation of BEG and BC models is not in the scope of this
work.

III. FREE-ENERGY LANDSCAPE AND PHASE DIAGRAMS
OF THE ORDER PARAMETERS

For a uniaxial FE-AFE ferroelectric with a second-order
phase transition, the bulk density of LGD free energy (3) can
be written in dimensionless variables as

gLGD = −(1 − ε)
p2

2
− (1 + ε)

a2

2
+ p4 + a4

4
+ χ

2
p2a2

+ g

2

[(
d p

dx

)2

+
(

da

dx

)2]
, (9)

where the dimensionless order parameters p = P/PS and
a = A/PS are introduced; PS is a spontaneous polarization
in the FE phase, and g is the component of the polar-
ization gradient tensor gi jkl . In Eq. (9) we omitted all
six-order terms for a considered case of the second-order
phase transitions. Following Ref. [33], we regard that the
strength of the FE-AFE coupling term, χ

2 p2a2, is defined
by dimensionless temperature-independent constant χ , that
is related with the corresponding component of the tensor
ti jkl in Eq. (7) as ti jkl = χt0

i jkl . Since the FE-AFE cou-
pling should depend on Se content y, the parameter χ is y
dependent.

For zero gradients, minimization of the free energy (9)
allows one orthorhombic (O) and two tetragonal (Ta and
Tp) phases. The spontaneous values of the order parameter,
corresponding free energy, existence, and stability condi-
tions of these phases are summarized in Table I, where
the critical values of the FE-AFE coupling constant χ ,
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TABLE I. Thermodynamic phases, order parameters, and phase boundaries.

Phase Order parameters Free energy Existence Absolute stability Phase boundariesa

Tp p = ±√
1 − ε − 1

4 (1 − ε)2 χ > χ p
cr (ε) and ε < 1 χ > χ p

cr (ε) and ε < 0 Tp with Ta

a = 0 ε = 0 at χ > 1
Ta p = 0 − 1

4 (1 + ε)2 χ > χ a
cr (ε) and ε > −1 χ > χ a

cr (ε) and ε > 0 Tp with O
χ = χ p

cr (ε) at χ 2 < 1
a = ±√

1 + ε

O p = ±
√

1−ε−χ (1+ε)
1−χ2 − 1+ε2−χ (1−ε2 )

2(1−χ2 )
− 1−χ

1+χ
< ε <

1−χ

1+χ
and χ 2 < 1 − 1−χ

1+χ
< ε <

1−χ

1+χ
and χ 2 < 1 Ta with O

χ = χ a
cr (ε) at χ 2 < 1

a = ±
√

1+ε−χ (1−ε)
1−χ2

aIn a particular case χ = 1 and ε = 0, the “round” potential well with the equilibrium values of the order parameters, given by equation
p2 + a2 = 1, is realized, so that phases “O”, “Ta” and “Tb” become undistiguishable.

corresponding to FE-mixed phase and AFE-mixed phase
boundaries, are χ

p
cr (ε) = 1+ε

1−ε
and χa

cr (ε) = 1−ε
1+ε

(see Ap-
pendix A in the Supplemental Material [38]).

The free energy (9) as a function of polar and antipolar or-
der parameters, p and a, is shown in Fig. 2 for different ε and
χ values, and zero gradient coefficient g = 0. From the figure
one can see that, in dependence on the values of parameters ε

and χ , the free energy can contain four potential wells, sepa-
rated by four saddles and central maximum (e.g., for χ < 0,
or for ε = 0 and χ �= 1), or two potential wells, separated
by two saddles and central maximum (e.g., for χ > 1 and
ε �= 0), or a round well (indicating a O → Ta,p transition) is
realized in a particular case χ = 1 and ε = 0. However, even
in the case of four wells, corresponding to both nonzero order

parameters, p = ±
√

1−ε−χ (1+ε)
1−χ2 and a = ±

√
1+ε−χ (1−ε)

1−χ2 , only

p values can be observable experimentally. Generally speak-
ing, an LGD-type phenomenological model can describe the
shape of the multiwell potential, but the microscopic origin
of the order parameter(s), which form this potential, is not
explained by the model. As a rule, the microscopic origin
can be explained by ab initio theory (see, e.g., [22]), which
allows us to relate LGD order parameters, p and a, with a FSM
model.

