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Transport study of the wormhole effect in three-dimensional topological insulators
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Inside a three-dimensional strong topological insulator, a tube with h/2e magnetic flux carries a pair of
protected one-dimensional linear fermionic modes. This phenomenon is known as the “wormhole effect.” In this
work, we find that the wormhole effect, as a unique degree of freedom, introduces exotic transport phenomena
and thus manipulates the transport properties of topological insulators. Our numerical results demonstrate that the
transport properties of a double-wormhole system can be manipulated by the wormhole interference. Specifically,
the conductance and local density of states both oscillate with the Fermi energy due to the interference between
the wormholes. Furthermore, by studying the multiwormhole systems, we find that the number of wormholes can
also modulate the differential conductance through a Z2 mechanism. Finally, we propose two types of topological
devices in real applications, the “wormhole switch” device and the “traversable wormhole” device, which can be
finely tuned by controlling the wormhole degree of freedom.
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I. INTRODUCTION

Ever since their discovery, topological insulators (TIs)
have provided versatile platforms for physicists and material
scientists to investigate nontrivial properties of the matter
[1,2]. A three-dimensional (3D) TI is a band insulator in-
side the bulk but carries metallic surface states protected
by the time-reversal symmetry [3–8]. The existence of these
nontrivial surface states makes TIs ideal candidates for de-
signing low-dissipation electronic devices. Recently, novel
physical properties of the surface states have intrigued great
interests among physicists. Especially, theoretical studies
demonstrated that there is no gapless surface state in a TI
nanowire because of the spin-momentum locking induced π

Berry phase [9,10]. By applying a π (in units of h̄/e) magnetic
flux, the effect of the π Berry phase is eliminated, making
the spectrum of the surface states gapless again. Furthermore,
an h/e period Aharonov-Bohm oscillation of the magnetocon-
ductance was observed in different TI nanowires [11–15].

Interestingly, a flux tube inside the TI bulk shows the same
energy spectrum as the TI nanowire [16]. The π -flux tube
carries a pair of gapless linear modes, providing a conducting
channel for electrons to tunnel between the opposite surfaces
of the TI. Thus, the surface electrons that are spatially sep-
arated far away can be connected by such a conducting flux
tube. This phenomenon is called the “wormhole effect” and
the conducting flux tube is named as the “wormhole” [17],
for it acts like a wormhole in general relativity that bridges
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surfaces separated by an insulating bulk. Previously, by vary-
ing the magnetic flux φ, numerical studies revealed the
existence of the π -flux wormhole and its evolution [16,17].
Such a φ-dependence nature inspires us to study the exotic
transport phenomena and the corresponding topological de-
vice applications based on the wormhole effect. However,
systematic transport simulations of the wormhole systems
were not yet performed. The main difficulty is that the existing
numerical methods rely on the diagonalization of the 3D bulk
Hamiltonian, which severely reduces the computation speed
and limits studies to very small systems only [16,17]. For this
reason, we study the transport properties of the wormhole sys-
tem in a different approach to overcome the difficulty caused
by the bulk Hamiltonian.

In this paper, we construct the model of the wormhole
system based on a two-dimensional (2D) effective lattice
Hamiltonian (2DELH) for the surface of 3D strong TI, and
study the transport properties of the system. This 2DELH cap-
tures the key physical properties of the topologically protected
surface states without any reference to the bulk Hamiltonian.
Therefore, it improves the computational speed significantly
and makes it possible to study larger size and more compli-
cated TI systems, especially the wormhole systems. Then, the
transport properties of the wormhole system are investigated
systematically based on the nonequilibrium Green’s function
method [18]. Our numerical results of the wormhole systems
under different conditions demonstrate that the “wormhole
effect,” as a unique degree of freedom, brings exotic transport
phenomena and makes it feasible to manipulate the transport
properties of TIs. By studying a double-wormhole system, we
find the differential conductance and the local density of states
(LDOS) oscillate with the Fermi energy due to interference
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between the wormholes. Therefore, the transport properties of
TIs can be manipulated through the wormhole interference.
Then, in multiwormhole systems, we find that the number of
wormholes can also modulate the differential conductance.
These phenomena can be explained by an interwormhole
backscattering mechanism. Particularly, in the perspective of
transport, this interwormhole backscattering mechanism can
be directly related to the Z2 classification in TIs. In appli-
cations, we propose two topological devices that are highly
tunable by controlling the wormhole degree of freedom. One
is the “wormhole switch” device, where the conducting and
insulating status of the device can be switched by varying
the magnetic flux among the wormholes. The other is the
“traversable wormhole” device, in which a pair of conducting
wormholes serves as a bridge that connects isolated regions,
and enables electrons to travel between them.

This paper is organized as follows. In Sec. II, we introduce
the 2DELH for the wormhole systems and the numerical
methods to calculate the transport observables. In Sec. III,
we investigate the interfering transport between wormholes
for the double-wormhole and the multiwormhole systems. In
Sec. IV, we propose two topological device applications based
on the wormhole systems. Finally, we conclude the paper with
a perspective in Sec. V.

II. MODEL AND METHODS

A. Surface Hamiltonian and 2D lattice model
of the wormhole system

We construct the lattice model for the wormhole system
based on the 2DELH, which incorporates a so-called Wil-
son mass term to overcome the fermion-doubling problem
[19–24].1 The low-energy effective Hamiltonian of this model
is

H (k) = h̄vF (σ̂ × k) · n̂ + Wa

2
k2

nσz, (1)

where vF is the Fermi velocity of the topological surface
states and σ̂ ≡ (σx, σy, σz ) with σx,y,z the Pauli matrices, k =
(kx, ky, kz ) is the wave vector, and n̂ is the outward normal
vector of the surface. The second term in H (k) is the Wilson
mass term and kn is the component of the wave vector per-
pendicular to n̂ direction. In the x-y plane, the discretized 2D
square-lattice Hamiltonian is written as

H2D =
∑

i

ih̄vF

2a
(c†

i σyci+δx̂ − c†
i σxci+δŷ)

−
∑

i

W

2a
(c†

i σzci+δx̂ + c†
i σzci+δŷ) + H.c.

