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Closing the gap between theory and experiment for lithium manganese oxide spinels
using a high-dimensional neural network potential
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Many positive electrode materials in lithium ion batteries include transition metals, which are difficult to
describe by electronic structure methods like density functional theory (DFT) due to the presence of multiple
oxidation states. A prominent example is the lithium manganese oxide spinel LixMn2O4 with 0 � x � 2. While
DFT, employing the local hybrid functional PBE0r, provides a reliable description, the need for extended
computer simulations of large structural models remains a significant challenge. Here, we close this gap by
constructing a DFT-based high-dimensional neural network potential (HDNNP) providing accurate energies
and forces at a fraction of the computational costs. As different oxidation states and the resulting Jahn-Teller
distortions represent a new level of complexity for HDNNPs, the potential is carefully validated by performing
x-ray diffraction experiments. We demonstrate that the HDNNP provides atomic level details and is able to
predict a series of properties like the lattice parameters and expansion with increasing Li content or temperature,
the orthorhombic to cubic transition, the lithium diffusion barrier, and the phonon frequencies. We show that for
understanding these properties access to large time and length scales as enabled by the HDNNP is essential to
close the gap between theory and experiment.
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I. INTRODUCTION

Advances in battery technology are more important than
ever to provide a reliable energy supply for countless applica-
tions, from portable electronic devices to electric vehicles, and
in particular lithium ion batteries have gained a central role
[1,2]. One important example for positive electrode materials
in lithium ion batteries is the lithium manganese oxide spinel
LixMn2O4 with 0 � x � 2 [3–5], which is the subject of this
study. Due to its abundance and non-toxicity LixMn2O4 is
more environmentally friendly than other lithium ion positive
electrode materials [1]. Furthermore, it has also recently been
used as an electrocatalyst [6–8].

The crystal structure of LixMn2O4 is a cubic spinel with
space group Fd3m in the range from 0 � x � 1 and above
∼290 K [Figs. 1(a) and 1(b)] [9,10]. The λ-Mn2O4 (x = 0)
structure is based on MnO6 octahedra. These share half of
their edges and form a superstructure of (MnO6)4 tetrahedra,
which themselves are corner-sharing. Using electrochemical
intercalation, for example, Li can be inserted in tetrahedral
sites [13]. In LiMn2O4 every corner of a MnO6 octahedron
is shared with one LiO4 tetrahedron. The Li positions build
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two individual fcc sublattices, i.e., a diamond structure. In the
range from x = 0 to 1, the Li intercalation leads to an almost
linearly increasing lattice constant without major changes
of the manganese oxide host lattice [14,15]. For x > 1, a
tetragonal spinel forms with x = 2 and space group I41/amd
[Fig. 1(c)] [11], which coexists with the x = 1 cubic spinel in
the range 1 < x < 2 [15,16]. In Li2Mn2O4, the Li ions occupy
octahedral sites.

Variations in the Li content change the oxidation states
of the Mn ions [17]. While in λ-Mn2O4 all Mn ions are in
the MnIV state, Li2Mn2O4 exclusively contains MnIII ions. In
stoichiometric LiMn2O4 the numbers of MnIII and MnIV ions
are equal. The MnIII ions are in the high-spin (hs) configura-
tion with the d orbital occupation t3

2ge1
g leading to Jahn-Teller

distorted MnIIIO6 octahedra [18]. This is the reason for the
formation of the tetragonal spinel structure for x = 2. The
cubic spinel structure present for 0 < x � 1 is a result of
the disordered MnIII/MnIV arrangement [19] in combination
with the thermal averaging of the spatial orientations of the
Jahn-Teller distorted octahedra [20]. Below ∼290 K the order
increases yielding an orthorhombic spinel with space group
Fddd for LiMn2O4 [10].

An accurate description of the narrow, partially filled Mn
d bands in LixMn2O4 is challenging for electronic structure
methods like density functional theory (DFT), and both
the local density approximation as well as the generalized
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FIG. 1. LixMn2O4 spinel structure with (a) x = 0 [9], (b) 1 [10],
and (c) 2 [11]. Li atoms and their coordination polyhedra are shown
in green, O atoms in red, and Mn atoms and their coordination
polyhedra in purple. The black lines represent the unit cell. The figure
was created with VESTA version 3.4.4 [12].

gradient approximation (GGA) are not able to provide
the correct electronic structure of LixMn2O4 [19,21–
23]. Therefore, at least, the level of GGA + U or hybrid
functionals is required to obtain separate MnIV (t3

2ge0
g) and

Jahn-Teller distorted hs-MnIII (t3
2ge1

g) ions as well as a finite
band gap [19,24]. In a previous study [25], we investigated in
detail which Hartree-Fock exchange terms have to be added
to GGA functionals in order to obtain the correct electronic
structure with minimal computational effort. Our extensive
benchmark of various exchange-correlation functionals for
LixMn2O4 and numerous related materials [25] showed that
the local hybrid functional PBE0r [26], which relies on on-site
Hartree-Fock exchange only, enables to combine the accuracy
of conventional hybrid functionals with the efficiency of GGA
calculations.

Specifically, our previous work [25] focused on the elec-
tronic structure of bulk LixMn2O4 unit cells at 0 K. Despite
the good agreement with experimental data, DFT does not
enable studies of substantially larger, more realistic model
systems at finite temperatures due to its high computational
effort. However, dynamic studies on nanosecond timescales
are required, for example, to investigate the transition from
the orthorhombic to the cubic crystal structure at about 290 K
[10] or to examine the (de)lithiation process with associated
long-distance diffusion, structural changes, and a very inho-
mogeneous Li distribution. A more efficient atomistic poten-
tial, which allows to avoid the demanding electronic structure
calculations and provides the energies and forces directly as a
function of the atomic positions, is required for this purpose.

Machine learning has been demonstrated to be a promising
tool to develop highly accurate and efficient atomistic po-
tentials [27–30]. Machine learning potentials are constructed
using a large number of flexible functions, which are adapted
to reference data from electronic structure calculations to rep-
resent the potential energy surface. Potentials based on neural
networks [31–36], Gaussian approximation potentials [37,38],
and many others [39,40] have been applied very successfully
to describe various types of systems like molecules in the
gas phase [41–44], liquids and solutions [45–47], solid/liquid
interfaces [48,49], and solid bulk materials [50,51] as well
as surface supported clusters [52]. However up until now,
machine learning potentials have not been applied to systems
like LixMn2O4 with a complex electronic structure including

different oxidation states depending on the Li content, which
may or may not exhibit Jahn-Teller distortions.

In this work, we develop and validate a high-dimensional
neural network potential (HDNNP), a type of machine learn-
ing potential suitable for very large systems that has been
suggested by Behler and Parrinello [33,53,54], to represent
the potential energy surface of bulk LixMn2O4. HDNNPs can
autonomously identify, for example in molecular dynamics
(MD) simulations, if a prediction is reliable or if a newly
visited configuration has to be added to the training data set
[55,56]. The reference data set consists of potential energies
and atomic forces of small periodic LixMn2O4 cells obtained
from the PBE0r functional [25,26] including D3 dispersion
corrections [57,58]. We performed DFT calculations for a
wide range of structural motifs including thermally distorted
configurations.

Since LixMn2O4 is used as positive electrode material, Li
diffusion barriers as well as structural deformations during
charging and discharging are important physical properties.
These are studied as well as structural changes depending on
composition and temperature, most prominently the transi-
tion from the orthorhombic to the cubic structure occurring
near room temperature. In order to validate the HDNNP, we
compare to DFT data as well as to in situ x-ray diffraction
(XRD) experiments where we investigate the evolution of the
crystal structure of LixMn2O4 nanoparticles while varying the
Li content and the temperature.

This paper is organized as follows. Firstly, we outline the
key concepts of the PBE0r functional and the HDNNP method
and present a modified initialization algorithm for the weights
in the atomic neural networks of the HDNNP. After a sum-
mary of the computational and experimental details, which
includes a description how we obtained a reliable and consis-
tent reference data set for a material with a complex electronic
structure, we discuss the accuracy of our HDNNP. The valida-
tion is carried out using DFT and experimental data including
diffusion barriers, electrochemical potentials, and vibrational
fingerprints. Subsequently, the HDNNP is applied to study
the influence of Li content and temperature variations on the
structure of LixMn2O4. We reveal the required simulation time
and lengths scales to match experimental measurements in the
investigation of the orthorhombic to cubic transition. We find
that ab initio molecular dynamics would not be applicable to
study the transition due to the large computational effort, but
that the HDNNP is sufficiently efficient and accurate to yield
excellent agreement with experimental data. Employing the
HDNNP we are able to characterize the underlying atomistic
processes, which give rise to the macroscopic phenomena
observed in experiment.