The dependencies (color map) of the order parameters a
and p on the dimensionless transition temperatures change
ε and FE-AFE coupling constant χ are shown in Figs. 3(a)
and 3(b), respectively. The color maps of a and p are super-
imposed on the phase diagrams containing the regions of the
FE, AFE, and ferrielectric AFE-FE phases. The region of the
phase stability depends on the parameters ε and χ . The quasi-
homogeneous FE Tp phase, with p �= 0 and a = 0, is stable
at ε < 0, and the quasihomogeneous AFE1-3 Ta phases, with
a �= 0 and p = 0, are stable at ε > 0. The FE-AFE coexistence
boundary ε = 0 is a straight vertical line, independent on χ

and existing for χ > 1. Both order parameters are nonzero
in a mixed AFE-FE O-phase. At that, the boundary between
the FE and AFE phases is ε = 0; the boundary between
FE and mixed FE-AFE phases is described by the equation
χ (ε) = χ

p
cr (ε) = 1+ε

1−ε
, and the boundary between the AFE and

mixed FE-AFE phases is described by the equation χ (ε) =
χa

cr (ε) = 1−ε
1+ε

. The color maps shown in Figs. 3(a) and 3(b)
are in agreement with the phase diagram shown in Fig. 2(b)
from Ref. [33].

IV. BRIGHT AND DARK DOMAIN WALLS

To study the coexistence of FE and AFE phases and there-
fore the properties of domain-wall boundaries, while allowing
for the gradient effects in a uniaxial ferroelectric, one should
solve the coupled Euler-Lagrange equations obtained by the
variation of the energy (9):

−[1 − ε(x)]p + p3 + χ pa2 − g�p = 0, (10a)

−[1 + ε(x)]a + a3 + χ p2a − g�a = 0. (10b)

Here the dimensionless order parameters p = P/PS and
a = A/PS are introduced, where PS is a spontaneous polariza-
tion in the FE phase, and � = d2

dx2
1

+ d2

dx2
2

+ d2

dx2
3

is a Laplacian.
To avoid the emergence of a depolarization field, the direction
x should be perpendicular to P vector. In the absence of a de-
polarizing field, electrostatic effects do not play an important
role in further discussion, while in reality these effects are the
main driving force for the emergence of the domain structure.

Equations (10) should be supplemented by specific bound-
ary conditions, e.g., the order parameter periodicity (or
antiperiodicity) in a ferrielectric infinite in the x direction,
e.g., p(−L) = ±p(L), a(−L) = ±a(L), where L is the size
of the computation region. The initial conditions can contain
different numbers of uncharged p and a domain walls, or small
random distributions of the order parameters. Note that the so-
called “natural” boundary conditions, ∂

∂x p(±L) = ∂
∂x a(±L) =

0, typically lead to the system relaxation to the homogeneous
state, especially in the case of initial random distributions.

Distributions of the dimensionless FE and AFE order pa-
rameters p (blue curves) and a (red curves) calculated by
finite element modeling (FEM) for coordinate-independent
and coordinate-independent parameter ε(x) are shown in
Figs. 4(a)–4(d), respectively. FEM was performed in COM-
SOL@Multiphysics.

The profiles of the order parameters across the uncharged
domain boundary in the FE phase of the bulk material, cor-
responding to the negative constant ε(x) = ε0, are shown in
Fig. 4(a). Here one can see an Ising-type 180° FE p wall
(blue tanh-like profile) with a noticeable maximum of AFE
order parameter a at the FE wall (red humplike profile). For
the situation shown in Fig. 4(a) the antiperiodic boundary
conditions were applied for the order parameter p, p(−L) =
−p(L), and the initial distribution of p(x) was a single domain
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FIG. 4. Distributions of the FE and AFE order parameters, p (blue curves) and a (red curves), respectively. Plots (a) and (b) illustrate
the profiles of a and p at the domain wall in FE and AFE phases, corresponding to ε0 = − 1