+
∑

i

2W

a
c†

i σzci, (2)

1The natural crystallographic lattices such as the 3D TIs have
no fermion-doubling problem. However, the transport properties of
the TIs are dominant by the 2D topological surface states. The 2D
topological surface states cannot be viewed as a realistic 2D system
because they only exist in the presence of the 3D topological non-
trivial bulk.

FIG. 1. (a) Sketch of a double-wormhole system. Here, the flux
tubes (with light color) inside the TI bulk represent the wormholes.
(b) Schematic diagram of the studied multiterminal device. Each
terminal contact with the double-wormhole central region is con-
sidered as a source or drain. Electrons can transport between these
terminals.

where ci and c†
i are the annihilation and creation operators

on site i. δx̂ (δŷ) is the primitive vector of the square lattice
along the x (y) direction, and a is the lattice constant. Al-
though the incorporation of the Wilson mass term successfully
overcomes the Fermi-doubling problem by opening a gap at
the redundant Dirac cones, it slightly shifts the Berry phase of
the eigenstates ψ±(k) around the Fermi surface from γ± = π

to γ± = π (1 ± Wa
2h̄vF

kF ) ≈ π (1 ± Wa
2(h̄vF )2 EF ) [19,25]. For this

reason, the Fermi energy EF cannot be too large to hold the
π Berry phase. In this paper, we take a = 1, h̄vF = 1, and
W = 0.3. Under this condition, the relative error in the Berry
phase will be smaller than 3% in the energy range −0.2 <

EF < 0.2. In order to include the magnetic flux, an additional
phase factor eiφi j is multiplied to the hopping term in Eq. (2).
The summation of φi j along any closed loop, both around
the wormhole and the surface, equals to the total magnetic
flux inside it [26]. With the help of Eq. (1) or (2), we can
study the topological surface states determined by the 3D
Hamiltonian within the 2D frame [7], thus can greatly enhance
the computational efficiency.2

Nevertheless, it is far from enough to construct the Hamil-
tonian of the wormhole system with Eq. (1) or (2) only.
From Fig. 1, the studied system should include the wormhole
surfaces and the top and bottom surfaces of the topological
insulator. As has widely been discussed [16,27–31], the low-
energy effective Hamiltonian with the form like Eq. (1) only
works on a flat surface. On a curved surface (e.g., see Fig. 1),
the curvature enters the Hamiltonian through the non-Abelian
spin connection. Thus, the discretized lattice Hamiltonian can
no longer be written in a concise form as Eq. (2). To solve such
a problem, we propose a simple method in Appendix A to

2In calculations, the utilization of the 2D lattice model greatly im-
proves the calculating efficiency compared to directly diagonalize the
3D bulk Hamiltonian. For simplicity, suppose that the geometrical
size of a 3D system is N3. The 2D model Hamiltonian reduces the
systems size by N and the lattice sites that should be considered are
∝ N2. Therefore, the computation speed for standard diagonalization
operations is improved by O(N3).
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deal with the discretized 2D Dirac Hamiltonian on the curved
surface. The spirit of this method is dividing the whole surface
of the wormhole system into a set of flat surfaces, on which the
2D Dirac Hamiltonians have the form of Eq. (1) or (2). Then,
the surface of the wormhole system is reconstructed by gluing
these flat surfaces together through unitary transformations on
a locally defined spinor basis as matching conditions. The ne-
cessity of including these matching conditions is rooted from
the spin-momentum locking nature of the topological surface
states (for example, it is unnecessary to introduce the match-
ing condition when constructing a lattice Hamiltonian with the
same geometry for ordinary electron gas without spin-orbit
coupling). It correlates the spatial motions and spin rotations
of electrons. In our model, the curvature effects emerge when
electrons move around the corner that connects the top and
bottom surfaces and the wormhole side surfaces. The validity
of the 2DELH is verified in Appendix B by investigating the
single-wormhole system.

B. Multiterminal system and transport calculation method

Our numerical calculations of the differential conductance
G, LDOS ρ(E , ri ), and local current distribution Ji→ j are
based on the nonequilibrium Green’s function method. As
sketched in Fig. 1(b), the studied wormhole system is viewed
as an eight-terminal device. Each terminal is considered as a
source or drain electrode. Electrons can propagate between
these terminals. Here, we ignore the side surfaces during
the calculation because the sample that we consider is very
large and side surfaces are far from the wormholes. Generally,
because the mobility of the TI material is low [32,33], injected
electrons traverse long trajectories if they go through the side
surfaces and thus the transmission probability is extremely
low. Therefore, electronic transport is expected to happen only
among the regions connected by wormholes and the current
flowing through the side surface is negligible. The electric
current In for terminal n is obtained by the Landauer-Büttiker
formula [34,35]

In = (e2/h)
∑
m �=n

Tnm(Vn − Vm), (3)

where the transmission coefficient between terminal n and
m is Tnm = Tr(	nGr	mGa) with Gr/a the retarded/advanced
Green’s function of the central region. 	m/n = i(
r

m/n −

a

m/n) is the linewidth function at the m/n terminal with 

r/a
m/n

the corresponding retarded/advanced self-energy. During the
calculation, we apply a small bias V between these termi-
nals (e.g., Vm = 0, Vn = V ). Then the total current I can be
obtained by summing all In’s of the source terminals. The
differential conductance G is obtained by G = dI/dV . LDOS
at site ri can be expressed as

