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Graphene origami structures with superflexibility and highly tunable auxeticity
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The two-dimensional structure of graphene makes it difficult to realize flexibility and auxeticity (negative
Poisson’s ratio) in graphene-based structures. Using molecular dynamics simulations, we demonstrate for
graphene origami structures effective tuning of both the flexibility and Poisson’s ratio through the geometry,
including the potential to combine superflexibility with a highly tunable negative Poisson’s ratio in contrast to
any existing graphene-based structure. Auxeticity even can be achieved under large applied strain, both tensile
and compressive.
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I. INTRODUCTION

Graphene-based structures with superflexibility are used in
many applications such as wearable electronics [1], flexible
energy storage [2], and strain sensors [3]. Superflexibility
in cellular graphene structures, including foams and sponges
with low density [4–8], is available only under compression
due to the specific geometry of the pores and weak inter-
connectivity (van der Waals interactions) between graphene
sheets [9]. In addition, these cellular graphene structures show
extremely low Young’s moduli [10] and poor mechanical re-
silience [11]. On the other hand, graphene kirigami (graphene
with a pattern of cuts) can provide superflexibility in the load-
ing direction only under tension [12–14], showing effective
compression perpendicular to the loading direction [15].

For stretching in the i direction and lateral response in the
j direction, Poisson’s ratio is defined as νi j = − ∂ε j j

∂εii
, where

εii and ε j j are the strains in the i and j directions, respec-
tively. While most materials have positive Poisson’s ratios,
i.e., they contract/expand in a lateral direction when they are
stretched/compressed, some materials show the opposite be-
havior (negative Poisson’s ratio, auxetic material). Auxeticity
leads to excellent mechanical properties such as enhancement
of the shear resistance, indentation resistance, and fracture
toughness [16]. Auxetic materials can be used in various ap-
plications in aerospace [17], textile [18], medical [19], and
strain sensor [20] technology. Since the seminal works of
Lakes [21] and Wojciechowski [22] more than three decades
ago, research in auxeticity has dealt with model materials [23],
natural materials [24,25], and metamaterials [26,27]. On the
other hand, analogous work for graphene-based structures is
rare. Auxeticity can be obtained at very low temperature in
graphene kirigami structures [28] and in thin graphene ribbons
[29], and at high temperature (above 1500 K) in thermally rip-
pled graphene [30]. At room temperature auxeticity is found
in graphene with ripples induced by vacancies (requiring a
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large vacancy density, e.g., more than 0.5% when the applied
strain exceeds 2–3%) [31] and topological defects (requir-
ing ordered defects) [32]. Considering the above limitations,
graphene-based structures with superflexibility under both
tension and compression, enhanced stiffness and mechanical
resilience, and/or tunable and robust auxeticity are still to be
developed.

In this paper, we use molecular dynamics (MD) sim-
ulations to show that the flexibility, Poisson’s ratio, and
Young’s modulus of a graphene Miura-origami structure
(GMS) formed by pattern-based hydrogenation of graphene
are highly tunable by controlling the geometry of the GMS.
We demonstrate complete structural recovery even after the
application of very large tensile and compressive strains, and
Young’s moduli three orders of magnitude larger than those of
most cellular graphene structures with similar supercompress-
ibility. Furthermore, we find negative Poisson’s ratios in a
wide range from −2.89 to −0.01 at room temperature, which
is much wider than reported for any other graphene-based
structure, with the auxeticity persistent in an extremely wide
range of strains. While auxeticity was proposed previously for
Miura-origami structures [33–35], we introduce in the present
paper a method to obtain simultaneously superflexibility (un-
der both tension and compression). This unique combination
of extraordinary mechanical properties, e.g., can be used to
strongly enhance the sensitivity of strain sensors [20].