II. THEORETICAL METHODS

A. PBE0r local hybrid density functional

DFT is in principle exact for the energetics of the elec-
tronic ground state [59,60]. However, since the explicit form
of the exchange-correlation functional is unknown, numerous
functionals have been proposed providing different levels of
accuracy [61–63]. Hybrid functionals, which are based on
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GGA functionals mixed with some amount of exact Hartree-
Fock exchange, are currently considered as the state of the art.

The PBE0r exchange-correlation functional EPBE0r
xc [25,26]

is a local hybrid functional derived from the frequently used
PBE0 functional [64,65]. In contrast to PBE0, in which 1

4 of
the PBE [66] GGA exchange is replaced by Hartree-Fock ex-
change, PBE0r relies on on-site Hartree-Fock exchange terms
EHF, r

x only, such that its form is given by

EPBE0r
xc = EPBE

xc +
N∑

n=1

an
(
EHF, r

x, n − EPBE, r
x, n

)
. (1)

Here, on-site exchange refers to those contributions, which
describe the interaction between orbitals centered on the same
atom. Moreover, the Hartree-Fock mixing factors an of the N
atoms can be element-specific. We employ 0.07 for Li, 0.05
for O, and 0.09 for Mn [25].

While the calculation of the Hartree-Fock exchange terms
dominates the computational costs of hybrid functionals, in
the PBE0r approach the effort is drastically reduced to a level
comparable to conventional GGA functionals. However, in
contrast to GGA functionals, which yield a poor description
of transition metal oxides with narrow, partially filled d bands,
the exact on-site exchange of PBE0r correctly splits the oth-
erwise degenerate d band into multiplets of filled and empty
orbitals leading to a more accurate description, which is also
the case for LixMn2O4 studied in this work.

B. High-dimensional neural network potentials

Like all machine learning potentials, HDNNPs [33] pro-
vide a functional relation between the structure of the system
and its potential energy. This relation crucially depends on
descriptors, which fulfill the mandatory conditions of transla-
tional, rotational and permutational invariance of the potential
energy surface, i.e., all equivalent representations of a system
must yield the same potential energy. In HDNNPs many-
body atom-centered symmetry functions [53] are employed
as descriptors, which ensure that these requirements are met
exactly.

The local chemical environment of each atom including
all neighboring atoms inside a cutoff sphere of radius Rc is
described by a vector of atom-centered symmetry function
values G. The cutoff radius has to be sufficiently large to
include all energetically relevant interactions, and typically
6 to 10 Å are used. This study employs two different types
of symmetry functions, namely radial symmetry functions
and angular symmetry functions, whose functional forms are
given in Ref. [67]. Typically, between 20 to 200 symmetry
functions are used for each atom depending on the complexity
of the system.

Except for the specification of the chemical elements of the
atoms no further information such as atom types, oxidation
states, or predefined bonds are required making HDNNPs re-
active, i.e., they are able to describe the making and breaking
of bonds with the accuracy of the underlying electronic struc-
ture method. Because the dimension of the symmetry function
vectors is given by the selected symmetry functions and does
not dependent on the chemical environments, the symmetry

function vectors are suitable as input for neural networks with
fixed architecture.

Individual atomic neural networks are then constructed
for each chemical element α, which process the structural
information of the geometric environment of each atom n
yielding its atomic energy contribution Eα

n . The sum of all
atomic energy contributions is the potential energy E of the
many-atom system containing Nelements elements and Nα

atoms
atoms of element α,

E =
Nelements∑

α=1

Nα
atoms∑

n=1

Eα
n . (2)

The atomic energy contributions are calculated using atomic
neural networks which are standard feed-forward neural net-
works [68]. In the output layer a linear activation function
is employed, in the neurons of the hidden layers we use the
hyperbolic tangent. The functional form for the atomic energy
contributions employed in our study using three hidden layers
is thus given by

Eα
n = b4

1 +
n3∑

l=1

a34
l1 tanh

{
b3

l +
n2∑

k=1

a23
kl tanh

[
b2

k

+
n1∑

j=1

a12
jk tanh

(
b1

j +
nG∑
i=1

a01
i j Gα

n,i

)]}
. (3)

The architecture, which consists of nG input neurons for the
symmetry function values G, n1, n2, and n3 neurons in the
respective hidden layers, and the output layer with one neuron,
is the same for all atoms of the same element. The weight
parameters aρσ

μν , which connect neuron μ in layer ρ to neuron
ν in layer σ , and bias weights bσ

ν , which are added to the input
values of neuron ν in layer σ , are identical for all atoms of the
same element. For clarity, the superscript α is not shown for
the number of neurons per layer and for the weights in Eq. (3)
although these quantities can be different for each element. In
conclusion, for each atom in the system, the individual values
of the symmetry function vectors are calculated and processed
in the atomic neural network of the respective element. The
resulting atomic energy contributions are then added yielding
the potential energy of the system.

The weight parameters of all atomic neural networks are
obtained simultaneously in an iterative gradient-based op-
timization process, in which the errors of known potential
energies and atomic force components for a set of training
structures are minimized applying an adaptive, global, ex-
tended Kalman filter [69,70]. More detailed information about
the HDNNP method can be found in several reviews on this
topic [54,56,71].

C. Initialization of the weight parameters

The construction of the HDNNP requires a random ini-
tialization of the weights in the atomic neural networks as
starting point for the iterative optimization. Here, we develop
and implement a modification of the method proposed by
Xavier [72]. Specifically, we initialize all weight parameters
a except for the ones connecting the last hidden layer and the
output layer, a34

μ1 in Eq. (3), as uniformly distributed random

174102-3



MARCO ECKHOFF et al. PHYSICAL REVIEW B 102, 174102 (2020)

numbers in the range from −1 to 1 divided by the square
root of the number of neurons in the first of the two con-
nected layers. The bias weights b, except for the bias weight
of the output neuron, b4

1 in Eq. (3), are set to 0. With this
procedure proposed by Xavier [72], the input values of the
hyperbolic tangent activation functions of the neurons should
not be in the saturation region, which could hamper a good
convergence of the fitting process. In the input layer, each
symmetry function G is shifted by −Gtraining set

mean and divided
by Gtraining set

max − Gtraining set
min of the respective function.

For the remaining parameters, i.e., the weight parame-
ters connecting the last hidden layer and the output layer,
we developed an initialization method based on information
from the reference data set. First, the range of energies Erange

in the reference structures is calculated. Second, the mean
atomic contribution to the energy Emean is determined for
each element by a least-squares fit. If the stoichiometry in the
reference data is the same for all structures, also the mean
atomic contribution averaged over all elements can be used.
The weights parameters a connecting the last hidden layer
and the output neuron are then set to uniformly distributed
random numbers in the range from −Erange

2 to Erange

2 divided by
the square root of the number of neurons in the last hidden
layer. The bias weight b of the output neuron is set to Emean.
This enables an efficient training of the HDNNP, especially
for atomic neural networks with more than two hidden layers
making use of a funnel-like architecture.

III. COMPUTATIONAL DETAILS

A. Density functional theory calculations

The DFT reference calculations were performed using the
Car-Parrinello Projector Augmented-Wave (CP-PAW) code
(version from September 28, 2016) [73,74]. The settings of
the PBE0r calculations were taken from our previous study
[25]. Only the plane wave cutoffs for the auxiliary wave
functions and for the auxiliary densities were increased to
35 Eh and to 140 Eh, respectively. This yields an accuracy of
1 meV per atom for the formation energies of LixMn2O4, with
x = 0, 0.5, 1, 2, compared to the complete basis set limit. The
initial spin directions of the Mn atoms in LixMn2O4 were
taken from our previous study [25], whereby the λ-Mn2O4

spin configuration was used for 0 � x � 1
8 and the LiMn2O4

spin configuration for 1
4 � x � 1 corresponding to the ener-

getic preference.
The atomic spins were calculated by a mapping the spin

density onto the one-center expansions of the partial waves.
For each atom the contributions inside a cutoff sphere were
added. The cutoff radii were set to 1.2 times the covalent radii
of the corresponding atoms which are given in our previous
study [25].

The D3 dispersion corrections using Becke-Johnson damp-
ing were calculated by the DFT-D3 software (version from
June 14, 2016) [57,58]. The settings given for the HSE06
functional were applied as described in our previous bench-
mark [25].

The nudged elastic band calculations [75,76] were per-
formed using CP-PAW and the PYTHON module of the atomic

simulation environment (ASE) [77] employing a self-written
interface.

B. Construction of the reference data set

While the functional form of the HDNNP is very flexible,
which allows to represent the reference DFT data very accu-
rately, it does not have a physical foundation. Thus the correct
topology of the potential energy surface has to be “learned”
exclusively from the information provided in the reference
data set. Therefore the quality of the reference data set, which
has to cover the configuration space relevant for the intended
simulations, is essential for the reliability of the HDNNP.

Three important points have to be considered for the ref-
erence data set. First, the reference method has in itself to
be accurate enough to describe the material of interest. In the
present case, we confirmed that the PBE0r-D3 DFT functional
provides a reliable description of LixMn2O4 as reported in our
previous benchmark [25].