ρ(E , ri ) = − 1

π
Im Tr[Gr (E , ri, ri )], (4)

where the trace is taken in the spin space and E is the energy.
Local current from site i to site j is [36–38]

Ji→ j = 2e

h

∑
α,β

∑
n

∫ E−eVn

−∞
dE ′ Im{Hiα, jβ [Gr	nGa] jβ,iα}

≈ 2e

h

∑
α,β

∫ E

−∞
dE ′ Im

{
Hiα, jβ

[
Gr

∑
n

	nGa

]
jβ,iα

}

−2e2

h

∑
α,β

Im

[
Hiα, jβ

∑
n

Gn
jβ,iα (E )Vn

]
. (5)

Vn denotes the applied bias on terminal n and Gn(E ) =
Gr (E )	n(E )Ga(E ). We only focus on the nonequilibrium cur-
rent which corresponds to the second term in Eq. (5):

Jnoneq
i→ j = −2e2

h

∑
α,β

Im

[
Hiα, jβ

∑
n

Gn
jβ,iα (E )Vn

]
. (6)

In order to clearly study the physical behavior of the
wormholes, the influence of the finite-size effect of the top
and bottom surfaces should be eliminated. The size of the
surfaces should be taken as large as possible. Unfortunately,
previous 3D Hamiltonians can only deal with small systems
[12,16,17]. The computation advantage of our 2D model en-
ables us to study a substantial large system (about 200 × 200
for a single-wormhole system and 300 × 300 for a double-
wormhole system). Besides, we shift the Fermi energy EF at
each terminal by 0.3. In this way, the Ohmic contact between
the metallic electrodes and the wormhole system becomes
perfect.

III. INTERFERING TRANSPORT BETWEEN
WORMHOLES

A. Double-wormhole interference

In this section, we demonstrate that the wormhole degree
of freedom can be manipulated through the interfering trans-
port in a double-wormhole system. Here, we treat terminals
on the top or bottom surface as a whole. Bias V is applied
between source (terminals 1–4, V1 = V2 = V3 = V4 = V ) and
drain (terminals 5–8, V5 = V6 = V7 = V8 = 0), as shown in
Fig. 1(b). The geometry of the wormhole, for simplicity, is
taken as a cuboid. The physics of the studied system is inde-
pendent of the wormhole shape. In most cases, it is convenient
to discretize the continuous Hamiltonian to square lattice.
Therefore, considering wormholes with square shape cross
sections is a natural choice.

We first calculate the band structure of an infinitely long
wormhole to count how many conducting channels contribute
to the differential conductance. When the magnetic flux φ =
π (in units of h̄

e ), the wormhole is gapless and carries a
pair of 1D linear modes [see insets in Fig. 2(a)]. In contrast,
when φ is shifted from π , as shown in Fig. 2(b), a gap is
opened. The linear mode of the π -flux wormhole provides
a conducting channel between the top and bottom surfaces,
so that in the single-wormhole system, the differential con-
ductance G ≡ e2/h. Because of the gap, G for the 0.6π -flux
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FIG. 2. (a), (b) Differential conductance G versus the Fermi en-
ergy EF in a single-wormhole (SWH) system with magnetic flux
π and 0.6π . Inset figures show the band structures of the corre-
sponding infinitely long wormholes. (c), (d) Comparison between
the single-wormhole and double-wormhole (DWH) systems in G.
Distance between the two wormholes D = 80. In each subfigure,
the blue curve is obtained by directly summing over two differential
conductances of the corresponding single-wormhole systems. The
red curve shows G of the double-wormhole system. The difference
between the red and blue curves indicates a wormhole interference.
Here, the cross-section size of the wormhole in all subfigures is
11 × 11, and the length L = 100.

single-wormhole system starts from 0 and then oscillates
toward an integer conductance [Fig. 2(b)]. In a double-
wormhole system, both wormholes contribute conducting
channels. If the two wormholes are independent, i.e., there is
no interference between them, the total differential conduc-
tance will be a naive summation G = G1 + G2 [blue curves
in Figs. 2(c) and 2(d)]. G1,2 is the differential conductance
of the corresponding single-wormhole system. However, our
numerical results demonstrate that G oscillates with the Fermi
energy [the red curves in Figs. 2(c) and 2(d)], which implies
that there is an interference between the two wormholes.

In order to see the details of the interference, we calcu-
late the LDOS distributions ρ(EF , r) of the double-wormhole
system (see Fig. 3). In the left and right panels, the LDOS
distribution at the first peak and dip on the G-EF curve are
plotted. The oscillation of G is intimately related to the oscil-
lation of ρ. For example, ρ in the wormholes is much larger
at the peak than at the dip of G. The rising of ρ also indicates
that there is resonant tunneling between the top and bottom
surfaces modulated by the wormhole interference.

We further investigate the geometrical dependence of
double-wormhole interference. In the following, we compare
the differential conductance G by varying the distance D,
length L, and the cross-section size of the wormholes.