II. PATTERN-BASED HYDROGENATION AND
SIMULATION METHODS

We carry out MD simulations of the formation of GMSs
by pattern-based hydrogenation of graphene sheets to evaluate
the response under mechanical loading. Figure 1(a) shows
schematically the hydrogenation by random distribution of H
atoms in predefined areas on top (magenta) and on bottom
(cyan) of a graphene sheet. The interaction between the atoms
is modeled by the second generation reactive empirical bond
order (REBO-II) potential, using the parameters of Ref. [36].
The hydrogenation locally perturbs the planar sp2 bonding
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FIG. 1. Schematic of the formation of a GMS by pattern-based
hydrogenation of a graphene sheet. (a) Folding pattern showing
the areas where the graphene sheet is hydrogenated (magenta, top
side; cyan, bottom side). (b) GMS with Lx,0 = Ly,0 = 36.7 nm, w =
3.7 nm, and ρ = 15% (GMS 1) in the equilibrium state at 300 K.
(c) Definition of geometrical parameters. (d) Potential energy of
GMS 1 as function of the simulation time at 300 K.

and thus induces pseudo surface stress acting as a driving
force to fold the graphene sheet at the hydrogenated areas,
resulting in the formation of a GMS. The pattern is charac-
terized by the unit cell dimensions Lx,0 and Ly,0, fold width
w, and density of hydrogen atoms ρ [ratio of the numbers of
hydrogen and carbon atoms in the magenta and cyan areas
of Fig. 1(a)]. We apply periodic boundary conditions in the
zigzag (x) and armchair (y) directions to eliminate possible
edge effects. A 2 × 2 supercell is considered after confirming
that the difference in the obtained structure with respect to
a 4 × 4 supercell is negligible for a GMS with Lx,0 = Ly,0 =
36.7 nm, w = 3.7 nm, and ρ = 15% (GMS 1).

Initially, a molecular statics simulation is conducted for
each GMS (with the supercell dimensions fixed) using the
conjugate gradient method with an energy tolerance (relative
change of the total energy between successive iterations) of
10−16. The GMS then is relaxed at 300 K under a canon-
ical (NVT) ensemble for 100 ps and afterwards under an
isothermal-isobaric (NPT) ensemble (in which the stress com-
ponents along the in-plane directions are controlled to be
zero). According to Fig. 1(d) the relaxation process is well
converged. The equilibrium state of GMS 1 is shown in
Fig. 1(b). To simulate the mechanical response of a GMS
under uniaxial stress in the x direction, starting from the fully
relaxed state, the GMS is stretched/compressed in the x direc-
tion with a strain rate of ±108 s−1 under a NPT ensemble (in
which the stress component in the y direction is controlled to
be zero). In all MD simulations the temperature and pressure
are controlled by a Nosé-Hoover thermostat [37] and barostat
[38], respectively, and a time step of 1 fs is chosen. The open-
source LAMMPS code [39] is used to perform the molecular
statics and MD simulations, and the OVITO software [40] is
used to visualize the simulation results.

Our MD simulations for graphene reproduce, applying the
same procedure, the low bending stiffness of 0.225 nN nm
reported in Ref. [41] (enabling large folding by pseudo
surface stress) and are close to the experimental value of
0.192 nN nm derived from the phonon spectrum of graphite
[42], implying high predictive power of the implemented
simulation approach. In addition, existing experimental tech-
niques [43,44] make it possible to immediately realize the
predictions of the present paper: First, hydrogenation with
tunable density can be achieved by plasma functionalization
[45], thermal cracking [46], and Birch-type hydrogenation
[47]. Second, pattern-based hydrogenation of graphene sheets
with nanoscale resolution is well established, e.g., 18 nm by
electron-beam irradiation [48] and below 10-nm resolution
by atomic force microscope lithography [49]. Atomic-scale
resolution is accessible by metapromoted hydrogenation [50].

III. RESULTS AND DISCUSSION

The nominal stress component σi j (i, j = x, y, z) is defined
as [51]

σi j = −
(∑N

k=1 mkv
k
i v

k
j

V
+

∑N ′
k=1 rk

i f k
j

V

)
, (1)

where N is the total number of atoms in the supercell, N ′ is N
plus the number of periodic image atoms outside the supercell,
mk is the mass of atom k, vk

i is the ith component of the
velocity vector of atom k, V = 4leq

x leq
y he is the volume [leq

x /leq
y ,

length of the unit cell in the x/y direction in the equilibrium
state; heq, thickness of the GMS (not of graphene) in the
equilibrium state], rk

i is the ith component of the position
vector of atom k, and f k

i is the ith component of the force
vector acting on atom k.