Second, the amount and diversity of information in the
reference data set has to be sufficient to represent the relevant
part of the configuration space reliably. In the past, we have
developed a detailed protocol based on active learning to sys-
tematically identify and add important configurations to the
reference data set in a self-consistent process [55]. This pro-
cess is accompanied by a careful multi-step validation process
to ensure that all configurations visited in our simulations are
well-represented in the database and thus correctly described
by the HDNNP. The iterative learning process is summarized
below as starting point in the discussion of specific challenges
in the construction of the reference data set for a system with
a complex electronic structure as LixMn2O4.

Third, the reference data set has to consistently represent
one potential energy surface determined employing one ref-
erence method. One electronic state—typically the ground
state—of the system can be considered as otherwise the poten-
tial energy would not be a well-defined function of the atomic
structure. Therefore we only consider ground state spin con-
figurations and one consistent arrangement of spin directions.
As many arrangements in LixMn2O4 are almost degenerate
within the accuracy of the DFT reference calculations [25],
the arrangement of spin directions has only a marginally small
influence on the energy.

For an initial set of configurations, experimentally deter-
mined structures can be used. In order to include information
about thermal distortions, the atomic positions and lattice
vectors can be modified randomly within a reasonable range.
In this study we displaced the atomic positions inside spheres
with radii of up to 0.2 Å and changed the lattice vectors within
a range of at most ±3%. The energy and force components of
each system have then been determined in electronic structure
calculations. With this initial data, a preliminary HDNNP
can be constructed that allows to perform MD simulations to
further explore the configuration space guided by the atomic
forces. By using two different HDNNPs or even a larger
ensemble, obtained for example using different initial weights
and neural network architectures but trained on the same ref-
erence data set, missing configurations can be identified based
on the deviations in their predicted energies and forces. Devi-
ations above a predefined threshold indicate structures being
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too distant from the available training data, which should then
be recomputed by DFT and added to the reference set to
improve the HDNNP. The HDNNP autonomously explores
and learns the configuration space of the investigated system
by iteratively repeating this process.

However, in particular in the early stages of this pro-
cess, unphysical trajectories can emerge if configurations are
visited in the simulations, which are too different from the
training set of the HDNNP. Removing structures with unphys-
ically short nearest-neighbour distances or too high energies
and forces, which do not occur at the temperatures and pres-
sures of interest, is advisable to restrict the reference data set
to include only reasonable structures. Moreover for unphys-
ically close atoms, electronic structure calculations can fail
to converge to the correct ground-state energy. Even if elec-
tronic structure calculations are carefully checked for a good
convergence behavior, they still can get stuck in metastable
electronic states, which is difficult to detect. In particular, for
LixMn2O4, we observed this phenomenon due to its complex
electronic structure and variety of electronic states that are
energetically close to the ground state. Therefore we followed
two strategies to clean the reference data set from incorrect
electronic structure data.

(1) In LixMn2O4, the number of MnIII ions is equal to
the number of Li ions. If the result of an electronic structure
calculation differs from this relation, it does not provide the
correct electronic ground state. In order to check this relation,
we calculated the absolute values of the atomic spins using
DFT. hs-MnIII ions have an absolute atomic spin of 2 h̄, while
the spin of MnIV ions is 3

2 h̄. This allows us to count the
number of MnIII and MnIV ions to identify calculations that
did not yield the right electronic ground state. However, due
to thermal fluctuations, intermediate structures exists where
the Jahn-Teller distortion of an octahedron of an initial hs-
MnIII ion decreases while that of an adjacent close-to-ideal
octahedron increases. As a consequence, a transition exists
in which the eg electron of a MnIIIO6 octahedron can hop to
an adjacent MnIVO6 octahedron. In the transition state, the
eg electron is shared between both sites as in Zener polarons.
This information is important for the potential energy surface
and must not be removed from the reference data set. How-
ever, structures including Mn ions with atomic spins outside
the interval between 3

2 and 2 h̄, structures with too few or too
many MnIII ions considering the transition states, or structures
including MnIII ions in octahedra corresponding to a MnIVO6

geometry and vice versa, are not suitable for the reference data
set because they do not describe the electronic ground state.

(2) Instead of using physical properties to identify incorrect
data points, the second method is based on the predictive
power of HDNNPs. If the electronic structure of a system
is not properly converged, the energy will be different from
the correct ground state energy. Unfortunately, in most cases,
these energies cannot be identified as outliers in the data set
because thermal distortions or different stoichiometries lead
to larger energy variations. Still, the training process of the
HDNNP reveals these suspicious energies because they do not
fit to the general trend. The goal of the fitting process of the
weight parameters is to minimize the root mean squared error
of the energies. Since most of the structures of the training set

are correct, these data points dominate the fitting process, and
the minority of problematic structures, which has energies and
forces being incompatible with the majority of the data, is less
well described. In order to distinguish between less accurately
fitted but correct data points and structures with a problematic
electronic structure, we can plot the differences between pre-
dicted energies and reference energies of one HDNNP against
the differences of another HDNNP, both fitted on the same
complete reference data set, but using different initial weights
and neural network architectures. If data points show the same
large error, irrespective of the specific HDNNP, it is very
likely that the electronic structure did not converge correctly
and the data point should be removed. On the other hand,
energies which are not well represented in just one of the two
HDNNPs are just poorly fitted. Such deviations reveal that
the general quality of the HDNNP has to be improved, but the
corresponding data should be kept in the data set.

Further details about the construction of the reference data
set can be found in various reviews [54,56,71].

C. Construction of the high-dimensional
neural network potential

The construction of the HDNNP was carried out using the
RUNNER code (version from August 22, 2019) [54,56,78]. The
atomic neural networks consist of an input layer with nα

G neu-
rons depending on the specific element, three hidden layers
with 20, 15, and 10 neurons, respectively, and an output layer
with one neuron. The employed symmetry functions with a
cutoff radius of Rc = 12 a0, with a0 being the Bohr radius, are
given in Ref. [67]. The HDNNP was trained on the formation
energies, i.e., on total DFT energies minus the sums of the
energies of the atoms in their reference structures, which are
body centered cubic Li, gaseous O2, and α-Mn. Further, the
DFT atomic force components (Fx, Fy, Fz) of the reference
structures have been used for training the HDNNP. 90% of the
reference data were used to determine the weight parameters.
With the remaining 10% the reliability of the HDNNP for un-
known structures was tested. The initialization of the weights
in the atomic neural networks is discussed in Sec. II C. Further
details about the training procedure are given in Ref. [67].

D. Simulations

The MD simulations were performed using the large-scale
atomic/molecular massively parallel simulator (LAMMPS)
(version from August 7, 2019) [79,80]. The neural network
potential package (n2p2) (version from December 9, 2019)
[81] was included in order to use HDNNPs with LAMMPS. The
Nosé-Hoover [82,83] thermostat and barostat were applied to
run simulations in the isothermal-isobaric (N pT ) ensemble.
The coupling constants were set to 0.05 and 0.5 ps, respec-
tively. The time step of the MD simulations was 0.5 fs except
for the microcanonical (NV E ) simulations to calculate the
phonon density of states with the aid of the PYTHON package
PWTOOLS [84], for which it was reduced to 0.25 fs. All N pT
simulations were performed at a pressure of p = 1 bar. The
simulation cell vector angles were fixed at 90◦. Thermody-
namic data were calculated after an initial equilibration period
of 1 ns.
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The basin-hopping Monte Carlo [85] calculations also used
LAMMPS and N2P2 for the geometry optimizations employing
the conjugate gradient algorithm. Only Monte Carlo steps of
the Li ions between the tetrahedral sites occupied in LiMn2O4

were allowed. The positions of all other atoms were only
changed during the geometry optimizations. This grid-based
basin-hopping Monte Carlo (GBHMC) approach allows an ef-
ficient sampling of different Li distributions inside LixMn2O4.

IV. EXPERIMENTAL MATERIAL AND METHODS

To experimentally resolve the effects of changing the Li
content and temperature on the LiMn2O4 crystal structure and
lattice constants, in situ XRD techniques have been applied
to nanoparticle powder specimens (Sigma-Aldrich, single
synthesis charge, purity >99%), where the measured XRD
signals represent the volume average over many particles. The
mean particle diameter was identified to be (44 ± 14) nm
using transmission electron microscopy and scanning electron
microscopy [8]. The particles mainly consist of truncated
octahedra and some truncated rhombic dodecahedra [8]. An
XRD diffractogram (see Refs. [12,67,86]) of the as purchased
material fits to the expected cubic spinel structure with a
lattice constant of 8.234(2) Å. Two additional cubic phases
with a volume share of less than 1% have also been detected.
Applying the Scherrer equation to the LiMn2O4 peak widths,
a volume averaged crystallite size of (61 ± 9) nm has been
found, which is larger than the unweighted value obtained
from imaging, as expected.