As shown in Fig. 4(a), G with different cross-section sizes
almost coincide with each other when EF < 0.2. Therefore,
the cross-section sizes of wormholes have almost no influence
on the double-wormhole interference. Nevertheless, the cross-
section size still plays a role in tuning the wormhole degree
of freedom. The green curve jumps when EF > 0.2 because

FIG. 3. LDOS distribution ρ(EF , r) of the double-wormhole
system with two π -flux wormholes. The G-EF curve takes from
Fig. 2(d). The LDOS distribution ρ(EF , r) at the first peak and dip on
the G-EF curve are plotted correspondingly. In each subplot, the top
and bottom panels correspond to the top and bottom surfaces. The
two small panels in the middle represent the expanded side surfaces
of the two wormholes.

a wider wormhole provides more confined subbands (for a
cylindrical TI nanowire with radius R, the energy difference
between confined subband ∝ 1/R [17]). The Fermi energy EF

crosses three subbands (including two degenerate subbands)
for each wormhole. There are six conducting channels, and G
reaches 6e2/h.

Figures 4(b) and 4(c) show the behavior of the wormhole
interference with fixed cross-section size (11 × 11) by varying
D and L. As plotted in Fig. 4(b), the interference becomes
stronger when the two wormholes get closer, so that the
amplitude of the oscillation in G is enhanced. Meanwhile,

0.1 0.2 0.30

1

2

3

4

5

6

0.1 0.2 0.30

0.5

1

1.5

2

0.1 0.2 0.30

0.5

1

1.5

2

(a)

(c) (d)

(b)

FIG. 4. Geometrical dependence of the double-wormhole inter-
ference. (a) The differential conductance G of double-wormhole
systems with different cross-section size. The length of the worm-
hole L = 100 and the distance between them D = 80. (b) G versus
EF under different D with L = 100. (c) G versus EF by varying
L, with fixed D = 80. The cross-section size in (b) and (c) takes
11 × 11. (d) Schematic of the interwormhole backscattering process
between two π -flux wormholes. Red (blue) arrowed lines inside the
wormholes represent upward (downward) linear modes. Backscat-
tering of linear modes can (cannot) happen between interwormholes
(intrawormholes).
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enlarging L and D can visibly suppress the oscillation period
[see Figs. 4(b) and 4(c)]. The L and D dependence of the os-
cillation can be phenomenologically explained by considering
the double-wormhole system as an effective Aharonov-Bohm
ring [39,40], where the two wormholes together with the
top and bottom surfaces form a closed path, and the to-
tal perimeter is 2(L + D). The resonance tunneling happens
when 2kF (L + D) = 2π (n + 1/2), where kF is the wave vec-
tor at EF , n is an integer, and 1

2 originates from the geometrical
phase of the linear band. The oscillation period E equals
to the energy difference between neighbor resonance peaks,
thus, E = h̄vF kF = 2π h̄vF /2(L + D). Therefore, the os-
cillation of G is faster for the double-wormhole system with
longer wormhole length L or distance D.

In order to better understand the interference phenomenon
in double-wormhole systems and the formation of the effec-
tive AB ring, we propose an interwormhole backscattering
mechanism, as sketched in Fig. 4(d). The π -flux wormhole
carries a pair of gapless linear modes that are protected by
the topological bulk and the induced magnetic flux φ. Due to
the Klein tunneling [41], there is no backscattering between
the two linear modes in a π -flux wormhole, and G ≡ e2/h is
observed [Fig. 2(c)]. When φ �= π , the two modes are cou-
pled, and a gap is opened in the energy spectrum [see inset in
Fig. 2(b)]. This coupling induces a backscattering between the
two linear modes (intrawormhole backscattering) and causes
the oscillation of G even in a single-wormhole system [see
G-EF curve in Fig. 2(b)]. In a double-wormhole system with
two π -flux wormholes, there is no intrawormhole backscat-
tering. However, linear modes of different wormholes are
coupled with each other through the top and bottom surfaces.
This coupling results in an interwormhole backscattering [see
dashed arrows in Fig. 4(d)] and can also lead to the oscillation
of G. The closer the wormholes are, the stronger the coupling
between the backscattering channels is, thus the oscillation
amplitude of G is enhanced [Fig. 4(b)]. Furthermore, because
of the interwormhole backscattering, electrons can travel be-
tween wormholes and their spatial trajectory form a closed
loop [see Fig. 4(d)], thus the double-wormhole system can be
viewed as an effective AB ring.3

B. Multiwormhole interference

In this section, we show that unique transport phenomena
can be obtained through changing the number of wormholes.
Particularly, we find that the differential conductance G shows
a parity dependence on the number of wormholes. It origi-
nates from the fact that the physics behind the interwormhole
backscattering is the same as the backscattering between the
helical edge modes in 2D TIs, and falls into a Z2 classification
[42].

3The multiple TI nanowire system is of no reason to be similar to
our multiwormhole system. From the transport point of view, because
of the dephasing effect of the external leads, multiple TI nanowires
contribute to the total conductance incoherently. Our numerical re-
sults show a synergy of wormholes and topological surfaces that
brings interference effect between wormholes.
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FIG. 5. G-EF for multiwormhole systems. Wormholes are lined
up with distance D = 20, and wormhole length L = 100. (a) Multi-
wormhole systems with 1, 3, 5 wormholes. G � e2/h, indicating at
least one conducting channel survives. (b) Multiwormhole systems
with 2, 4 wormholes. G can be smaller than e2/h.

On the edge of 2D TIs, the forward edge mode can-
not be backscattered into its time-reversal counterpart (the
corresponding helical counterpart), but can be backscattered
into backward edge modes that belong to different Kramers
pairs. This backscattering mechanism leads to a Z2 classi-
fication for time-reversal-invariant materials [43]. A system
with an even (odd) number of helical edge mode Kramers
pairs is categorized into a Z2 = 0 (Z2 = 1) class, which is
equivalent to a normal (topological) insulator. In normal insu-
lators, the backscattering can destroy all conducting channels,
and the minimum of G falls to 0. On the contrary, in TIs
there is always one protected gapless edge mode survives the
backscattering, thus, G � e2/h.