4 and ε0 = + 1
4 , respectively. Plots (c) and (d)

show the profiles of a and p at the boundaries between FE and AFE phases, induced by the function ε(x) = ε0[tanh( x+x0
Ld

) − 1 − tanh( x−x0
Ld

)].
The difference between (c) and (d) is in the initial distribution of the order parameters and AFE region width. Other parameters: ε0 = 0.25,
Ld = 10 nm, x0 = 40 nm (c) or 80 nm (d), χ = 1, g = 4 nm2. Solid curves in all plots are calculated by FEM. Dashed curves in plots (a) and
(d) are calculated from Eqs. (11a) and (11b) with fitting parameters listed in the text. Dotted vertical lines in plots (c) and (d) denote the points
where ε ≈ 0.

wall. The solution becomes insensitive to the boundary condi-
tions for a(±L) when L 	 10 nm, but the best convergence
corresponds to the periodic condition, a(−L) = a(L). The
initial distribution of a(x) was either zero or a small random
function.

The profiles of the order parameters across the domain
boundary in the AFE phase, corresponding to the positive con-
stant ε(x) = ε0, is shown in Fig. 4(b). The picture is opposite
to Fig. 4(a), and here one can see an Ising-type 180° AFE a
wall (red tanh-like profile) with a p maximum at the wall (blue
humplike profile). Hence, the is a bright domain wall located
in the AFE phase region. We regard that the wall “brightness”
is associated with polarization maximum at the domain wall.
For the situation shown in Fig. 4(b) the antiperiodic boundary
conditions were applied for the a, a(−L) = −a(L), and the
initial distribution of a(x) was a single domain wall. For p we
used the periodic boundary conditions, p(−L) = ±p(L), and
the initial distribution of p(x) was either zero or small random
function.

Next, let us assume that the profile ε(x) has a form of a
stripe of finite thickness 2x0, and use the “smooth” function to
describe the profile, ε(x) = ε0[tanh( x+x0

Ld
) − 1 − tanh( x−x0

Ld
)],

with parameters ε0 = 0.25, Ld = 10 nm, and x0 = 40 nm
[Fig. 4(c)] or 80 nm [Fig. 4(d)]. Typical profiles of the FE
and AFE order parameters, shown in Figs. 4(c) and 4(d), are
calculated for periodic boundary conditions, p(−L) = p(L)
and a(−L) = a(L), and different initial distributions of p and
a corresponding to different numbers of a walls in the AFE
layer and p walls in the FE layers near the inclusion of the

AFE layer, respectively. All of these domain walls exhibit a
complex structure: vanishing of one of the order parameters
is accompanied by a maximum of the other one. In these
cases, shown Figs. 4(c) and 4(d), there are either two bright
domains located right outside the FE-AFE boundary, or two
bright domain walls located inside the AFE region near the
AFE-FE boundary.

When a PFM scans the material in a FE phase, an image
of an 180° domain wall is the region of gradually reduced
contrast due to the decreasing FE order up to zero polarization
in the center of the domain wall [31]. The structural AFE
order parameter (e.g., the predicted maximum at the wall)
cannot be directly observed by PFM. Thus, for a material
in the AFE phase, the PFM imaging of the AFE domain
walls looks opposite to the walls in the FE phase. Bulk AFE
domains do not give any PFM response; the contrast appears
only near the AFE antiphase domain walls with local polariza-
tion. A maximally localized PFM response will be observed
here. Therefore, we can conclude that dark domain walls are
observed by PFM in the FE phase, and bright PFM domain
walls should be observed in the AFE phase, or at the AFE-FE
boundaries. The conclusion is in a qualitative agreement with
recent PFM experiments [31].

However, one of the features we should emphasize is that
the domain walls in our model acts as “pair entities” caused
by the symmetry of periodic boundary conditions. There is
always a bright-dark pair [see Figs. 4(c) and 4(d)]. In pure
phases, pure FE or pure AFE, the pair is colocated, and so we
see a FE or AFE wall, respectively [see Figs. 4(a) and 4(b)].
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The pair splits in space near symmetric AFE-FE boundaries
separating AFE region from FE regions, but it is still stable.
The question about the pair experimental observation is dis-
cussed in the next section.