Our MD simulation shows that GMS 1 can sustain large
compressive strain of at least −85% and large tensile strain
of at least 68% without failure [Fig. 2(a)]. We find that σxx

increases slightly in a wide range of εxx [zone 2 of Fig. 2(a)],
indicating low in-plane stiffness of GMS 1. In particular,
Young’s modulus in the x direction (Yxx), which is calculated
as the slope of the stress-strain curve in the small strain inter-
val from −1 to 1%, turns out to be 4.6 MPa, which is much
smaller than that of pristine graphene (777 GPa, obtained
in the strain interval from 0 to 2%). Under the loading the
GMS is deformed without significant changes in the atomic
distances, while flapping of the graphene pieces connecting at
folds [according to Fig. 2(a) the changes of the angles θ and φ

defined in Fig. 1(c) are large] results in high flexibility and low
stiffness. The atomic distances increase significantly when
the strain approaches 68% [point B in zone 3 of Fig. 2(a)],
where θ becomes zero (flat GMS) according to Fig. 2(b).
Similarly, the compressive stress increases significantly when
the strain approaches −78% [point A in zone 1 of Fig. 2(a)],
where the flapping is largely constrained due to the fact that
θ approaches π according to Fig. 2(b). Our MD simulations
confirm that the deformation is reversible in the strain interval
from −78 to 68%, implying excellent mechanical resilience.
A quasistatic simulation [52] is conducted for compression of
GMS 1 by a strain of −7.5% followed by equilibration for 1 ns
with fixed length in the x direction and the stress component
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FIG. 2. Mechanical response of GMS 1 under uniaxial stress in the x direction at 300 K: (a) σxx , εyy, θ , and φ as functions of εxx .
(b) Structure at points A and B marked in (a). (c) heq as a function of εxx for a strain rate of 108 s−1 and a quasistatic simulation (QS; the
dependence on the simulation time is shown).

FIG. 3. GMSs with Lx,0 = Ly,0 = 36.7 nm: (a) deformation without buckling for ρ = 20%, (b) effect of w and ρ on Es and Ec, (c) Yxx as a
function of θ and φ, and (d) effect of w and ρ on νxy. The legend of (b) applies also to (d).
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in the y direction controlled to be zero to stabilize the total en-
ergy (NPT ensemble). This process is repeated until the strain
reaches −0.85%. The results in Fig. 2(c) indicate negligible
effects of the strain rate (agreement between the strain rate of
108 s−1 and the quasistatic simulation) and that the folds do
not reverse during the compression.

Figure 2(a) also presents εyy as a function of εxx, showing
that GMS 1 expands/shrinks in the y direction when the
structure is stretched/compressed (auxeticity). Poisson’s ratio
of GMS 1, calculated as the negative slope of εyy(εxx) in the
strain interval from −1 to 1%, turns out to be −0.20, whereas
that of pristine graphene (strain interval from 0 to 2%) turns
out to be 0.24. More importantly, we find robust auxeticity in
the whole considered range of applied strain.

While we have seen that GMS 1 exhibits high flexibil-
ity (under both tension and compression) and auxeticity, in
contrast to pristine graphene, we now show that these prop-
erties can be effectively tuned by controlling the geometry of
the GMS. We define the stretchability

Es = ls
x

leq
x

− 1 ∼ Lx,0

leq
x

− 1, (2)

and the compressibility

Ec = lc
x

leq
x

− 1 ∼ 4w

π leq
x

− 1, (3)

where leq
x , ls

x , and lc
x are the lengths of the unit cell in the x

direction in the equilibrium state, in the state θ = 0, and in the
state θ = π , respectively, and we have approximated ls

x = Lx,0

and lc
x = 4w/π [see Fig. 2(b)]. Equations (2) and (3) imply

that Es and Ec can be tuned by leq
x . For w � Lx,0 we have

(θ ∈ [0, π ])

leq
x = Lx,0

√
1 + cos θ

2
. (4)

Since already for a single fold θ ∝ wρ [53], Es and Ec in-
crease for increasing w and ρ.