Interestingly, the multiwormhole system (all wormholes
are π flux) reproduces this Z2 classification through the
wormhole backscattering. A pair of linear modes in each
wormhole can be considered as a Kramers pair of he-
lical edge modes, and the intrawormhole (interwormhole)
backscattering is forbidden (allowed). In analogy with the
2D TI, multiwormhole systems with odd (even) number of
wormholes are expected to be in the Z2 = 1 (Z2 = 0) or
“topological” (“normal”) classification. Our numerical sim-
ulations of multiwormhole systems with 1, 3, 5 and 2, 4
wormholes strongly confirm these expectations [see Figs. 5(a)
and 5(b)]. For multiwormhole systems with an odd number of
wormholes, G � e2/h is observed [Fig. 5(a)]. It is consistent
with the “topological” case (Z2 = 1) where one protected
mode survives the interwormhole backscattering. By contrast,
as shown in Fig. 5(b), G-EF curves of systems with an even
number of wormholes start from G ≈ 0. It belongs to the
“normal” case (Z2 = 0), where no conducting mode survives
the interwormhole backscattering.

The modulation of G through changing the number of
wormholes provides a different way to manipulate the worm-
hole degree of freedom, enabling wormhole systems to be
more controllable in topological device applications. More-
over, as far as we know, because of difficulties in transport
experiments, the Z2 characteristics have not yet been ob-
served in the quantum spin Hall systems experimentally. We
believe that the multiwormhole provides a clean platform to
investigate the relevant Z2 physics by changing the wormhole
numbers.
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FIG. 6. G of “wormhole switch” device by alternately varying
φ in the two wormholes. Here, EF = 0.1, D = 80, L = 100 and the
cross-section size takes 11 × 11. In each inset, the red (white) col-
ored area represents a conducting (insulating) wormhole. Terminal 1
(5) in (a) and terminal 1 (7) in (b) are taken as source (drain) with all
the other terminals set float.

IV. TOPOLOGICAL DEVICES BASED ON THE
WORMHOLE EFFECT

In this section, we show that the manipulation of the worm-
hole degree of freedom makes the wormhole systems feasible
in designing topological devices. Specifically, we propose two
types of devices: (1) the “wormhole switch,” which controls
the transport behavior of the device by varying the magnetic
flux φ; (2) the “traversable wormhole” device, which provides
conducting channels and enables electrons to travel across the
surface separated by obstacles.

A. “Wormhole switch” device

By manipulating the wormhole degree of freedom through
varying φ, the conducting and insulating status of worm-
holes can be switched. This phenomenon inspires us to utilize
wormhole systems as switches in topological devices. In this
section, we study such an application by investigating the φ

dependence of double-wormhole systems.
Here we pick two of the eight terminals as external leads

and set all the other terminals open. Two cases are con-
sidered, where the electric current comes from lead 1 and
leaves at lead 5 or lead 7 (see insets of Fig. 6). Figures 6(a)
and 6(b) plot the differential conductance G versus φ in the
two wormholes. For both cases, G = 0 in the absence of φ,
signaling the insulating status between the top and bottom
surfaces. By alternately varying φ of the two wormholes, G
jumps steeply and then manifests a plateaulike behavior. This
phenomenon means that the system can be steadily switched
between the conducting (on) and insulating (off) status. In
fact, we can not only switch the on and off status of the
topological device, but also switch the spatial distribution of
the current on each wormhole. By calculating the local current
distribution (here, terminals 1 and 5 are chosen as the source
and drain), we find a “remote tunneling” phenomenon, as
shown in Fig. 7(a). The near wormhole is “turned off” and

FIG. 7. Local current distribution of the “wormhole switch” de-
vice. In both subfigures, the upper and lower panels correspond to
the top and bottom surfaces. The middle two panels correspond to
the expanded side surfaces of the wormholes. Terminals 1 and 5 are
chosen as the source and drain. Device size and EF are the same as
Fig. 6(a). (a) φ1 = 0 and φ2 = π . (b) φ1 = φ2 = π .

the distant wormhole is “turned on.” The electric current com-
ing from terminal 1 bypassing the near wormhole then flows
through the distant conducting wormhole to terminal 5. For
comparison, Fig. 7(b) shows the case where both wormholes
are turned on. More electric current flows through the near
wormhole (about 55%) than through the distant wormhole
(about 45%). In applications, the controllable of the current
distribution enables us to integrate complex topological de-
vices, which can realize various transport functions among
different places.

More figuratively, the wormhole provides a “bridge” that
connects opposite surfaces of the TI and makes electrons
traveling between them possible. Thus, the wormhole in TIs
resembles the real wormhole in general relativity. The differ-
ence is that in TIs, the wormhole degree of freedom is highly
tunable by varying the magnetic fluxes. In applications, we
can switch not only the on and off status, but also the current
distribution of the topological device.