To analyze FEM results, shown in Figs. 4, we used the
approximate analytical expressions for the order-parameter
profiles, which can be found for several specific cases, namely
for χ ≈ 0 and arbitrary |ε(x)| < 1, or for χ ≈ 6[1 ± ε(x)]
and very small |ε(x)| � 1. In the first case the solution is a
single tanh profile [39], and a superposition of several tanh
profiles [40,41] in the second case. While the tanh profiles are
not general, FEM confirms that slightly more complex trial
functions can be used to describe the dark (DW) and bright
(BW) p walls in FE and AFE phases, namely

DW : p(x) = ps

2

[
tanh

(
x + xw

Lp

)
+ tanh

(
x − xw

Lp

)]
,

a(x) = as

2

[
tanh

(x + xw

La

)
− tanh

(x − xw

La

)]
, (11a)

BW : p(x) = ps

2

[
tanh

(
x + xw

Lp

)
− tanh

(
x − xw

Lp

)]
,

a(x) = as

2

[
tanh

(x + xw

La

)
+ tanh

(x − xw

La

)]
. (11b)

Here the amplitudes ps and as define FE and AFE order
parameters far from the wall, because p(x → ±∞) → ±ps

for dark walls and a(x → ±∞) → as for bright ones. The
correlation lengths Lp and La and the shift xw define the
width of the p(x) and a(x) domain walls, respectively. Also
|x| − xw is the distance from center of the FE-AFE boundary
x = 0. The height of the p maximum located at the bright p
wall is equal to ps tanh( xw

Lp
) and its width is an order of 2Lp.

Quite symmetrically, the height of the a maximum located
at the dark p wall is equal to as tanh( xw

La
) and its width is an

order of 2La.
As an example, dashed curves in Fig. 4(a), which are

calculated from analytical expressions (11a) with parame-
ters ps = 1.12, as = 2.16, Lp = 2.6 nm, La = 4.25 nm, and
xw = 1 nm, fit with very high accuracy (point-to-point) solid
curves calculated by FEM. The dashed curves in Fig. 4(b)
are calculated from expressions (11b) with parameters as =
1.12, ps = 2.16, La = 2.6 nm, Lp = 4.25 nm, and xw = 1 nm,
which are related with the parameters of the dashed curves in
Fig. 4(a) by expected substitution p ↔ a.

In general, five values ps, as, Lp, La, and xw are variational
parameters, which can be determined after substitution of
Eqs. (11) in the free energy (3) and further integration and
minimization over these parameters. It appeared that the pro-
portionalities for amplitudes ps ∼ √

1 − ε and as ∼ √
1 + ε,

and for correlation lengths Lp ∼
√

2g
1−ε

and La ∼
√

2g
1+ε

are
approximately valid.

The changes of local strains induced by the variation of ε

can be estimated from the expression

δuin = Vinε(y, x) + dinkPk + QP
ink j (PkPj − PSkPS j )

+ QA
ink j (AkAj − ASkAS j ), (12)

FIG. 5. Local piezoresponse (in arbitrary units) at CuInP2Se6 (a)
and Cu1−xInP2S6 (b) surfaces. Red and blue diamonds are PFM data
[31] measured at 140 K in ultrahigh vacuum for CuInP2Se6 and
that of CuInP2S6 at room temperature in controlled environment.
Solid dark red and blue curves are fitted by Eq. (13a) with param-
eters provided in the text. Black arrows point to the regions of the
bright (a) and dark (b) domain walls. Line profiles of piezoresponses
(a),(b) were measured along the white dashed lines, crossing domain
boundaries in inset to plots (a) and (b), respectively. Color insets are
adapted from [31] using Open Access under a Creative Commons
Attribution 4.0 International License [43].

where Vin is a Vegard stress tensor, dink is a piezoelectric
tensor, QP

ink j and QA
ink j are electrostriction tensors for FE and

AFE order parameters, respectively.
In accordance with our model, which predicts the emer-

gence of dark or bright domain walls at the boundary between
FE and AFE phases, the spatial gradients of the FE and AFE
transition temperatures, dε

dx , can lead to the suppressed or
enhanced local electromechanical response at the boundaries
between the FE, FEI, and AFE phases. Moreover, mixed FE-
AFE phases can be spatially modulated and at the same time
incommensurate.