Quantitative calculation of Es using Eq. (2) and Ec using
Eq. (3) requires leq

x , which we obtain as the average from a
500-ps MD simulation of the equilibrium state. We determine
the effect of ρ on Es and Ec by considering GMSs with ρ in
the range from 5.0 to 35.0% (common Lx,0 = Ly,0 = 36.7 nm
and w = 2.5 nm). We find that Es (from 2 to 843%) and Ec

(from −96 to −19%) increase strongly in this range of ρ,
indicating high tunability. The upper limit of Es is Es,max =
( π

4
Lx,0

w
− 1) for leq

x = lc
x = 4w/π [Fig. 2(b)] and the lower

limit of Ec is Ec,min = ( 4w
πLx,0

− 1) for leq
x = Lx,0. In the case

Lx,0 = Ly,0 = 36.7 nm and w = 2.5 nm we obtain Es,max =
1068% and Ec,min = −91%. We note that Eqs. (2) and (3)
neglect possible failure during the loading, i.e., the actual
stretchability/compressibility can be smaller than Es/Ec. For
this reason, we stretch/compress each GMS to its Es/Ec using
MD simulations with a strain rate of ±108 s−1. If a GMS
fails before reaching Es/Ec, the failure strain is regarded as
the stretchability/compressibility. We observe no failure un-
der tension, whereas buckling occurs at ρ = 5 and 7.5%. At
these values the model and MD results in Fig. 3(b) diverge,
because the model does not included buckling. An example

FIG. 4. Effect of α and ρ on (a) leq
x , (b) Es and Ec, and (c) νxy.

of a deformation without buckling at ρ = 20% is shown in
Fig. 3(a).

Turning to the effect of w on Es and Ec, we consider GMSs
with w in the range from 1.2 to 3.7 nm and ρ in the range from
5.0 to 17.5% (common Lx,0 = Ly,0 = 36.7 nm). We find that
the effect of w is similar to that of ρ [Fig. 3(b)]. Furthermore,
Yxx falls in the range from 1.5 to 1287.7 MPa [Fig. 3(c)],
which is about three orders of magnitude larger than re-
ported for typical cellular graphene structures with similar
Ec [54].

For the ideal Miura-origami structure (flapping without
deformation and w � Lx,0) Poisson’s ratio is given by [33]

νxy = − tan2 φ/2. (5)

As Fig. 1(c) implies θ = arccos (2 sin2(φ/2)
sin2 β

− 1), we obtain

νxy = −
(

sin2 β(1 + cos θ )

2 − sin2 β(1 + cos θ )

)
. (6)

Figure 3(d) compares νxy obtained by Eq. (6), using θ

from our MD simulations for the equilibrium state, with the
MD results of the negative slope of εxx(εyy) for the GMSs of
Fig. 3(a), both showing that νxy increases for increasing w and
ρ. The fact that the two approaches provide closely related
results indicates that the model behind Eq. (6) describes the
fundamental physics very well. Minor differences are due to
the fact that the GMSs deviate from the model assumptions of
flapping without deformation and w � Lx,0.

Finally, we consider GMSs with Lx,0 = 36.7 nm and Ly,0 =
αLx,0 for α = 0.5, 1.0, and 2.0; w = 2.5 nm; and ρ in the
range from 5.0 to 20.0%. The results of our MD simulations in
Fig. 4(a) show that leq

x not only decreases with ρ, as expected,
but also decreases significantly with α. This finding is due to
the fact that θ depends not only on w and ρ but also on α
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due to geometrical constraints (more restrictive for smaller
α). Figure 4(b) shows that Es and Ec increase with α, i.e.,
α is an additional effective parameter (besides w and ρ) to
tune the flexibility of a GMS, especially the stretchability.
Furthermore, as α affects νxy via both β and θ [Eq. (6)],
νxy also can be effectively tuned, e.g., for our GMSs from
−2.89 to −0.01 [Fig. 4(c)], which is a much wider range than
reported for any auxetic graphene-based structure.

IV. CONCLUSIONS

In conclusion, MD simulations demonstrate high tunability
of the flexibility and negative Poisson’s ratio of GMSs formed
by pattern-based hydrogenation of graphene sheets (by means
of the parameters w, ρ, and α), providing an approach to
control the material properties through three-dimensional ge-
ometry. Our results show that such GMSs also can exhibit
superflexibility and that the auxeticity can be maintained

even under large tensile and compressive strains. It turns
out that the origami approach provides the unprecedented
property of simultaneous superflexibility and auxeticity. The
proposed GMSs thus have great potential in applications
requiring superflexibility and/or auxeticity. For example,
they can improve the performance of high sensitivity strain
sensors [20].
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