B. “Traversable wormhole” device

Apart from connecting the opposite surfaces isolated by
the insulating bulk, the wormhole in TIs can also provide
conducting channels to connect the separated regions of the
same surface. In real topological devices, the transport of
electrons on the same surface of TI is not always unimpeded.
For example, the metallic surface state may be destroyed by
magnetic impurities, or separated by lumps, external leads,
and other complicated device structures [e.g., see Fig. 8(a)].
Thus, electrons cannot pass through these obstacles. In order
to make the electronic transport between the separated regions
possible, similar as the space traveling between separated
space-time [44], we propose a “traversable wormhole” device.
The obstacles on the surface of TI are modeled by a cutting
off in the middle on the top surface so that electrons cannot
transport across it directly [see Fig. 8(b)]. The local current
distribution [see Fig. 8(e)] shows clearly that electric current
comes from the source (terminal 1) flows to the bottom surface
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FIG. 8. (a) Sketch of a “traversable wormhole” device. (b) Schematic of the current distribution in the traversable wormhole device. Electric
current flows from terminal 1 traveling across the two conducting wormholes, then to terminal 3. The separated regions in the top surface of TI
are connected by wormholes. (c) G as a function of the magnetic flux φ at different EF . φ1 = φ2 = φ. (d) G as a function of EF . Three different
combinations of φ1 and φ2 are compared. (e) Local current distribution of the traversable wormhole device with φ1 = φ2 = π and EF = 0.1.
The top surface is separated in the middle, the conducting wormhole pair serves as a bridge that connects the separated top surface. Device
size is the same as Fig. 6.

through the near wormhole, then flows back to the drain on
the top surface (terminal 3) through the distant wormhole,
completes a “wormhole traveling.”

Furthermore, we investigate the transport performance of
the device in detail. As shown in Fig. 8(c), the differential
conductance G can be modulated by simultaneously varying
the magnetic fluxes of both wormholes with a fixed EF . We
find that the conducting region falls into a flux window cen-
tered at π . The jump of G from 0 to a finite value means
that the separate regions are connected by wormholes. The
width of the flux window is enlarged with the increasing of
EF , signaling the tunability of the “traversable wormhole”
device. Then we compare G under three combinations of the
magnetic fluxes φ1 and φ2 [Fig. 8(d)]. The wormhole traveling
phenomenon happens at any EF only if both wormholes are π

flux. This is because only when EF crosses the subbands of
both wormholes [see insets Figs. 2(a) and 2(b)] can the two
wormholes provide a conducting channel for the electron to
complete a wormhole traveling process.

In applications, the “traversable wormhole” device can
bridge TI surfaces that are separated by obstacles. For ex-
ample, when a TI thin film is fabricated on the substrate,
the bottom surface of the thin film is sealed and maintains
excellent transport performance. However, its top surface is
exposed to the environment or is used to build complex device
structures. Thus, the electron transport on the top surface
may be impeded. Fortunately, with the help of the traversable
wormhole device, electrons can still travel across the top sur-
face. Moreover, through varying EF or φ of the wormholes,
the traveling can be finely controlled.

V. CONCLUSION AND PERSPECTIVE

In summary, we have numerically studied the wormhole
system by applying the 2DELH. We find that the “wormhole
effect,” as a unique degree of freedom, can manipulate the
transport properties of TIs. The oscillation of the differential
conductance G and the LDOS in the double-wormhole system
demonstrated an interfering transport between the wormholes,
depending on the system geometry. The interference phe-
nomenon originates from the interwormhole backscattering.
Electrons can be backscattered between the wormholes to
complete the motion in a closed path, causing an effective
AB interference. Furthermore, by studying the multiworm-
hole systems, we find that the interwormhole backscattering
mechanism leads to a Z2 classification, and G shows a par-
ity dependence on the number of wormholes. Therefore, the
transport properties of the system can be modulated by the
wormhole numbers.

We then propose two topological device applications
through the manipulation of the wormhole degree of freedom.
The first one is the “wormhole switch” device, which enables
us to switch not only the on and off status, but also the cur-
rent distribution of the device through varying the magnetic
fluxes of the wormholes. The second one is the “traversable
wormhole” device, which provides conducting channels to
connect isolated regions of the topological surfaces. It enables
electrons to complete a “wormhole traveling” and bypass the
obstacles on the surface.

Recently, transport experiments based on semiconductor,
2D TI quantum well, or superconductor thin films with
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FIG. 9. (a) Sketch of a single-wormhole system. (b) A bent surface with one edge can be flattened. The local coordinate frame is parallelly
translated along the surface. (c) A cornerlike surface can be viewed as three sets of bent surfaces. The red (blue) colored coordinate frame
represents the local coordinate frame on the top (side) surface. The light red colored ones represent the coordinate frames parallelly translated
from the top surface. (d) Coordinate frame specified on the top surface (left panel), the surface of the wormhole (middle panel), and bottom
surface (right panel). The z direction is the outward normal direction on each surface (here the outward means the axis points from the bulk to
the vacuum). Red (blue) colored frames represent local coordinate frames on the top and bottom surfaces (on the wormhole). Light red colored
frames are obtained by parallelly translating frames from top and bottom surfaces to the wormhole. The four slices of the wormhole surface
are connected to the top surface in order of left-down-right-up. Ui and Ti indicate the unitary transformations of the corresponding spinor basis
on the edges.

nanopore structures have been reported [45–47]. We expect
that the TI thin film with nanopore structures can serve as
an ideal platform to realize the wormhole devices. Since
the radius of the etched nanopores is reported to be around
50–100 nm, the applied magnetic field required for a flux
quantum is expected to be less than 0.25 T.4 Therefore, the
wormhole devices and the manipulations of the wormhole
degree of freedom are highly achievable in experiments. Other
potential candidates to realize the wormhole systems are the
artificial structures such as the photonic and phononic crystals
[48–52] and the topological electric circuit [53,54], which
have attracted extensive attention. Especially, the 3D pho-
tonic topological insulator [55] and the 3D acoustic TI [56]
have been realized recently. The macroscopic scale of these
structures makes it easier to build the tubular geometry of the
wormholes. Moreover, introducing and controlling the mag-
netic fluxes are feasible in classical wave systems [53,54,57–
60]. For these reasons, artificial structures provide flexible