V. COMPARISON WITH EXPERIMENT

Using low-temperature PFM, the coexistence of piezo-
electric and nonpiezoelectric phases separated by unusual
bright domain walls with enhanced piezoelectric response
has been revealed in CuInP2Se6 [31], and explained by en-
hanced piezoresponse at the FE(FEI)-AFE phase boundary
[see Fig. 5(a)]. The AFE state was partially polarized, with
inclusions of structurally different FEI domains enclosed by
the “enhanced” phase boundaries, which indicates the coex-
istence of AFE, FEI, and FE-AFE phases, and the conclusion
was supported by optical spectroscopies and DFT calculations
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as detailed in Ref. [31]. The layered ferroelectric CuInP2S6

only revealed a dark domain by comparison [see Fig. 5(b)].
The bright and dark domain walls are shown in Figs. 5(a)

and 5(b), respectively, and are in qualitative agreement with
our theoretical results shown in Fig. 4. Blue and red curves
in Figs. 5(a) and 5(b) demonstrate the quantitative agreement
between experimental data points [31] and theoretical model
evolved here.

However, it is important that we see a bright wall in
Fig. 5(a), whereas according to Figs. 4(c) and 4(d), it should
be a bright-dark pair. We can argue that the dark FE wall can
be anywhere in the signal, and so its detection requires careful
adjustment of experimental offsets. A follow-on point to this
is which of Fig. 4(c) or Fig. 4(d) is better consistent with
experiment—a bright domain or a bright domain wall? The
width of bright regions extracted from experimental data can
help to answer. So, for detailed experimental matching, the
analysis of the PFM signal as a function of applied electric
field (to rule out electrostatic effects) is highly recommended.
Another experimental idea would be to try to switch FE
and AFE domains separately from their domain boundaries.
Observation of bright and dark domain walls independently
from the properties of the AFE/FE boundary would serve well
to understand the imaging and piezoelectric property of the
boundary itself.

To fit the PFM response (PR) of CuInP2Se6, we use the
kink-type profiles similar to Eqs. (11), which are inherent to
the diffuse Bloch-Ising-type domain walls and typical for mul-
tiaxial ferroelectrics in mixed phases [39,41]. The functions
are

PR(x) = u0 +
4∑

i=1

ui tanh
(x − xi

wi

)
. (13a)

The number “4” in the sum originates from two bright
well-separated domain walls, each of which is described by
two tanh functions with their own amplitudes ui, intrinsic
width wi, and shifts xi. The constant offset level is U0. The
best fitting to the blue symbols [31] corresponds to the fol-
lowing parameters: u0 = 0.4, u1 = −u4 = 11, u2 = −u3 =
−10.5 (a.u.), w1 = w4 = 11, w2 = w3 = 10 (nm), and x1 =
150, x2 = 155, x3 = 480, x4 = 485 (nm). Using the symme-
try of the fitting parameters the solution can be rewritten as

PR(x) = u0 + u1

[
tanh

(x − x1

w1

)
− tanh

(x − x4

w1

)]

+ u2

[
tanh

(x − x2

w2

)
− tanh

(x − x3

w2

)]
. (13b)

Actually, it was shown [41], that the difference (or sum) of
two tanh functions with the same scale parameter w can
be considered as trial functions describing Bloch-Ising-type
domain walls.