In situ XRD diffractograms were recorded during
(de)lithiation in the range of 0.48 � x � 2 with a specifically
designed battery cell at CIC energiGune in Vitoria-Gasteiz,
Spain. The cell consists of a Be window, which is coated
with a thin Al foil on the inner surface, followed by the
positive electrode material consisting of 85 wt% LiMn2O4 and
15 wt% carbon black, and then by a separator and a metallic
Li negative electrode. 1 mol l−1 LiPF6 in EC/DMC was used
as electrolyte. The cell was assembled in a glove box and
then cycled from 3.0 V to 4.5 V and back again before it
was held for 20 h at open circuit voltage. This was followed
by (de)lithiation of LixMn2O4 from x = 1 to 0.48 and back
to x = 1 with a set rate of C/30. A series of XRD measure-
ment scans were performed during voltage cycling, each with
step sizes of �2θ = 0.02◦ in the range 40◦ � 2θ � 55◦, and
were synchronized with the electrochemical measurements
of transferred charge and cell potential. The values of 2θ

were corrected for the offset of the electrode away from the
goniometer axis. The positions of the most intense peaks
(311) and (400) were fitted with pseudo Voigt functions, from
which the lattice constant a has been calculated using Bragg’s
law and dhkl = a√

h2+k2+l2 . The displayed data were collected
during the discharge (Li intercalation) to x = 1 because of
overpotential and current loss during charging.

Temperature dependent x-ray diffractograms were taken
between T = 100 and 305 K with a step size of �T =
30 K using a Bruker Smart APEX II Goniometer with an
area detector covering an angular range of 0◦ < 2θ < 35◦,
�2θ = 0.095◦. Close to the phase transition temperature,

from 260 to 295 K, a step size of �T = 5 K was used.
The LiMn2O4 powder specimen was compacted into a glass
capillary, which was placed in a nitrogen gas flow cryostat
with a temperature sensor. The specimen was held for 30 min
after reaching the initial nitrogen gas setpoint of 100 K to
allow for thermal equilibration prior to taking the first diffrac-
togram. Thermal equilibration times of 10 min were allowed
for each subsequent temperature step. The recorded polycrys-
talline diffracted ring pattern was then azimuthally integrated.
Although the small peak splitting due to the cubic to or-
thorhombic transition has been observed using high resolution
synchrotron and neutron diffraction experiments in powder
samples [20,87,88] and using single crystal XRD [10,89], it
could not be resolved in our XRD experiments of polycrys-
talline powder sample, so that the observed peaks were fit with
a cubic structure using the procedure described above.

V. RESULTS AND DISCUSSION

A. High-dimensional neural network potential

The reference data set of the HDNNP contains 15228
LixMn2O4 bulk structures, with 0 � x � 2. These structures
sample the configuration space of LixMn2O4 up to a temper-
ature of about 500 K. 13669 reference structures have been
used for training, the remaining 1559 structures form the test
set. In total, 682 431 atomic environments and 2 047 293 force
components are thus available for training and 77911 atomic
environments and 233 733 force components for testing. More
detailed information about the number of structures for each
composition are given in Ref. [67].

The formation energies cover a range from −2.15 to
−1.61 eV atom−1. The root mean squared error (RMSE)
of the energies is 1.8 meV atom−1 for the training set and
2.2 meV atom−1 for the test set. The maximal error of
the energies is 9.9 meV atom−1 for the training set and
10.9 meV atom−1 for the test set. 98.00% of the structures
in the training set and 95.25% of the structures in the test set
have an error smaller than 5 meV atom−1.

The largest absolute force component in the reference data
set is 4.87 eV a−1

0 . The RMSE of the force components is
0.108 eV a−1

0 for the training set, while it is 0.107 eV a−1
0 for

the test set. The maximum errors are 1.50 and 1.05 eV a−1
0

for the training and test set, respectively. Only 0.29% of the
2 047 293 force components in the training set show an ab-
solute error greater than 0.5 eV a−1

0 . The respective fraction
for the test set is 0.29% of the 233 733 force components.
Figures 2(a) to 2(d) show the deviations between HDNNP and
DFT formation energies and force components for both data
sets as a function of the respective DFT values.

The reliability of the HDNNP was tested in 10 ns NV E MD
simulations starting from LixMn2O4 structures with different
Li content in the range 0 � x � 2 equilibrated at 500 K in
N pT MD simulations. The energy conservation in the NV E
simulations is very good. Drifts of the total energy are only
in the order of 10−6 eV atom−1 ns−1. The configuration space
covered by the training data was not exceeded during any
simulation, i.e., no extrapolation was detected.
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FIG. 2. Signed errors of the formation energies for the (a) training set and (b) test set and of the force components for the (c) training
set and (d) test set of the HDNNP as a function of the respective DFT values. The data points are colored according to the Li content of the
underlying structures. Inside the black lines the error is smaller than 5 meV atom−1 for the energies and 0.5 eV a−1

0 for the forces, respectively.

B. Validation on density functional theory
and experimental data

In order to assess the quality of the HDNNP for LixMn2O4

we will first compare several physical properties determined
using the HDNNP with results that are accessible by PBE0r-
D3 DFT calculations. The PBE0r-D3 DFT functional was also
used for the energy and force calculations of the reference data
set. Therefore the HDNNP results should match the PBE0r-
D3 DFT data.

LixMn2O4 is used as positive electrode material in bat-
teries, and Li intercalation and deintercalation are crucial
processes. Consequently, the Li diffusion barrier is an impor-
tant property of this material. The barrier can be calculated
using the nudged elastic band method. PBE0r-D3 DFT pro-
vides a barrier of 0.52 eV in the Li0.875Mn2O4 unit cell, which
is in very good agreement with previous experimental NMR
data yielding (0.5 ± 0.1) eV [90]. The HDNNP predicts a bar-
rier of 0.55 eV for the same minimum energy path matching
closely the DFT reference data as well as experiment.
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Apart from Li diffusion, the electrochemical potential is
very important for battery applications and degradation of
LixMn2O4 during electrocatalysis of oxygen [91]. In the case
of LixMn2O4 it depends on the Li content. From experiments
it is known that the standard electrochemical potential of
a Li/LixMn2O4 cell exhibits a plateau at about 4.1 V for
0 < x < 1

2 , 4.0 V for 1
2 < x < 1 [91,92], and 3.0 V for 1 <

x < 2 [93] leading to differences between these plateaus of
0.1 and 1.0 eV, respectively. Following the approach of our
previous study [25], we obtain 0.05 and 0.95 eV using the
PBE0r-D3 formation energies. The HDNNP yields similar
values of 0.02 and 1.07 eV for 0 K. HDNNP MD simulations
under standard ambient conditions (298 K, 1 bar) are also
feasible. The electrochemical potential differences between
the plateaus calculated from the mean potential energy of
40 ns N pT MD simulations of different Li loads are 0.02 and
1.05 eV. These results show that the thermal energy is of minor
importance for the electrochemical potential of LixMn2O4, in
agreement with a previous study [94]. The results are also in
good agreement with experimental data [15].

For dynamical studies, it is important that the HDNNP
correctly represents the vibrational motions of the system.
To validate the vibrational fingerprint of the simulations, the
calculated phonon density of states [95] is compared with
experimental Fourier-transform infrared and Raman spectra
[96–99] in Ref. [67].

C. Structural changes due to lithium intercalation

Li intercalation and deintercalation during discharge and
charge of a battery includes structural expansion and contrac-
tion of LixMn2O4. This behavior can be studied in theory as
well as in experiment. XRD experiments yield reliable and
precise values for the lattice constants. However, the data
are averaged over time and space hiding information about
individual atomic environments. On the other hand, simula-
tions rely on appropriate structural models, but they reveal
the underlying processes on an atomic scale with femtosec-
ond resolution. Therefore we will combine the advantages of
both approaches by validating the HDNNP predictions first
on experimental and DFT data and then obtaining a detailed
atomic scale understanding from our simulations.

We start the investigation at 0 K to confirm the HDNNP
results for the optimized structures using PBE0r-D3 DFT
reference data. The conventional LixMn2O4 unit cells are still
accessible by DFT. In order to find the global minimum Li
distributions, with 1

4 � x � 3
4 , we performed GBHMC sim-

ulations using the HDNNP. The low-energy structures were
then reoptimized by DFT. The PBE0r-D3 results indicate that
there is an effective repulsion between the Li ions on neigh-
boring tetrahedral sites, leading to only every other tetrahedral
site being populated for 0 < x � 1

2 in the most stable struc-
tures. Neighboring tetrahedral sites only become occupied by
Li for x > 1

2 . This change in occupation is presumably the
reason for the plateaus of the electrochemical potentials in
the region 0 < x < 1

2 and 1
2 < x < 1 as reported previously

[8,22].
The PBE0r-D3 equilibrium volumes of the LixMn2O4 unit

cells, with x = 0, 0.5, 1, and 2, were determined using the
Birch-Murnaghan equation of state [101,102]. The HDNNP

FIG. 3. Cubic lattice constant acub [Eq. (4)] as a function of the
Li content x determined by PBE0r-D3 and the HDNNP at 0 K as well
as by the HDNNP and XRD at about 300 K. The XRDlit data have
been taken from Refs. [9,10,100].

was used to optimize the atomic positions as well as the lattice
vectors of the LixMn2O4 unit cells, with x = 0 to 1 in steps
of 1

8 and x = 2. The lattice angles of 90◦ were kept constant
in these optimizations. In order to compare the results with
experiment, Fig. 3 shows the averaged cubic lattice constant
(geometric mean),

acub = (ax ay az )
1
3 . (4)

The minimum structures predicted by the HDNNP are given
in Ref. [67] along with the bulk moduli, which have also been
determined and compared to DFT and experiment [103].