4We note that the applied magnetic field is not necessarily restricted
to the wormhole only. Because only surface states are involved,
the total magnetic flux in the wormhole is determined by the field
strength and the cross-section area of the wormhole rather than the
area over which the magnetic field is applied. Nevertheless, the area
over which the magnetic field is applied cannot be too large to avoid
the formation of Landau levels on the top and bottom surfaces. Given
that, the magnetic field can be applied over an area suitably larger
than the wormhole.

platforms for physicists to investigate the novel properties of
the wormhole systems.
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APPENDIX A: CONSTRUCTION OF LATTICE
HAMILTONIAN FOR THE WORMHOLE SYSTEM

As have been discussed in Refs. [27,28], the Dirac Hamil-
tonian H (r) on a 2D curved surface is not trivial since H
inherits geometrical and topological information of the sur-
face. It brings difficulties in numerical calculations when H is
discretized into a lattice form. In this Appendix, we propose a
simple method to deal with the discretized H (r) on a curved
surface by dividing the whole surface into a set of flat surfaces
and glue them together by unitary transformations on spinor
basis at the edges. Then, we give the exact form of the trans-
formation matrices. This method can also be generalized to
higher dimensions.

In order to encode geometric information into the Hamil-
tonian H (r), partial derivatives ∂k in the momentum term
should be replaced by covariant derivatives [27], which gen-
erates the parallel translations of the spinor basis on the
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curved surface. As shown in Fig. 9(b), a bent surface can
be flattened because of its zero curvature (� = 0). The local
coordinate frame on the flat surface can be parallelly trans-
lated without the additional information of �. This is why the
surface of an infinite long TI tube can be flattened [19,61],
except for an antiperiodic boundary condition that we will
discuss soon.

In contrast, for curved surfaces with nonzero � such as the
cornerlike surface plotted in Fig. 9(c) (the cross point of the
three edges is a singular point of �), the flattening procedure
can no longer be performed. Consequently, the parallel trans-
lations of local spinor basis cannot be unified on the three
edges (they “frustrate” each other), and at least two of the
frames should be related by a nontrivial coordinate transfor-
mation [coordinate frames on the 1-3 surface (determined by
edge 1 and edge 3) in Fig. 9(c)]. In the wormhole system, cor-
nerlike structures appear when the wormhole crosses the top
and bottom surfaces. The planar graph of a single-wormhole
system with specified local coordinate frames is shown in
Fig. 9(d) (colored red for the top and bottom surfaces and blue
for the wormhole). The light red colored coordinate frames
are parallelly translated from top and bottom surfaces to the
wormhole. Obviously, these frames are not always coincident
with the blue colored frames, and coordinate transformations
are inevitable.

When H (r) is discretized into a lattice form, the parallel
translation operations are reflected in the hopping terms. To
be clear, we consider an electron hopping process from the
top surface of the cornerlike structure in Fig. 9(c), to the 1-3
side surface. The wave function components after hopping
are obtained by projecting the electron state onto the blue
colored spinor basis on the wormhole, instead of the parallelly
translated spinor basis (light red colored). Thus, wave func-
tions before and after hopping should be related by a unitary
transformation.

For the wormhole system, as shown in Fig. 9(d), paral-
lel translation of spinor basis between different coordinate
frame induces a set of unitary transformations between the
wormhole and the top (bottom) surface denoted by Ui (Ti),
respectively, where i = 1, 2, 3, 4. They can be obtained as
follows. Suppose the local spinor basis on the top surface is
|et

μ〉 (μ =↑,↓ represents the +z or −z direction, similarly
hereinafter), the four side surfaces of the wormhole are de-
noted by a,b,c,d on which the local spinor basis are |aw

μ 〉, |bw
μ〉,

|cw
μ 〉, and |dw

μ 〉. The parallelly translated spinor bases from the
top surface to the side surfaces of the wormhole a denoted
by |at

μ〉, |bt
μ〉, |ct

μ〉, and |dt
μ〉. For example, when an elec-

tron state |ψ〉 = ∑
μ |et

μ〉vμ on the top surface is parallelly
translated to the side surface b, the translated state is |ψ t 〉 =∑

μ |bt
μ〉vμ. Notice that in numerical calculations, the wave

functions after hopping is expressed under the |bw
μ〉 basis,

thus the unitary transformation from |bt
μ〉 to |bw

μ〉 is needed.
They can be obtained by noticing that |ψ t 〉 = ∑

μ |bt
μ〉vμ =∑

μ

∑
ν |bw

ν 〉〈bw
ν |bt

μ〉vμ = ∑
μ

∑
ν |bw

ν 〉Uνμvμ and the trans-
formation matrix is Uνμ = 〈bw

ν |bt
μ〉. Importantly, the paral-

lelly translated basis |bt
μ〉 can be obtained by rotating the

original basis |et
μ〉 and we have |bt

μ〉 = R̂b←e|et
μ〉, R̂b←e is

a rotation operator. Here, we define that the local bases are

related by |aw
μ 〉 = |at

μ〉 = R̂a←e|et
μ〉 and |bw

μ〉 = R̂b←a|aw
μ 〉,

|cw
μ 〉 = R̂c←b|bw

μ〉, |dw
μ 〉 = R̂d←c|cw

μ 〉. From these relations we
can write the matrix form of U as

Uμν = 〈
bw

μ |bt
ν

〉
= 〈

bw
μ

∣∣R̂b←eR̂†
a←eR̂†

b←a

∣∣bw
ν

〉
. (A1)

From Eq. (A1) we can calculate the exact form of the unitary
transformation between the top surface and the side surface
b on the wormhole. Express R̂ under the |bw