To fit the PFM response of CuInP2S6 in the ferroelectric
phase, at first we used the Jacobi elliptic functions—“snoids,”
each of which are exact solutions for uncharged domain walls
satisfying the static LGD equations with cubic nonlinearity
and without depolarization fields [41]:

PR(x) = u0 +
2∑

i=1

ui(x)sn

(
x − xi

wi
√

1 + m

∣∣∣∣m
)

. (13c)

where the constant offset u0, slow-varying (due to the pres-
ence of surface defects) amplitudes ui(x), “module” 0 � m �
1, and “shifts” xi of snoids are fitting parameters. The best
fitting was to the red symbols [31] obtained using Eqs. (13c)
corresponding to m = 0.999, i.e., it tends unity. This result
means that the wall profile is strongly nonlinear, and the
limit sn( x−xi

wi
√

1+m
|m)|m→1 → tanh( x−xi

2wi
) is well grounded. That

is why, as a next stage, we used the functional form (13a)
for the fitting of local PR and determine that the follow-
ing best fitting parameters: u0 = 0, u1 = −u4 = 3.5, u2 =
−u3 = −6.7 (a.u.), w1 = w3 = 25, w2 = w4 = 11 (nm), and
x1 = 10, x2 = 225, x3 = 360, x4 = 545 (nm), correspond to
CuInP2S6.

Since in both cases Eq. (13b) appeared to be an optimal
fitting, we can comment on the fitting parameters and try
to extract some information about the internal parameters
ε(x), χ , g, and xwi in Eqs. (11) from them. The main dif-
ferences appear to be three times larger, u1 = −u4 = 11 for
CuInP2Se6, in comparison to u1 = −u4 = 3.5 for CuInP2S6;
at that u2 = −u3 = −10.5 for CuInP2Se6 are relatively close
to u2 = −u3 = −6.7 for CuInP2S6. We note the twice differ-
ence in the widths w1 = w3 = 25 nm and w2 = w4 = 11 nm
for the CuInP2Se6, in contrast to almost the same widths w1 =
w4 = 11 nm ∼ w2 = w3 = 10 nm for CuInP2S6. Compare
the big difference in shifts x1 − x2 = −215 nm, x3 − x4 =
−185 nm for CuInP2S6 with small and the same difference
x1 − x2 = x3 − x4 = −5 nm for CuInP2Se6. Exactly the dif-
ference determines the crossover from the “humps” at bright
walls to zero values at dark walls. Note that the alternating
signs of ui are all the same for both sulfide and selenide com-
pounds. These trends are in a qualitative agreement with the
tanh-like fitting by Eqs. (11) of the FEM solution of Eqs. (10).
Actually for ε > 0, ps is smaller than as, and Lp is higher
than La. The situation is opposite for ε < 0, when ps > as and
Lp < La.

Based on the domain-wall widths, extracted from Fig. 5(a),
FEM results are shown in Fig. 4(d). Intuitively the result
is clear, because Fig. 4(c) contains wider regions of bright-
ness, and the existence of bright domains in a ferrielectric
CuInP2Se6 is something “mixed” between FE and AFE states.
Note that the consideration of domain boundaries originated
from the mid van der Walls FE or mid van der Walls AFE
states such as those found in CuInP2S6 [22] is outside the
scope of our model.

VI. CONCLUSION

The main result of this work is the explanation of the un-
usual domain-wall structure in FE, AFE, and mixed AFE-FE
phases of Cu-based layered ferrielectric CuInP2(S1−ySey)6.
In accordance with the LGD-FSM approach, proposed by us
earlier [32,33], the spatial gradient of the local Curie temper-
ature can lead to the coexistence of the FE, AFE, and spatially
modulated ferrielectric FE-AFE phases, as well as to the sup-
pressed or enhanced local electromechanical contrast at the
boundaries between the phases. Note that the aforementioned
behaviors originated from the system tendency to minimize
LGD-FSM free energy under certain conditions imposed on
the control parameters (Curie temperatures variation ε and the
coupling strength χ between FE and AFE orders).
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Since dark or bright boundaries have been recently ob-
served by PFM and optical spectroscopy experiments for
CuInP2(S1−ySey)6 (where y = 0 and y = 1), our theoretical
results, being in quantitative agreement with the experiments
[31], provide insight to the origin of unusual domain bound-
aries in FE-AFE layered ferrielectrics.
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