The HDNNP lattice constants match the PBE0r-D3 DFT
data very well. The cubic lattice constants agree within 0.5%
for x = 0, 0.5, and 1. The PBE0r-D3 results show that the
lattice expands by 0.102 Å in the range from x = 0 to 0.5 and
by 0.055 Å from x = 0.5 to 1. The HDNNP predicts similar
expansions of 0.105 and 0.075 Å, respectively. The same
trend is present in published XRD data of λ-Mn2O4 (at room
temperature) [9], Li0.5Mn2O4 (at 293 K) [100], and LiMn2O4

(at 330 K) [10] with 0.114 and 0.093 Å, respectively, although
the expansion is less dependent on the absolute Li content.
The optimized HDNNP results at 0 K reveal that the increase
of the cubic lattice constant is slightly smaller if a Li fcc
sublattice is already almost filled. As a consequence, a small
dip at x = 0.5 is visible and the slope is reduced closer to
x = 1 in Fig. 3. Our in situ XRD data yield a linear increase
of 0.098 Å in the range from x = 0.5 to 1. This linear trend
and the extrapolated result of the lattice constant at x = 0 of
8.027 Å are in good agreement with previous data [9,15,104].

The optimized lattice constants of Li2Mn2O4 are predicted
to be 5.641, 5.641, and 9.227 Å using PBE0r-D3 and 5.614,
5.614, and 9.322 Å using the HDNNP. Therefore the agree-
ment is within 1.0% although the ratio of the lattice constants
in the PBE0r-D3 calculations has been restricted to the experi-
mental value for the az over ax ratio, while it was not restricted
in the HDNNP optimizations. The lattice constants are also
in good agreement with XRD measurements yielding 5.650,
5.650, and 9.242 Å at room temperature [11].

For a realistic comparison with experiment, simulations
at finite temperatures must be carried out. Therefore 40-ns
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FIG. 4. Lattice constants acub and ax,y,z as a function of the Li
content x determined by the HDNNP in a 40 ns N pT simulation at
150 K.

N pT MD simulations of LixMn2O4 unit cells at 300 K were
performed using the HDNNP. The resulting acub(x) graph in
the range from 0 � x � 1 is shifted to larger lattice constant
values and is generally smoother than the HDNNP results
at 0 K (Fig. 3). The increase of the lattice constant as a
function of Li content is similar to that of the XRD data with
a change of 0.122 Å in the range 0 � x � 0.5 and a change
of 0.060 Å in the range 0.5 � x � 1. The finite temperature
simulations are systematically offset relative to the XRD data
by around 0.1 Å. On the one hand, this deviation of about 1%
is caused by an overestimation of the lattice constants by the
underlying PBE0r-D3 data compared to reality. On the other
hand, it can either be explained by an error in experimental
x determination or by stoichiometric deviations of the sample
material from the ideal LixMn2O4 formula. In the case of our
XRD data, the value for x is determined from the integrated in
situ cell current and is only accurate to within ±0.02. Small
changes of the parameters for the sample preparation process
can easily influence the stoichiometry and thereby the lattice
constant [105].

Using the HDNNP, we can investigate the system also at
lower temperatures. Figure 4 shows the cubic lattice constant
acub as well as the individual lattice constants ax, ay, and az,
each averaged over a 40 ns N pT MD simulation at 150 K. At
Li contents x � 5

8 the time averaged values of ax, ay, and az

are virtually equal to the cubic lattice constant acub. However,
at larger Li contents, the time averaged structure remains
orthorhombic. This is in agreement with experimental mea-
surements at low temperatures, which yield an orthorhombic
structure with lattice constants 24.750, 24.801, and 8.190 Å at
130 K for x = 1 [10] corresponding to a distorted 3 × 3 × 1
supercell of the unit cell at higher temperatures. The less
pronounced orthorhombicity in experiment will be discussed
in Sec. V F. For x = 1 the lattice constants at 150 K are
almost equal to the optimized results at 0 K, with only a slight
increase due to thermal expansion.

In order to investigate why the time average leads to a cubic
structure at lower Li contents, we plotted the lattice constants
ax, ay, az, and acub as well as the potential energy E as a
function of the time t for the Li0.875Mn2O4 unit cell at 150 K
in Figs. 5(a) and 5(b). We chose Li0.875Mn2O4 because for

FIG. 5. (a) Lattice constants ax,y,z as well as acub and (b) potential
energy E − Emin(Li0.875Mn2O4) per formula unit as a function of
the time t determined by the HDNNP at 150 K for Li0.875Mn2O4.
Emin(Li0.875Mn2O4) is the potential energy of the HDNNP optimized
Li0.875Mn2O4 structure. The data were collected in 1 fs intervals in
the simulation, averaged over 100 fs, and finally smoothed by the
Kolmogorov-Zurbenko filter [106]. The averaged data of each 100
fs are shown as scatter plot. The displayed data are a representative
interval of a 40 ns MD simulation of the unit cell.

this Li content the time averaged lattice constants at 150 K
are between the cubic and the optimized orthorhombic crystal
structure (see Ref. [67]). The data were collected each fem-
tosecond of the N pT MD simulation and then averaged over
100 fs intervals. These averaged data were finally smoothed
by the Kolmogorov-Zurbenko filter [106], which uses k it-
erations of a moving average filter with window width m.
We applied this low-pass filter with the parameters k = 3
and m = 101 for the lattice constants and m = 1001 for the
potential energy.

Figure 5(a) reveals that the distortion of the lattice con-
stants is still similar to the optimized structure. However, the
elongation of the cell changes its spatial direction, leading
to a cubic lattice as an average over time. This is caused by
the Jahn-Teller distortions of the MnIIIO6 octahedra, which
are dynamically fluctuating, both due to spatial changes in
the orientation of the distorted octahedra and due to electron
transfers converting MnIII to MnIV and vice versa, as will be
discussed below in more detail. At lower x, the fluctuations
become even faster but the structures are still orthorhombic
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FIG. 6. Averaged lattice constant acub and individual lattice con-
stants ax,y,z as a function of the temperature T determined by
PBE0r-D3 (0 K), the HDNNP (40 ns MD for each T ), and XRD
for LiMn2O4. The XRDlit data have been taken from Ref. [10].
The temperature region of the transition from an orthorhombic to
a cubic crystal structure is highlighted in blue (HDNNP) and yellow
(XRDlit).

at any point in time like the minimized structures for x > 0.
Figure 5(b) shows that the overall changes of the potential
energy are quite small, which explains why the fluctuations
already happen at low temperatures.

For lower Li contents, fewer Jahn-Teller distorted MnIIIO6

octahedra are present, and the orthorhombic structure be-
comes less favorable. As a consequence, the transition
temperature of the ordered orthorhombic phase to the disor-
dered cubic phase decreases. Consistently, in experiment it
has been found that a higher O content, i.e., fewer MnIIIO6

octahedra, lead to a decrease of the transition tempera-
ture to the cubic phase [107]. This is because a higher
oxygen-to-manganese ratio results in higher oxidation states
of manganese, i.e., more MnIV. Consequently, oxygen va-
cancies have the opposite effect, yielding more MnIII, just
as for an increased Li content. In fact, in Li rich spinels,
Li1+xMn2−xO4, in which Mn is partially replaced by Li on
octahedral sites, the cubic to orthorhombic transition can be
suppressed to at least below T = 20 K [108].

D. Role of temperature

In order to investigate the transition from an orthorhombic
to a cubic structure, we performed 40 ns N pT MD simulations
of the LiMn2O4 unit cell in the range from 10 to 500 K.
These were compared with experimental measurements on
LiMn2O4, which yield an orthorhombic crystal structure with
lattice constants 24.750, 24.801, and 8.190 Å at 130 K and
a cubic crystal structure with a lattice constant of 8.246 Å at
330 K [10].