μ〉 basis (for

example, the matrix form of R̂b←e rotation is e−i
σy
4 π ), we have

U2 = Uy

(π

2

)
Uz

(
−π

2

)
Ux

(π

2

)
= Uz

(
−π

2

)
, (A2)

where Ux,y,z(φ) = e−i
σx,y,z

2 φ . After similar analysis, we can also
obtain the unitary transformations between the top surface and
the a,c,d side surfaces on the wormhole, with

U1 = I2×2,

U3 = Uy

(π

2

)
Uy

(π

2

)
Ux(π ) = Uz(−π ),

U4 = Uy

(π

2

)
Uz

(π

2

)
Ux

(
3π

2

)
= Uz

(
−3π

2

)
. (A3)

Then, the unitary transformations between the bottom surface
and the wormhole are

T1 = I2×2,

T2 = Ux

(π

2

)
Uz

(
−π

2

)
Uy

(
−π

2

)
= Uz

(
−π

2

)
,

T3 = Uy

(
−π

2

)
Uz(−π )Uy

(
−π

2

)
= Uz(−π ),

T4 = Ux

(
−π

2

)
Uz

(
−3π

2

)
Uy

(
−π

2

)
= Uz

(
−3π

2

)
. (A4)

For the last step, the flat surface should be rolled up into
a tube and forms the wormhole. The antiperiodic boundary
condition should be applied [19] because after a 2π rotation,
the spinor basis changes by a π -phase factor. Therefore, the
unitary transformation, in this case, is just −I. Physically it
can also be understood as a π geometrical phase induced by
the rotation of spinors [62].

APPENDIX B: PROPERTIES OF
SINGLE-WORMHOLE SYSTEMS

In this Appendix, we investigate the properties of a single-
wormhole system and check the validity of the 2DELH. The
corresponding LDOS of a π -flux wormhole system is studied
[Fig. 10(a)]. Figures 10(d) and 10(e) plot the energy dis-
persions of the infinite long wormhole and the infinite large
surface. Figures 10(b) and 10(c) show the LDOS at fixed
points on the top surface and on the wormhole. As expected,
the total density of states ρ is a linear function of E for the
topological surface due to 2D Dirac cone dispersion, and a
constant for the π -flux wormhole due to 1D linear dispersion.
Our numerical results perfectly match this expectation, there-
fore, establish our confidence for further calculations based on
this 2DELH.
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FIG. 10. (a) LDOS ρ of the single-wormhole system at Fermi energy EF = 0.05. (b) ρ-E at a fixed point on the surface. (c) ρ-E at a fixed
point on the wormhole. (e) Energy dispersion of an infinitely long wormhole. (f) Energy dispersion of a TI surface. The cross-section size of
the wormhole takes 11 × 11, the wormhole length L = 100. The red lines (surface) in (b)–(e) represent the Fermi energy.
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Observation of unidirectional backscattering-immune topo-
logical electromagnetic states, Nature (London) 461, 772
(2009).

[59] X. Wen, C. Qiu, Y. Qi, L. Ye, M. Ke, F. Zhang, and Z.
Liu, Acoustic Landau quantization and quantum-Hall-like edge
states, Nat. Phys. 15, 352 (2019).

[60] T. Hofmann, T. Helbig, C. H. Lee, M. Greiter, and R. Thomale,
Chiral Voltage Propagation and Calibration in a Topolectrical
Chern Circuit, Phys. Rev. Lett. 122, 247702 (2019).

[61] L. Brey and H. A. Fertig, Electronic states of wires and slabs of
topological insulators: Quantum Hall effects and edge transport,
Phys. Rev. B 89, 085305 (2014).

[62] S. B. D. Altland Alexander, Condensed Matter Field Theory,
2nd ed. (Cambridge University Press, Cambridge, 2010).

165425-11

https://doi.org/10.1103/PhysRevB.78.235438
https://doi.org/10.1103/PhysRevLett.107.076801
https://doi.org/10.1103/PhysRev.126.1636
https://doi.org/10.1103/PhysRevLett.103.196804
https://doi.org/10.7566/JPSJ.82.074712
https://doi.org/10.1103/PhysRevLett.124.126804
https://doi.org/10.1103/PhysRevB.84.245417
https://doi.org/10.1103/PhysRevB.86.235119
https://doi.org/10.1039/C8NR05500A
https://doi.org/10.1038/s41598-018-35674-z
https://doi.org/10.1103/PhysRevB.80.165316
https://doi.org/10.1103/PhysRevB.78.155413
https://doi.org/10.1103/PhysRevLett.87.126801
https://doi.org/10.1103/PhysRev.115.485
https://doi.org/10.1038/385417a0
https://doi.org/10.1007/BF01339716
https://doi.org/10.1103/PhysRevB.79.241303
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1103/PhysRev.48.73
https://doi.org/10.1038/s41467-017-01684-0
https://doi.org/10.1038/s41467-018-05775-4
https://doi.org/10.1126/science.aax5798
https://doi.org/10.1103/RevModPhys.91.015006
https://doi.org/10.1038/nphoton.2014.248
https://doi.org/10.1002/adfm.201904784
https://doi.org/10.1103/PhysRevApplied.5.054021
https://doi.org/10.1038/s41377-020-0273-4
https://doi.org/10.1103/PhysRevX.5.021031
https://doi.org/10.1103/PhysRevLett.114.173902
https://doi.org/10.1038/s41586-018-0829-0
https://doi.org/10.1103/PhysRevLett.123.195503
https://doi.org/10.1103/PhysRevLett.100.013905
https://doi.org/10.1038/nature08293
https://doi.org/10.1038/s41567-019-0446-3
https://doi.org/10.1103/PhysRevLett.122.247702
https://doi.org/10.1103/PhysRevB.89.085305