We start with a discussion of the spatially averaged cubic
lattice constants acub in Fig. 6 before we analyze the phase
transition based on the time-averaged results of ax, ay, and
az. Extrapolating the HDNNP results of acub to 0 K yields
8.266 Å, which is identical to the value of the HDNNP op-
timized structure and agrees very well with the optimized
PBE0r-D3 value of 8.238 Å. The HDNNP only slightly over-
estimates the lattice constant by about 0.3%. Our XRD result

for acub at 130 K agrees within 0.1% with the data from
the literature [10]. Moreover, the theoretical and experimental
values are very similar. The deviations of PBE0r-D3 to our 0 K
extrapolated XRD data and the 0 K extrapolated XRDlit data
are smaller than 0.3% and 0.1%, respectively. The HDNNP
predicts a thermal expansion of 4.4 × 10−5 Å K−1, which is in
excellent agreement with our XRD result of 5.5 × 10−5 Å K−1

and the XRDlit result of 4.9 × 10−5 Å K−1.
Looking at the individual lattice constants ax, ay, and az

calculated by a time average over 40 ns N pT simulations
using the HDNNP, we observe an orthorhombic structure at
low temperatures whose lattice constants are similar to the
optimized result at 0 K. As the temperature is increased above
about 200 K the individual lattice constants become more and
more similar. Between about 260 and 330 K the structure
finally converts to a cubic cell. Above 330 K the time aver-
aged lattice constants are virtually equal. In experiment, the
transition from the orthorhombic to the cubic structure occurs
between 280 and 320 K (yellow region in Fig. 6) [10,109].

To investigate the transition in more detail, the lattice con-
stants ax, ay, az, and acub as well as the potential energy E as
a function of the time t are given in Figs. 7(a) and 7(b) for
the LiMn2O4 unit cell at 300 K determined in the same way
as in Fig. 5 for Li0.875Mn2O4 at 150 K. The analysis reveals
that three LiMn2O4 structures with slightly different lattice
constants are present during the simulation, which result from
different MnIII/MnIV distributions. The crystal structure with
highest orthorhombicity, i.e., the largest splitting of the lattice
constants (largest lattice constant of about 8.68 Å and two
equal shorter ones), is energetically favored. For the second
most stable structure, the two shorter lattice constants are
different, for the third structure they are equal again. There-
fore the first and the third structures are actually tetragonal.
The Jahn-Teller distorted MnIIIO6 octahedra are aligned in all
three structures. The elongated axis can be oriented in x, y, or
z direction for each structure.

The mean energy difference between the most stable struc-
ture and the other two structures, which have similar energies,
is about 0.02 eV per formula unit at 300 K, i.e., 3 meV atom−1.
These small energy differences are similar to the RMSE of
the HDNNP, and also in the order of the accuracy of the
underlying DFT calculations. Therefore these different struc-
ture are effectively almost degenerate in energy. However, the
structure effects the dynamics of the lattice constant swaps.
Direct swaps of the orientation of the cell elongation of the
most stable structure did not happen during the entire time of
the 40-ns simulation. Instead, the system has first to undergo a
transformation to one of the two other less stable orthorhom-
bic structures with a smaller splitting before it can change its
orientation.

Overall, the E (t ) curve of LiMn2O4 at 300 K exhibits
higher fluctuations than the one of Li0.875Mn2O4 at 150 K
in Fig. 5. In part, this can be attributed to the lower thermal
energy at 150 K, but the energy differences between the states
of different orthorhombicity are smaller and no required inter-
mediate configuration for a swap of orientation is observable
for Li0.875Mn2O4 at 150 K. It seems that the missing Li atom
resulting in one Jahn-Teller distorted MnIIIO6 octahedron less
in Li0.875Mn2O4 reduces the activation energy required for the
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FIG. 7. (a) Lattice constants ax,y,z and acub and (b) potential
energy E − Emin(LiMn2O4) per formula unit as a function of sim-
ulation time t determined by the HDNNP at 300 K for LiMn2O4.
Emin(LiMn2O4) is the potential energy of the HDNNP optimized
LiMn2O4 structure. The data were collected each fs of the simulation,
then averaged over 100 fs intervals, and finally smoothed by the
Kolmogorov-Zurbenko filter [106]. The averaged raw data of each
100 fs interval are shown as scatter plot. The shown data are a
representative part of a 40-ns MD simulation of the unit cell.

transition. It would be very interesting to compare the two
compositions at the same temperature, but we found that this
is very difficult. On the one hand, Li0.875Mn2O4 is far above
the stability region at 300 K and undergoes very rapid changes
of the Jahn-Teller distortions. On the other hand, LiMn2O4

essentially does not show any structural changes at 150 K.
In general at temperatures below 150 K, orientational fluc-

tuations do not occur on nanosecond time scales. Therefore
the different crystal orientations do not average with time to
a cubic cell. At higher temperatures, swaps become possible
and the number of swaps per unit time increases with increas-
ing temperature. Averaged over time this results in more and
more similar lattice constants. However, the MnIIIO6 octahe-
dra are still Jahn-Teller distorted and the individual structures
of the system remain orthorhombic.

We note that in our simulations the transitions occur very
rapidly, but a comparison with experimental time scales has
to be made with care. The reason is that the number of atoms
in these simulations is much smaller than in macroscopic
materials studied in experiment. Figure 7 shows the results

FIG. 8. Lattice constants ax,y,z (solid lines) and acub (superim-
posed dashed lines) as a function of the temperature T obtained from
fractions of increasing length taken from a 40 ns N pT simulation of
the LiMn2O4 unit cell using the HDNNP. The 40 ns result includes
all other trajectories. The data were smoothed by the Kolmogorov-
Zurbenko filter (k = 3, m = 7) to highlight the general trend [106].

obtained for a single unit cell containing eight MnIII ions,
and a reorientation of the Jahn-Teller distortions of such a
system can happen very fast. Therefore we will investigate
larger systems in the next Sec. V E. Results of a 3 × 3 × 3
supercell reported below will show that the transition times
increase with system size.

E. Role of time and length scales

At first glance, the predicted transition temperature for
LiMn2O4 in Fig. 6 fits reasonably well to experiment. How-
ever, if we consider that the XRD measurements average over
much longer times than 40 ns, this agreement requires further
analysis. Since the orientational fluctuations already start at
temperatures lower than 260 K in the simulations, the HDNNP
transition temperature to an averaged cubic structure might
be expected to shift to lower temperatures if the averaging is
based on longer simulations including more transitions.

Furthermore, the splitting of the orthorhombic lattice con-
stants is considerably smaller in experiment than in theory
(see Fig. 6). This might be a consequence of using just a single
unit cell in our simulations, which leads to a correlation of the
atomic motions and a reduced configuration space of the MnIII

and MnIV ions. Consequently, the corresponding Jahn-Teller
distortions might exhibit an artificial superstructure in the
system due to the finite simulation cell, and lead to larger
splitting of the lattice constants.

We have seen in the discussion of Fig. 7 that only three
different minimum structures are present in the simulations
of a single unit cell, i.e., the configuration space is limited.
XRD experiments at 130 K reveal a distorted 3 × 3 × 1 su-
percell of the high temperature cubic structure, which should
be considered in the simulations. For these reasons, we will
now investigate the impact of both the total simulation time
as well as of the size of the simulation cell with respect to the
transition temperature and the degree of orthorhombicity.

Starting our analysis with the simulation time, we observe
that averaging over longer times shifts the transition of the unit
cell to lower temperatures (Fig. 8). As expected, the mean cu-
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FIG. 9. Lattice constants ax,y,z and acub as a function of the tem-
perature T obtained from 20-ns N pT simulations of LiMn2O4 cells
of different size using the HDNNP. For facilitating the comparison
the lattice constants of the larger supercells have been normalized to
the size of a single unit cell.

bic lattice constant acub is almost not affected, but the averages
of the individual lattice constants ax, ay, and az become more
similar with increasing simulation time as more swaps of the
elongation direction occur resulting in better statistics.

Phase transitions in finite systems are often shifted in
temperature and extend over a wider temperature range than
in infinite systems [110–112]. Finite system means in this
context that the simulation cell has a finite size. Due to the
periodic boundary conditions, we simulate an infinite system
but the structure and dynamics of the periodic images are the
same as those of the original cell leading to the finite size
effects. In a finite system, the order parameter changes con-
tinuously even for phase transitions of first order. The larger
the simulation cell, the closer is the transition temperature to
the value in the thermodynamic limit.

Figure 9 shows the dependence of the time-averaged lattice
constants as a function of system size for a simulation time
of 20 ns up to a 3 × 3 × 3 supercell. According to this plot,
the transition occurs in a smaller temperature window for
larger systems as expected. Averaging over a longer time will
not lead to a large shift of the phase transition temperature
anymore because especially for the 3 × 3 × 3 supercell the
transition is more sharply defined. However, the transition
temperature increases with system size, which is surprising
because larger systems often have lower barriers due to the
increase in available configuration phase space.

To understand this finding, we have to look in more detail
at the underlying atomic motions. Therefore we plotted the
distances of opposite O ions dx, dy, and dz in a typical MnO6

octahedron of a LiMn2O4 3 × 3 × 3 supercell at 300 K as a
function of the time. The lattice constants of a LiMn2O4 3 ×
3 × 3 supercell at 300 K do not swap their orientation in
contrast to a single unit cell. However, Fig. 10 reveals that the
Jahn-Teller elongation of an individual MnIIIO6 octahedron is
able to change its direction. We can see that for short time
intervals the dominant orientation of the largest d value along
the y direction of the investigated octahedron changes to the z
direction but it always rapidly returns to its initial orientation
because the fully aligned configuration is the minimum energy

FIG. 10. Distances dx,y,z of opposite O ions in a MnO6 octa-
hedron as a function of the time t obtained from a HDNNP N pT
simulation of a 3 × 3 × 3 LiMn2O4 supercell at 300 K.

structure. This fluctuation is also a reason for the already
slowly decreasing average orthorhombicity of the 3 × 3 × 3
supercell above about 290 K (Fig. 9).

Furthermore, in Fig. 10, it can be observed that the Jahn-
Teller distorted MnIIIO6 octahedron with one large and two
small d values changes to an undistorted octahedron with
three very similar and small d values indicating MnIV. We
note that the HDNNP does not know explicitly about the elec-
trons. However, as the HDNNP is trained to represent the DFT
potential energy surface with high accuracy, which contains
all the information about the energetic consequences of the
Jahn-Teller distortions as well as eg electron hopping, this
information is also implicitly included in the HDNNP. Con-
sequently, the MD simulations driven by the HDNNP provide
results that would also be obtained by DFT directly, includ-
ing geometric processes corresponding to eg electron hops.
Therefore we can assign the observed geometric changes to
these electronic effects, i.e., the Mn ion changes between the
MnIII and MnIV states due to eg electron hops between the Mn
sites as the Jahn-Teller distortion appears and disappears. This
phenomenon already starts at about 200 K.

At low temperatures, no electron hopping and no dynamic
Jahn-Teller effect are found, and the Jahn-Teller distorted
octahedra are aligned in the simulations. On the other hand,
at high temperatures the electron hopping and dynamic Jahn-
Teller effect are very fast. This leads to disorder in the
MnIII/MnIV distribution and in the orientation of the Jahn-
Teller distortions resulting in an on average cubic structure.
Metastable structures exist in 3 × 3 × 3 supercells in which
the JT distortions are not fully aligned. This is caused by
the increased configuration space of the 3 × 3 × 3 supercell
compared to the single unit cell.

Using this information about the underlying atomic pro-
cesses we will now develop a simple stochastic model to
describe the temperature dependence of the lattice constants
swaps as a function of the simulation cell size. In our model,
we only consider the Jahn-Teller distorted MnIIIO6 octahedra.
These are elongated in x, y, or z directions. In the initial state,
all octahedra are aligned in the same global direction, for ex-
ample, the z direction. During a time step in the model, every
octahedron can change its orientation to the x or y direction
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or stay in the z direction with given probabilities. After this
distortion step, the x or y direction is considered as candidate
for the new global orientation of the system depending on in
which direction more changes occurred, for example, the x
direction. In case of a tie, the direction is selected randomly.

The probability that a Jahn-Teller distorted octahedron
changes its orientation to the candidate direction for the new
global orientation at the given time step in the model is p(T ).
This probability per time step, i.e., the rate constant, is the
same for each octahedron and only a function of the tempera-
ture T . At higher temperatures the frequency of swaps is larger
because the energy barrier can be overcome more easily, and
consequently also the frequency of swaps to a new specific
direction is higher.

If a critical fraction of the Jahn-Teller distorted octahedra
changes the orientations to the candidate for the new global
orientation in the same time step in the model, the orientation
of the entire structure changes, i.e., also the orientations of
the other octahedra are reorientated. Here, we set this critical
fraction to 3

8 = 37.5% of the n sites, i.e., three out of eight
MnIIIO6 sites in case of a single LiMn2O4 unit cell. We
chose this threshold because during the MD trajectories of
a single LiMn2O4 unit cell analyzed after each picosecond,
we only observed structures with at most one or two Jahn-
Teller distorted octahedra that do not align in the majority
direction. Structures with three or four octahedra differing in
their alignment from the majority direction are only present
on a femtosecond time scale. A similar maximum fraction has
also been found in larger supercells. If the critical fraction of
Jahn-Teller distorted octahedra changes orientation, all other
octahedra align into this new direction as well because this
is the closest minimum configuration. We tested the model
also with different critical fractions, which led to the same
conclusions, i.e., the threshold dependence is weak.

If the new orientations of the Jahn-Teller distorted octa-
hedra do not lead to a change of the global orientation of
the system, the initial state is restored with every octahe-
dron aligned in the original direction. For initial structures
with a high degree of alignment of the Jahn-Teller distorted
octahedra as in our simulations, the system will usually be
driven back to the aligned minimum configuration unless the
temperature is much higher than the transition temperature.
The time step in the model is completed after this relaxation
and the next time step follows.

The approximations of this model lead to a simple binomial
distribution because the Jahn-Teller distorted octahedra can
either change to a new global orientation or stay in the old
orientation. The probability for a swap of the global orienta-
tion is then given by

Pn(p) =
n∑

k= 3n
8

(
n

k

)
pk (1 − p)n−k , (5)

where k equals the number of orientations changed in the
candidate direction for the new global orientation at the given
time step in the model. For a swap of the global orientation, k
has to be larger than or equal to the threshold.

Figure 11 shows the dependence of Pn on p. Because p
is monotonically increasing with temperature we can qualita-

FIG. 11. Probability for a swap of the global orientation Pn as a
function of the probability p for a swap of the orientation of each
MnIIIO6 octahedron in the same direction for different cell sizes. The
number of MnIII sites n in LiMn2O4 is eight times the number of unit
cells in the system.

tively compare the transitions in Figs. 9 and 11. Our simple
probabilistic model in Fig. 11 shows that at low temperatures,
successful swaps of the lattice constants are more likely for
small cells. For larger cells, swaps are only possible at ele-
vated temperatures equivalent to an increased p, i.e., closer
to the transition temperature of an infinite system. At high
temperatures, the probability for a successful swap of the
lattice constants is higher for large cells than for small cells.
As a consequence, the temperature window of the transition
gets smaller with increasing cell size. For very large cells com-
parable to experimental nanoparticles, like the 50 × 50 × 50
supercell, there is a sharp transition temperature.

The results of the model are all in agreement with the
outcome of the simulations shown in Fig. 9. Therefore the
observed trend that the swaps of the lattice constants already
occur at lower temperatures for smaller cells is just a con-
sequence of the more correlated MnIIIO6 octahedra in the
smaller systems, i.e., an overestimation of collective motions.
Larger simulation cells would be required for an exhaustive
exploration of the full configuration space. In Fig. 9, we see
that the averaging at higher temperatures of a smaller cell is
not as good as for a larger cell which means that the transition
window is broader for the small cell. The data of the 3 × 3 × 3
supercell simulations are the best and narrowest estimate for
the orthorhombic to cubic transition temperature. They yield
a transition window from 350 to 380 K, which is about 60 K
higher than the experimental result.

F. Phase transition

To investigate the phase transition in more detail and reveal
reasons for the overestimation of the transition temperature,
we can use the molar heat capacity Cp at constant pressure as
a function of temperature, which reveals transitions as peaks
for systems of finite size. The heat capacity can be obtained
from total energy fluctuations in a N pT MD simulation,

Cp = NA

NatomskBT 2N

tN∑
t=0

[Etot (t ) − Etot]
2 , (6)
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FIG. 12. Molar heat capacity at constant pressure Cp as a func-
tion of the temperature T calculated from 20 ns HDNNP N pT
simulations of an 1 × 1 × 1 unit cell and 2 × 2 × 2 and 3 × 3 ×
3 LiMn2O4 supercells at different temperatures. The experimentally
determined temperature interval of the orthorhombic to cubic transi-
tion using differential scanning calorimetry and single-crystal XRD
is highlighted in yellow [10].

with the Avogadro constant NA, the number of atoms in the
simulation cell Natoms, the Boltzmann constant kB, and the
mean temperature of the N pT MD simulation T . The fluctua-
tions of the total energy Etot are calculated by the variance of
the data from all MD time steps, i.e., from t = 0 to tN at step
N . Etot is the mean of the total energy during a simulation.

For the heat capacity calculations, we used the time evo-
lution of the total energy from 20 ns HDNNP N pT MD
simulations at different temperatures of the single unit cell,
the 2 × 2 × 2 supercell, and the 3 × 3 × 3 supercell. We ob-
served a first peak at 220, 210, and 205 K respectively—with
increasing system size the transition temperature decreases
as expected [110–112]. However, this peak was only present
because the initial MnIII/MnIV distribution in the simulations
is only the second lowest minimum configuration which we
found in unit cell calculations. If the lowest minimum is em-
ployed, this peak is not present. Consequently, the simulations
below about 240 K are dependent on their initial configura-
tion. The peak occurs in the heat capacity calculations because
the charge order converts to the lowest minimum once the
thermal energy is sufficiently high for this transition. Under
experimental conditions, we do not start from this nonequilib-
rium configuration and will not observe a peak. Therefore we
show here only the results of the equilibrated simulations, i.e.,
T � 240 K. However, we can still learn from this first peak
which temperature is required for electron hopping processes
because eg electron hopping is needed for this change of
the order of the system. In Fig. 9, we observe that the two
smaller lattice constants of the 2 × 2 × 2 and the 3 × 3 × 3
supercell become more similar, which is the consequence of
this transition.

The heat capacity graph in Fig. 12 shows a peak between
about 320 and 400 K for the 2 × 2 × 2 supercell as well as be-
tween 350 and 380 K for the 3 × 3 × 3 supercell. This peak is
very broad in the case of the single unit cell with a maximum
around 400 K and gets sharper and more pronounced for larger
cells as expected [110–112]. For the 2 × 2 × 2 and 3 × 3 × 3
supercells, it occurs in the same temperature range where

FIG. 13. (a) Lattice constants ax,y,z and acub and (b) potential
energy E − Emin(LiMn2O4) per formula unit as a function of the
time t determined by the HDNNP at 370 K for a LiMn2O4 3 × 3 × 3
supercell. Emin(LiMn2O4) is the potential energy of the HDNNP op-
timized LiMn2O4 structure. The data were collected at each fs of the
simulation, averaged over 10 fs, and smoothed by the Kolmogorov-
Zurbenko filter [106]. The averaged data of each 10 fs are shown
as a scatter plot. The data represent a typical interval of a 20-ns
simulation.

the dynamics of the Jahn-Teller distortions leads to a time-
averaged cubic structure. The transition can be interpreted
analogously to a magnetic transition at the Curie temperature,
where the alignment of spins is lost due to thermal energy. In
our case, the alignment of the Jahn-Teller distortions is lost.

For the 3 × 3 × 3 supercell, an additional peak in the heat
capacity at 290 K is observed in Fig. 12 which matches the
beginning of the decrease of the orthorhombicity in Fig. 9.
The frequency of electron hopping during the simulations
increases at this transition temperature. Probably the heat
capacity peak at 290 K can be attributed to a charge or-
dering transition which will be analysed in more detail in a
subsequent study of the electronic dynamics. In the single
unit cell and the 2 × 2 × 2 supercell the peak at 290 K is
not observable. This might be a consequence of the limited
configuration space with a smaller number of minima and too
high collectivity.

The increase of the configuration space becomes obvious
if we compare the time evolution of the lattice constants at
the phase transition of the 3 × 3 × 3 supercell in Fig. 13 with
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the behavior of a single unit cell in Fig. 7. Figures 13(a) and
13(b) show that there is a much larger variety of metastable
states present for the 3 × 3 × 3 supercell compared to the
single unit cell with only three different metastable states
and some defect and transitions states occurring in MD
simulations at finite temperatures (see Fig. 7). The metastable
states of the single unit cell are all orthorhombic crystal struc-
tures. The swaps of the orientations lead to a time-averaged
cubic structure but the Jahn-Teller distortions are still aligned
in the metastable states. Therefore a spatial average does
not lead to a cubic structure in case of the single unit cell.
Due to more configurational flexibility in case of the 3 ×
3 × 3 supercell, the changing orientations of the Jahn-Teller
distorted MnIIIO6 octahedra above the transition tempera-
ture lead to more or less orthorhombic 3 × 3 × 3 supercells
depending on the alignment of the individual Jahn-Teller dis-
tortions. Metastable configurations exist which are much less
orthorhombic than the fully aligned global minimum struc-
ture at 0 K. The geometric mean of these lattice constants
is also about 0.015 Å smaller than of the highly orthorhom-
bic structures. Both improve the agreement with experiment.
Figure 13(b) shows that the mean energy of these structures
is higher. The sudden changes in volume and energy suggest
that the phase transition is of first order, which is in agreement
with previous experimental results [113].

The sampling of the 3 × 3 × 3 supercell at the phase tran-
sition temperature also leads to an answer to the remaining
question why our simulations predict a low-temperature or-
thorhombic structure with larger lattice constant splittings
than measured in experiment. For the single unit cell, only
configurations with fully aligned Jahn-Teller distortions are
metastable. However, we observe in Fig. 13(b) that the mean
potential energy of the less orthorhombic 3 × 3 × 3 super-
cell structures is only about 2 meV higher than the fully
aligned minimum structure. Consequently, metastable con-
figurations exist for the 3 × 3 × 3 supercell energetically
close to the aligned minimum configuration, in which the
Jahn-Teller distortions are not fully aligned in one direction.
Thus for even larger cells, (partially) ordered configura-
tions with different orientations of Jahn-Teller distortions
dependent on the Mn sites might exist which are energeti-
cally or entropically favored over the aligned configuration.
This would result in a less orthorhombic low-temperature
structure.

The outcome of previously published high-resolution
diffraction experiments of LiMn2O4 [10,20,87,88] is basically
a 3 × 3 × 1 supercell of the cubic cell with five different Mn
sites. Three are attributed to be MnIII sites and two are MnIV

sites. As the ratio of these sites does not obey the 1:1 ratio of
MnIII and MnIV ions, eight MnIV ions in a 3 × 3 × 1 supercell
are placed on MnIII sites [87]. Each of the MnIII sites exhibits a
Jahn-Teller distortion in a different direction [20]. The crystal
structure is orthorhombic because the ratio of the MnIII sites
is 1:2:2 and the eight remaining MnIV ions cannot be equally
distributed over these sites. Therefore the low-temperature
orthorhombic structure is a partially ordered configuration.
As a consequence, a single simulation cell, which fully rep-
resents this experimentally determined complex charge and
Jahn-Teller order, has to be much larger than the 3 × 3 × 1
supercell. Otherwise the positions of the MnIV ions on the

MnIII sites exhibit an artificial superstructure, which might
lead to energy penalties and to a higher orthorhombicity.

The experimental crystal structure cannot be directly re-
calculated because it includes too many Jahn-Teller distorted
MnO6 octahedra, since the averaged bond distances hide the
MnIV ions on MnIII sites. Instead, we investigated an ensemble
of partially ordered configurations. We performed 10-ns N pT
simulations at 150 K using initial structures obtained from a
N pT simulation of the 3 × 3 × 3 supercell at 400 K. These
systems are usually trapped in different local minima and
cannot relax to a fully aligned minimum structure in con-
trast to similar simulations employing a single unit cell. The
corresponding structures are less orthorhombic because the
Jahn-Teller distortions are not fully aligned. We minimized
the lowest local minimum structure found in these simulations
at 150 K. We note that there might also be different config-
urations with an even lower mean potential energy, but due
to the large configuration space compared to the minimum
structures of the unit cell at low temperatures, the search for
the global minimum becomes a very complex task. There-
fore the following results refer to a calculation of a specific
configuration. The minimization yields lattice constants of
24.751, 24.806, and 24.345 Å. These are in good agreement
with the experimental 3 × 3 × 3 supercell of LiMn2O4 at
130 K with lattice constants of 24.750, 24.801, and 24.570
Å [10]. The energy is only 3.9 meV atom−1 higher than the
aligned minimum configuration. If we perform a 20-ns N pT
simulation at 150 K starting from this structure, we obtain
time averaged lattice constants of 24.778, 24.885, and 24.292
Å. The splitting of the lattice constants is still somewhat
larger than the experimental data, but clearly in better agree-
ment to experiment than results of the unit cell simulations,
which are limited to three stable minimum structures of high
orthorhombicity.

VI. CONCLUSION

In this first application of a HDNNP to a system containing
a transition metal in multiple oxidation states accompanied
by Jahn-Teller distortions, we demonstrate that this method
is able to significantly narrow the gap between DFT and
experimental observations. The HDNNP method captures
the complex potential energy surface of LixMn2O4, enabling
simulations with an accurate description of the Jahn-Teller
dynamics. The experimentally measured orthorhombic to
cubic transition is reproduced by the HDNNP simulations
revealing information about the underlying atomistic
dynamics. Studying this transition by electronic structure
methods like DFT directly would be prohibitively expensive,
while the HDNNP allows to bridge this gap by increasing the
time and length scales of molecular dynamics. In this way, the
transition can now be observed in the simulations, although
the studied atomistic processes are rare close to the transition
temperature.

Excellent agreement between theory and experiment is
found for further properties, such as the lattice constants of
both crystal structures which deviate by less than 1% from ex-
periment, and for lattice expansion with increasing Li content
as well as temperature. Moreover, a series of other properties
such as the lithium diffusion barrier, differences of the elec-
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trochemical potential, and phonon frequencies is very similar
in experiment and theory. This work proves that the HDNNP
method is able to represent a system with multiple oxidation
states retaining the accuracy of the underlying first principles
method and enabling insights into the atomic dynamics from
femto- to nanosecond resolution.
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